首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Chemical and microscopic features of wood decay by the basidiomyceteCoriolopsis occidentalis are described. The fungus was grown on blocks of poplar, oak, and fir wood and caused significant mass, lignin, and saccharide losses in all kinds of wood. Poplar wood was particularly strongly affected. Twelve weeks after inoculation dry mass, lignin, and saccharide contents were reduced by about 50%. The blocks became covered with mycelia and electron microscopy showed that secondary cell walls were degraded from the lumina and middle lamellae dissolved during later stages of incubation. The results indicate that the fungus belongs to simultaneous white-rotters.  相似文献   

2.
A high-performance liquid chromatography (HPLC) method based on the evolution of wood extractives was developed to follow the first stages of fungal degradation of beech wood exposed to Coriolus versicolor. The nature and the quantity of the extracts initially present in wood depended on the extraction conditions and also on the wood-drying conditions (time and temperature). The most interesting fraction was soxhlet extracted with acetone at 56 °C for 6 h. The best conditions to avoid extractives degradation consisted of a moderate drying at 55 °C for 48 h allowing identification of catechin as potential tracer. After 2 weeks of wood blocks exposure to C. versicolor, analysis of their acetonic extractives showed that catechin signal initially detected in beech wood, had totally disappeared. Treatment of wood with an appropriate fungicide such as propiconazole before exposure to C. versicolor, prevents the catechin amount from any variation. The comparison of these results with the classical weight loss (WL) measurements obtained after long-time experiments on treated and untreated wood blocks shows that the catechin amount evolution, monitored during 2 weeks, correlates with the wood resistance evaluated during 16 weeks, allowing the use of this flavonoid as a valuable biomarker of wood decay.  相似文献   

3.
Microclimatic conditions in dead wood influence fungal growth and hence also species composition, but it remains unclear how they influence species richness in nature. We analysed fungal species richness based on the occurrence of fruit bodies on 2 m long segments of both standing and lying trunks of Norway spruce (Picea abies). The number of non-red-listed species was related positively to moisture, and negatively to both temperature extremes and fluctuations. The numbers of both red-listed and non-red-listed species were further differently influenced by trunk diameter and by trunk properties related to the progression in wood decay. These results indicate that the richness of fungal communities in dead wood is shaped by an interaction of wood decay, moisture and temperature fluctuations.  相似文献   

4.
The European standard test EN 113 for fungal degradation of solid wood has been adapted for degradation of paper by white rot fungus (Trametes versicolor). Fungal degradation of paper sheets may potentially be used for screening different wood preservatives on paper instead of solid wood. The paper samples showed higher relative mass losses compared to wood, and samples pretreated with boric acid, copper sulfate and polymerized linseed oil were successfully tested for biodegradation using the paper sheet method. The results on paper degradation were compared with wood, both as wood blocks (according to standard test) and wood cut in sections forming layered structures mimicking paper layers.  相似文献   

5.
A novel two-stage, whole organism fungal biopulping method was examined for increasing the yield of enzymatic hydrolysis of wood into soluble glucose. Liriodendron tulipifera wood chips (1 g) were exposed to liquid culture suspensions of white rot (Ceriporiopsis subvermispora) or brown rot (Postia placenta) fungi and incubated at 28 °C, either alone in single-stage 30 day (one fungal species applied) or two-stage 60 day (both fungal species applied in alternative succession) treatments. Fungi grew in all treatments, but did not significantly decrease the percent carbohydrate content of the wood. Two-stage treatments differed significantly in mass loss depending on order of exposure, suggesting additive or inhibitory fungal interactions occurred. Treatments consisting of C. subvermispora followed by P. placenta exhibited 6 ± 0.5% mass loss and increased the yield of enzymatic hydrolysis by 67-119%. This significant hydrolysis improvement suggests that fungal biopulping technologies could support commercial lignocellulosic ethanol production efforts if further developed.  相似文献   

6.
Fomes sclerodermeus is a white-rot fungus. Its production of laccase, manganese peroxidase and lignin peroxidase on sawdust-based media was evaluated. No lignin peroxidase activity was measured in any media tested. The higher production of laccase and manganese peroxidase were found on media containing poplar sawdust. F. sclerodermeus was grown on wood blocks of poplar during six months. Dry weight losses of the blocks reached a mean value of 51%. The quantification of cellulose and lignin in the 6-months incubated blocks showed losses of up to 58 and 56% for cellulose and lignin, respectively. The decay examined under microscope revealed mycelium colonizing the lumen of vessel elements, cell wall thinning and entire degradation of the radial parenchyma.  相似文献   

7.
8.
Biochar and manure can be used for sustainable land management. However, little is known about how soil amendments might affect surface and belowground microbial processes and subsequent wood decomposition. In a split-split-split plot design, we amended soil with two rates of manure (whole plot; 0 and 9 Mg ha−1) and biochar (split plot; 0 and 10 Mg ha−1). Wood stakes of three species (hybrid poplar, triploid Populus tomentosa Carr.; aspen, Populus tremuloides Michx.; and pine, Pinus taeda L.) were placed in two positions (horizontally on the soil surface, and inserted vertically in the mineral soil), which served as a substrate for fungal growth. In 3 years, the decomposition rate (density loss), moisture content, and fungal community (via high-throughput sequencing methods) of stakes were evaluated. Results indicated that biochar and/or manure increased the wood stake decomposition rates, moisture content, and operational taxonomic unit abundance. However, the richness and diversity of fungi were dependent on wood stake position (surface > mineral), species (pine > the two Populus), and sample dates. This study highlights that soil amendment with biochar and/or manure can alter the fungal community, which in turn can enhance an important soil process (i.e., decomposition).  相似文献   

9.
Beech and pine wood blocks were treated with 1,3-dimethylol-4,5-dihydroxyethylen urea (DMDHEU) to increasing weight percent gains (WPG). The resistance of the treated specimens against Trametes versicolor and Coniophora puteana, determined as mass loss, increased with increasing WPG of DMDHEU. Metabolic activity of the fungi in the wood blocks was assessed as total esterase activity (TEA) based on the hydrolysis of fluorescein diacetate and as heat or energy production determined by isothermal micro-calorimetry. Both methods revealed that the fungal activity was related with the WPG and the mass loss caused by the fungi. Still, fungal activity was detected even in wood blocks of the highest WPG and showed that the treatment was not toxic to the fungi. Energy production showed a higher consistency with the mass loss after decay than TEA; higher mass loss was more stringently reflected by higher heat production rate. Heat production did not proceed linearly, possibly due to the inhibition of fungal activity by an excess of carbon dioxide.  相似文献   

10.
《Fungal biology》2014,118(11):935-942
Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m1). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m1) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m1). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe3+-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe3+-reducing activity, which was restored in the cultures after the first week of biodegradation.  相似文献   

11.
In this study, we tested tetraethoxysilane and methyltriethoxysilane as modifying silicon-based compounds for their potential to limit boron leachability from modified wood and to increase biological durability of the wood against fungi and termites. Both the silane compounds were used in silane state where acidified ethanol was added and stirred at ambient temperature for 30 min. We used two different processes for preservative treatments: double treatment and single treatment. In double treatment, the specimens from sugi wood were first treated with boric acid at 1% concentration and subsequently treated with the silanes. In single treatment, boric acid was mixed with the silane compounds in the silane state yielding 1% boric acid concentration. Subsequent to the treatments, wood specimens were subjected to laboratory leaching tests, and leachates were analyzed for boron content with an inductively coupled plasma (ICP) spectrometry. ICP analyses showed that silane treatments were able to limit boron leaching from treated wood by about 40% in all cases for each silane compound. Wood specimens were then subjected to laboratory termite and decay resistance tests using the subterranean termites, Coptotermes formosanus, and the wood decaying fungi, Fomitopsis palustris and Trametes versicolor. Termite and fungal decay resistance tests revealed that resistance of modified wood with the silane and boron compounds increased when compared to untreated and boron-only treated wood specimens. More in-depth studies on the mechanisms of interactions between the silicon compounds, boron elements and wood components are in progress.  相似文献   

12.
Globally 40–70 Pg of carbon (C) are stored in coarse woody debris on the forest floor. Climate change may reduce the function of this stock as a C sink in the future due to increasing temperature. However, current knowledge on the drivers of wood decomposition is inadequate for detailed predictions. To define the factors that control wood respiration rate of Norway spruce and to produce a model that adequately describes the decomposition process of this species as a function of time, we used an unprecedentedly diverse analytical approach, which included measurements of respiration, fungal community sequencing, N2 fixation rate, nifH copy number, 14C‐dating as well as N%, δ13C and C% values of wood. Our results suggest that climate change will accelerate C flux from deadwood in boreal conditions, due to the observed strong temperature dependency of deadwood respiration. At the research site, the annual C flux from deadwood would increase by 27% from the current 117 g C/kg wood with the projected climate warming (RCP4.5). The second most important control on respiration rate was the stage of wood decomposition; at early stages of decomposition low nitrogen content and low wood moisture limited fungal activity while reduced wood resource quality decreased the respiration rate at the final stages of decomposition. Wood decomposition process was best described by a Sigmoidal model, where after 116 years of wood decomposition mass loss of 95% was reached. Our results on deadwood decomposition are important for C budget calculations in ecosystem and climate change models. We observed for the first time that the temperature dependency of N2 fixation, which has a major role at providing N for wood‐inhabiting fungi, was not constant but varied between wood density classes due to source supply and wood quality. This has significant consequences on projecting N2 fixation rates for deadwood in changing climate.  相似文献   

13.
The molecular basis of cell–cell adhesion in woody tissues is not known. Xylem cells in wood particles of hybrid poplar (Populus tremula × P. alba cv. INRA 717‐1B4) were separated by oxidation of lignin with acidic sodium chlorite when combined with extraction of xylan and rhamnogalacturonan‐I (RG‐I) using either dilute alkali or a combination of xylanase and RG‐lyase. Acidic chlorite followed by dilute alkali treatment enables cell–cell separation by removing material from the compound middle lamellae between the primary walls. Although lignin is known to contribute to adhesion between wood cells, we found that removing lignin is a necessary but not sufficient condition to effect complete cell–cell separation in poplar lines with various ratios of syringyl:guaiacyl lignin. Transgenic poplar lines expressing an Arabidopsis thaliana gene encoding an RG‐lyase (AtRGIL6) showed enhanced cell–cell separation, increased accessibility of cellulose and xylan to hydrolytic enzyme activities, and increased fragmentation of intact wood particles into small cell clusters and single cells under mechanical stress. Our results indicate a novel function for RG‐I, and also for xylan, as determinants of cell–cell adhesion in poplar wood cell walls. Genetic control of RG‐I content provides a new strategy to increase catalyst accessibility and saccharification yields from woody biomass for biofuels and industrial chemicals.  相似文献   

14.
Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect.  相似文献   

15.
Fast-growing plant wood Populus ussuriensis Kom, and Micheliamacclurel wood were respectively modified by formation of wood-polymer composite to improve their decay resistance. Two functional monomers, glycidyl methacrylate and ethylene glycol dimethacrylate, added with a few Azo-bis-isobutryonitrile as initiator, and maleic anhydride as catalyst, were first impregnated into wood cell lumen under a vacuum-pressure condition, and then in-situ polymerized into copolymers through a catalyst-thermal treatment. The decay resistances of untreated wood and wood-polymer composites were assessed by weight loss and compared by SEM observations. SEM and FTIR analysis indicated that the in-situ polymerized copolymers fully filled up wood cell lumen and also grafted onto wood cell walls, resulting in the blockage of passages for microorganisms and moisture to wood cell walls. Thus, the decay resistance of poplar wood-polymer composite and Micheliamacclurel wood-polymer composite against brown rot fungus and white rot fungus in terms of weight loss achieved 3.43–3.92% and 1.04–1.33%, improved 95.06–95.18% and 95.10–95.35% than those of untreated poplar wood and Micheliamacclurel wood, respectively; and also respectively higher than that of boron-treated wood. The SEM observations for the decayed poplar wood, Micheliamacclurel wood and their corresponding treated wood also showed the remarkable improvement of decay resistance of wood after such treatment, which effectively protected wood from degradation by fungi.  相似文献   

16.
Summary Milled poplar wood (1.7 mm mesh size) was composted in lab-scale reactors. Initial C/N ratios were adjusted to 10:1, 30:1, and 50:1 using urea as the nitrogen source. At each C/N ratio, three moisture levels (30, 50, and 70%) were tested. C/N ratios of 50:1 or 30:1 and moisture content of 70% favored more effective composting as indicated by higher levels of mineralization of the poplar wood to CO2.  相似文献   

17.
The biodegradation of plastics and wood with different susceptibility to fungal attack have in this study been compared in order to show the biodegradability in relation to the properties of plastic and solid wood. Wood blocks of Scots pine and English Oak were treated with biodegradable aliphatic polyester, polycaprolactone, and a non-biodegradable aromatic thermoplastic, polystyrene. The plastics were applied to the wood samples dissolved in an organic solvent and thereafter the treated wood samples were exposed to brown rot decay (Postia placenta) in an agar plate test for 8 weeks. The polycaprolactone treatments did not result in wood protection, whereas polystyrene treatments provided a protection from fungal attack. Both plastics are transparent and after treatment the solid wood blocks retained their natural wood appearance with a somewhat darker shinier surface.

Scientific relevance

Usually commercial wood-plastic composites are made using wood derived lignocellulose-fibers melt-blended in a screw extruder with a plastic matrix, and then the resulting material is mainly a plastic (in terms of properties and appearance) which contain some lignocellulose. We have instead used solid wood to which we have added transparent plastics, which preserve the unique and precious esthetic value of natural wood. This study describes the biodegradation of two (a more and a less resistant) wood species in combination with a biodegradable and a non-biodegradable plastic. The purpose was to study any synergetic effect in the biodegradation property between solid wood and plastic since there is a socio-environmental desire to use biodegradable plastics of renewable raw material for e.g. composite material. We show that both the wood and the plastic influence the biodegradation, for example by using an easily degraded European wood specie in combination with a biodegradable plastic (polycarolactone) no protection of the wood is obtained, whereas a relative small amount recalcitrant plastic (polystyrene) can somewhat protect both Scots pine and Oak wood without significantly compromising their appearance.  相似文献   

18.
This study evaluated the decay resistance of ash (Fraxinus excelsior L.), beech (Fagus sylvatica L.), and maple (Acer platanoides L.) wood impregnated by a full cell process with N-methylol melamine (NMM) and combined NMM-metal complex dye (NMM-BS) in aqueous solutions. Basidiomycete decay testing involved incubation with Coniophora puteana (brown rot) and Trametes versicolor (white rot) according to a modified EN 113 (1996) standard, while for the soft rot fungal resistance was evaluated following the standard ENv 807 (2001). NMM and NMM-BS modifications at a WPG range of 7–11% provided decay protection against brown rot resulting in a mass loss less than the required limit (3%). The NMM and NMM-BS modified wood showed increased resistance to white rot decay; however, a higher WPG is needed to prohibit attack from this hardwood specific fungus. The metal-complex dye alone revealed biocidal effects against basidiomycetes. An increased WPG in NMM or NMM-BS had a positive impact against soft rot decay and the lowest mass losses after 32 weeks of exposure were obtained with NMM modification at about 18–21% WPG. NMM modification at this WPG range, however, was not sufficient to protect the wood from soft rot decay. The wood of beech and maple showed slightly higher resistance to all decay types than ash, probably due to the poorer degree of modification of the latter.  相似文献   

19.
In this work, the resistance of black pine wood (Pinus nigra L.) vacuum-treated with zinc oxide, zinc borate and copper oxide nanoparticles against mold and decay fungi and the subterranean termites was evaluated. Some of the nanocompounds tested were forced with acrylic emulsions to avoid leaching. Results showed that mold fungi were slightly inhibited by nanozinc borate, while the other nanometal preparations did not inhibit mold fungi. Mass loss from fungal attack by Trametes versicolor was significantly inhibited by the zinc-based preparations, while the brown-rot fungus, Tyromyces palustris was not inhibited by the nanometal treatments. Notably, nanozinc borate plus acrylic emulsion imparted very high resistance in pine wood to the white-rot fungus, T. versicolor with a mass loss of 1.8%. Following leaching, all pine specimens treated with nanozinc borate, with or without acrylic emulsion, strongly inhibited termite feeding, i.e. mass losses varying at 5.2–5.4%. In contrast, the copper-based treatments were much less effective against the subterranean termites, Coptotermes formosanus. In general, nanozinc borate possessed favorable properties, that is, inhibition of termite feeding and decay by T. versicolor.  相似文献   

20.
This study evaluated decay and termite resistance of thermally compressed pine wood panels under pressure at either 5 or 7 MPa and either 120 or 150 °C for 1 h. Wood specimens from the panels were exposed to laboratory decay resistance tests by using the wood degrading fungi, Gloeophyllum trabeum and Trametes versicolor. The thermal compression process caused increases in density and decreases in thickness of the panels; however, laboratory decay resistance tests revealed that thermally compressed wood was not resistant against the wood degrading fungi tested. More interesting results were found in laboratory termite resistance tests by using the Eastern subterranean termites, Reticulitermes flavipes. As pressure and temperature applied to the specimens increased to 7 MPa and 120 °C, mass losses in the specimens gradually decreased in comparison with control specimens. However, the specimens compressed at 7 MPa and 150 °C showed higher mass losses when compared to the specimens compressed at 7 MPa and 120 °C. The lowest water absorption and swelling rates were seen in the specimens exposed to a pressure of 7 MPa at 120 °C. The thermal compression process at 7 MPa and 150 °C resulted in the highest water absorption and swelling in the specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号