首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the role of insulin receptor substrate-1 (IRS-1) and its downstream signaling in insulin-induced thermogenic differentiation of brown adipocytes, we have reconstituted IRS-1-deficient fetal brown adipocytes (IRS-1(-/-)) with wild-type IRS-1 (IRS-1(wt)). The lack of IRS-1 resulted in the inability of insulin to induce IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity and Akt phosphorylation in IRS-1(-/-) brown adipocytes. In addition, these cells showed an impairment in activating alpha-Akt, beta-Akt, and gamma-Akt isoforms upon insulin stimulation. Reconstitution of IRS-1(-/-) brown adipocytes with IRS-1(wt) restored the IRS-1/PI 3-kinase/Akt signaling pathway. Treatment of wild-type brown adipocytes with insulin for 24 h up-regulated uncoupling protein-1 (UCP-1) expression and transactivated the UCP-1 promoter; this effect was abolished in the absence of IRS-1 or in the presence of an Akt inhibitor and further recovered after IRS-1(wt) reconstitution. Neither UCP-2 nor UCP-3 was up-regulated by insulin in wild-type and IRS-1-deficient brown adipocytes. Insulin stimulated the expression of CCAAT/enhancer-binding protein alpha (C/EBPalpha) and its DNA binding activity in wild-type brown adipocytes but not in IRS-1(-/-) cells. However, insulin stimulation of both C/EBPalpha expression and binding activity was restored after IRS-1(wt) reconstitution of deficient cells. Retrovirus-mediated expression of C/EBPalpha and peroxisome proliferator-activated receptor gamma in IRS-1(-/-) brown adipocytes up-regulated UCP-1 protein content and transactivated UCP-1 promoter regardless of insulin stimulation. Both C/EBPalpha and peroxisome proliferator-activated receptor gamma reconstituted FAS mRNA expression, but only C/EBPalpha restored insulin sensitivity in the absence of IRS-1. Finally, reconstitution of IRS-1(-/-) brown adipocytes with the IRS-1 mutants IRS-1(Phe-895), which lacks IRS-1/growth factor receptor binding protein 2 binding but not IRS-1/p85-PI 3-kinase binding, or with IRS-1(Tyr-608/Tyr-628/Tyr-658), which only binds p85-PI 3-kinase, induced UCP-1 expression and transactivated the UCP-1 promoter. These data provide strong evidence for an essential role of IRS-1 through the PI 3-kinase/Akt signaling pathway inducing UCP-1 gene expression by insulin.  相似文献   

2.
3.
4.
5.
Fetal brown adipocytes are insulin-like growth factor-I (IGF-I) target cells. To assess the importance of the IGF-I receptor (IGF-IR) in brown adipocytes during fetal life, we have generated immortalized brown adipocyte cell lines from the IGF-IR(-/-) mice. Using this experimental model, we demonstrate that the lack of IGF-IR in fetal brown adipocytes increased the susceptibility to apoptosis induced by serum withdrawal. Culture of cells in the absence of serum and growth factors produced rapid DNA fragmentation (4 h) in IGF-IR(-/-) brown adipocytes, compared with the wild type (16 h). Consequently, cell viability was decreased more rapidly in fetal brown adipocytes in the absence of IGF-IR. Furthermore, caspase-3 activity was induced much earlier in cells lacking IGF-IR. At the molecular level, IGF-IR deficiency in fetal brown adipocytes altered the balance of the expression of several proapoptotic (Bcl-xS and Bim) and antiapoptotic (Bcl-2 and Bcl-xL) members of the Bcl-2 family. This imbalance was irreversible even though in IGF-IR-reconstituted cells. Likewise, cytosolic cytochrome c levels increased rapidly in IGF-IR-deficient cells compared with the wild type. A rapid entry of Foxo1 into the nucleus accompanied by a rapid exit from the cytosol and an earlier activation of caspase-8 were observed in brown adipocytes lacking IGF-IR upon serum deprivation. Activation of caspase-8 was inhibited by 50% in both cell types by neutralizing anti-Fas-ligand antibody. Adenoviral infection of wild-type brown adipocytes with constitutively active Foxol (ADA) increased the expression of antiapoptotic genes, decreased Bcl-xL and induced caspase-8 and -3 activities, with the final outcome of DNA fragmentation. Up-regulation of uncoupling protein-1 (UCP-1) expression in IGF-IR-deficient cells by transduction with PGC-1alpha or UCP-1 ameliorated caspase-3 activation, thereby retarding apoptosis. Finally, insulin treatment prevented apoptosis in both cell types. However, the survival effect of insulin on IGF-IR(-/-) brown adipocytes was elicited even in the absence of phosphatidylinositol 3-kinase/Akt signaling. Thus, our results demonstrate for the first time the unique role of IGF-IR in maintaining the balance of death and survival in fetal brown adipocytes.  相似文献   

6.
Rat brown adipocytes express mRNAs for Uncoupling Proteins (UCP) 1, 2 and 3 and the Peroxisome Proliferator Activated Receptors (PPAR) alpha and gamma. We have examined the effects of selective PPARalpha or -gamma activation on changes in UCP-1 and UCP-3 mRNA levels in cultured fetal rat brown adipocytes (FBA). Rosiglitazone (1.0 microM), a selective PPARgamma agonist, elicited 5- and 3-fold increases in UCP-1 and UCP-3, respectively. The PPARalpha ligand, Wy14643 (10.0 microM) increased UCP-3 tenfold, but decreased UCP-1. A synergistic effect on UCP-3 expression (30-fold increase; P < 0. 05) was observed when FBA were exposed to a combination of Wy14643 (10.0 microM) and rosiglitazone (10.0 microM). Thus, activation of PPARgamma increases UCP-1 and UCP-3 levels which are differentially regulated by PPARalpha. A synergistic interaction occurs between PPARalpha and PPARgamma in the regulation of UCP-3 in FBA, probably via co-activator recruitment, suppression of co-repressor proteins or through a direct interaction at the level of the PPRE.  相似文献   

7.
We have examined whether a qualitative switch occurs in the response of the ribonucleotide reductase (RNR) genes to the effect of the physiological cAMP-elevating agent norepinephrine (NE) during the development of brown adipocytes. Basal expression of the genes for both RNR subunits, R1 and R2, was high in proliferating cells, but was markedly down-regulated in parallel with adipocyte differentiation. NE stimulation, which promotes DNA synthesis and proliferation of brown preadipocytes, resulted in an increased expression of the R2 gene in proliferating cells (1.6-fold), but was without effect on R1 expression. In contrast, NE stimulation of confluent differentiating brown adipocytes reduced both R1 and R2 expression. The NE stimulation of R2 expression in preadipocytes was mimicked by forskolin and abolished by H89, demonstrating mediation via cAMP and protein kinase A (PKA). Also, inhibitors of Src and of Erk1/2 kinases markedly reduced NE-stimulated R2 expression. We conclude that adrenergic stimulation of brown adipocytes by NE specifically elevates expression of the RNR subunit R2 gene in the proliferative stage of brown adipocyte development, the mediating pathway being a cAMP/PKA cascade further involving Src and the MAP kinase Erk1/2. These results suggest that adrenergic stimulation of brown adipocyte proliferation may act at the level of gene expression of the limiting subunit for RNR activity, R2, and demonstrate a qualitative switch in the response of the R2 gene to cAMP-elevating agents as a consequence of the switch from proliferating to differentiating cell status.  相似文献   

8.
9.
10.
11.
Uncoupling protein (UCP)-1 expressed in brown adipose tissue plays an important role in thermogenesis. Recent data suggest that brown-like adipocytes in white adipose tissue (WAT) and skeletal muscle play a crucial role in the regulation of body weight. Understanding of the mechanism underlying the increase in UCP-1 expression level in these organs should, therefore, provide an approach to managing obesity. The thyroid hormone (TH) has profound effects on mitochondrial biogenesis and promotes the mRNA expression of UCP in skeletal muscle and brown adipose tissue. However, the action of TH on the induction of brown-like adipocytes in WAT has not been elucidated. Thus we investigate whether TH could regulate UCP-1 expression in WAT using multipotent cells isolated from human adipose tissue. In this study, triiodothyronine (T(3)) treatment induced UCP-1 expression and mitochondrial biogenesis, accompanied by the induction of the CCAAT/enhancer binding protein, peroxisome proliferator-activated receptor-γ coactivator-1α, and nuclear respiratory factor-1 in differentiated human multipotent adipose-derived stem cells. The effects of T(3) on UCP-1 induction were dependent on TH receptor-β. Moreover, T(3) treatment increased oxygen consumption rate. These findings indicate that T(3) is an active modulator, which induces energy utilization in white adipocytes through the regulation of UCP-1 expression and mitochondrial biogenesis. Our findings provide evidence that T(3) serves as a bipotential mediator of mitochondrial biogenesis.  相似文献   

12.
Although it has generally been assumed that protein kinase A (PKA) is essential for brown adipose tissue function, this has not as yet been clearly demonstrated. H89, an inhibitor of PKA, was used here to inhibit PKA activity. In cell extracts, it was confirmed that norepinephrine stimulated PKA activity, which was abolished by H89 treatment. In isolated brown adipocytes, H89 inhibited adrenergically induced thermogenesis (with an IC(50) of approx. 40 microM), and in cultured cells, adrenergically stimulated expression of the uncoupling protein-1 (UCP1) gene was abolished by H89 (full inhibition with 50 microM). However, H89 has been reported to be an adrenergic antagonist on beta(1)/beta(2)-adrenoceptors (AR). Although adrenergic stimulation of thermogenesis and UCP1 gene expression are mediated via beta(3)-ARs, it was deemed necessary to investigate whether H89 also had antagonistic potency on beta(3)-ARs. It was found that EC(50) values for beta(3)-AR-selective stimulation of cAMP production (with BRL-37344) in brown adipose tissue membrane fractions and in intact cells were not affected by H89. Similarly, the EC(50) of adrenergically stimulated oxygen consumption was not affected by H89. As H89 also abolished forskolin-induced UCP1 gene expression, and potentiated selective beta(3)-AR-induced cAMP production, H89 must be active downstream of cAMP. Thus, no antagonism of H89 on beta(3)-ARs could be detected. We conclude that H89 can be used as a pharmacological tool for elucidation of the involvement of PKA in cellular signalling processes regulated via beta(3)-ARs, and that the results are concordant with adrenergic stimulation of thermogenesis and UCP1 gene expression in brown adipocytes being mediated via a PKA-dependent pathway.  相似文献   

13.
Brown adipocytes increase energy production in response to induction of PGC-1alpha, a dominant regulator of energy metabolism. We have found that the orphan nuclear receptor SHP (NR0B2) is a negative regulator of PGC-1alpha expression in brown adipocytes. Mice lacking SHP show increased basal expression of PGC-1alpha, increased energy expenditure, and resistance to diet-induced obesity. Increased PGC-1alpha expression in SHP null brown adipose tissue is not due to beta-adrenergic activation, since it is also observed in primary cultures of SHP(-/-) brown adipocytes that are not exposed to such stimuli. In addition, acute inhibition of SHP expression in cultured wild-type brown adipocytes increases basal PGC-1alpha expression, and SHP overexpression in SHP null brown adipocytes decreases it. The orphan nuclear receptor ERRgamma is expressed in BAT and its transactivation of the PGC-1alpha promoter is potently inhibited by SHP. We conclude that SHP functions as a negative regulator of energy production in BAT.  相似文献   

14.
Lactoferrin (LF) is a multifunctional protein in mammalian milk. We previously reported that enteric-coated bovine LF reduced the visceral fat in a double-blind clinical study. We further demonstrated that bovine LF (bLF) inhibited adipogenesis and promoted lipolysis in white adipocytes, but the effect of bLF on brown adipocytes has not been clarified. In this study, we investigated the effects of bLF on energy expenditure and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway using human reprogrammed brown adipocytes generated by gene transduction. bLF at concentrations of ≥?100 μg/mL significantly increased uncoupling protein 1 (UCP1) mRNA levels, with the maximum value observed 4 h after bLF addition. At the same time point, bLF stimulation also significantly increased oxygen consumption. Signaling pathway analysis revealed rapid increases of intracellular cAMP and cAMP response element-binding protein (CREB) phosphorylation levels beginning 5 min after bLF addition. The mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were also significantly increased after 1 h of bLF stimulation. H-89, a specific PKA inhibitor, abrogated bLF-induced UCP1 gene expression. Moreover, receptor-associated protein (Rap), an antagonist of low-density lipoprotein receptor-related protein 1 (LRP1), significantly reduced bLF-induced UCP1 gene expression in a dose-dependent manner. These results suggest that bLF promotes UCP1 gene expression in brown adipocytes through the cAMP-PKA signaling pathway via the LRP1 receptor, leading to increased energy expenditure.  相似文献   

15.
High expression of the peroxisome proliferator-activated receptor alpha (PPARalpha) differentiates brown fat from white, and is related to its high capacity of lipid oxidation. We analyzed the effects of PPARalpha activation on expression of the brown fat-specific uncoupling protein-1 (ucp-1) gene. Activators of PPARalpha increased UCP-1 mRNA levels severalfold both in primary brown adipocytes and in brown fat in vivo. Transient transfection assays indicated that the (-4551)UCP1-CAT construct, containing the 5'-regulatory region of the rat ucp-1 gene, was activated by PPARalpha co-transfection in a dose-dependent manner and this activation was potentiated by Wy 14,643 and retinoid X receptor alpha. The coactivators CBP and PPARgamma-coactivator-1 (PGC-1), which is highly expressed in brown fat, also enhanced the PPARalpha-dependent regulation of the ucp-1 gene. Deletion and point-mutation mapping analysis indicated that the PPARalpha-responsive element was located in the upstream enhancer region of the ucp-1 gene. This -2485/-2458 element bound PPARalpha and PPARgamma from brown fat nuclei. Moreover, this element behaved as a promiscuous responsive site to either PPARalpha or PPARgamma activation, and we propose that it mediates ucp-1 gene up-regulation associated with adipogenic differentiation (via PPARgamma) or in coordination with gene expression for the fatty acid oxidation machinery required for active thermogenesis (via PPARalpha).  相似文献   

16.
Like other small G proteins of the Ras superfamily, Rap1 is activated by distinct guanine nucleotide exchange factors (GEFs) in response to different signals to elicit cellular responses. Activation of Rap1 by cyclic AMP (cAMP) can occur via cAMP-dependent protein kinase A (PKA)-independent and PKA-dependent mechanisms. PKA-independent activation of Rap1 by cAMP is mediated by direct binding of cAMP to Rap1-guanine nucleotide exchange factors (Rap1-GEFs) Epac1 (exchange protein directly activated by cAMP 1) and Epac2 (Epac1 and Epac2 are also called cAMP-GEFI and -GEFII). The availability of cAMP analogues that selectively activate Epacs, but not PKA, provides a specific tool to activate Rap1. It has been argued that the inability of these analogues to regulate extracellular signal-regulated kinases (ERKs) signaling despite activating Rap1 provides evidence that Rap1 is incapable of regulating ERKs. We confirm that the PKA-independent activation of Rap1 by Epac1 activates a perinuclear pool of Rap1 and that this does not result in ERK activation. However, we demonstrate that this inability to regulate ERKs is not a property of Rap1 but is rather a property of Epacs themselves. The addition of a membrane-targeting motif to Epac1 (Epac-CAAX) relocalizes Epac1 from its normal perinuclear locale to the plasma membrane. In this new locale it is capable of activating ERKs in a Rap1- and cAMP-dependent manner. Rap1 activation by Epac-CAAX, but not wild-type Epac, triggers its association with B-Raf. Therefore, we propose that its intracellular localization prevents Epac1 from activating ERKs. C3G (Crk SH3 domain Guanine nucleotide exchanger) is a Rap1 exchanger that is targeted to the plasma membrane upon activation. We show that C3G can be localized to the plasma membrane by cAMP/PKA, as can Rap1 when activated by cAMP/PKA. Using a small interfering RNA approach, we demonstrate that C3G is required for the activation of ERKs and Rap1 by cAMP/PKA. This activation requires the GTP-dependent association of Rap1 with B-Raf. These data demonstrate that B-Raf is a physiological target of Rap1, but its utilization as a Rap1 effector is GEF specific. We propose a model that specific GEFs activate distinct pools of Rap1 that are differentially coupled to downstream effectors.  相似文献   

17.
The aim of this study was to determine whether cyclic AMP (cAMP) pathways alter the nitric oxide (NO) production mediated by inducible NO synthase (iNOS) in adipocytes. The treatment of 3T3-L1 cells, a model of white adipocytes, with the combination of lipopolysaccharide (L), tumor necrosis factor-alpha (T), and interferon-gamma (I) synergistically induced iNOS, leading to the production of NO. Enhancers of intracellular cAMP (dibutyryl cAMP, forskolin, and IBMX) inhibited the NO production elicited by LTI, whereas H89, a specific inhibitor of PKA, stimulated the NO production in 3T3-L1 cells. In rat brown adipocyte cell line, the combined treatment with LT synergistically elicited the NO production, and the cAMP analogues further enhanced it. Forskolin inhibited the NO production in 3T3-L1 cells, but enhanced it in brown adipocytes, in a dose-dependent manner. The changes in NO production paralleled the change in iNOS mRNA and protein level in both cell types. The activation of NF-kappaB by LTI/LT was blocked in 3T3-L1 cells, but enhanced in brown adipocytes, by the co-treatment with cAMP analogues. The protein level of 1-kappaBalpha, a NF-kappaB stabilizer, changed reciprocally to that of NF-kappaB activity in each cell type. These results suggest that cAMP regulates iNOS expression in adipocytes through modulating NF-kappaB activity. The differential regulation of iNOS in 3T3-L1 cells from that in the brown adipocytes indicates that intracellular signal pathways activated by cAMP are different between the cell types.  相似文献   

18.
19.
The biological effects of catecholamines in mammalian pigment cells are poorly understood, but in poikilothermic vertebrates they regulate the translocation of pigment granules. We have previously demonstrated in SK-Mel 23-human melanoma cells the presence of low affinity alpha(1)-adrenoceptors, which mediate a decrease in cell proliferation and increase in tyrosinase activity, with no change of tyrosinase expression. In this report, we investigated the signalling pathways involved in these responses. Calcium mobilization in response to phenylephrine (PHE), an alpha(1)-adrenergic agonist, was investigated by confocal microscopy, and no change of fluorescence during the treatment was observed, suggesting that calcium is not involved in the signalling pathway activated by alpha(1)-adrenoceptors in SK-Mel 23 cells. cAMP levels, determined by enzyme-immunoassay, were significantly increased by PHE (10(-5)-10(-4)M), that could be blocked by the alpha(1)-adrenergic antagonist benoxathian (10(-5)-10(-4)M). Several biological assays were then performed with PHE, for 72 h, in the absence or presence of various signalling pathway inhibitors, in an attempt to determine the intracellular messengers involved in the responses of proliferation and tyrosinase activity. Our results suggest the participation of p38 and ERKs in PHE-induced decrease of proliferation, and possibly also of cAMP and protein kinase A. Regarding PHE-induced increase of tyrosinase activity, it is suggested that the following signalling components are involved: cAMP/PKA, PKC, PI3K, p38 and ERKs.  相似文献   

20.
目的:研究白藜芦醇抑制高脂引起的肥胖的作用机制。方法:将18只C57小鼠随机分为3组,分别为对照组、高脂以及高脂+白藜芦醇小鼠模型,给小鼠喂养一定剂量白藜芦醇(100 mg/kg/d),喂养12周。提取小鼠皮下脂肪细胞,分化成熟,加入白藜芦醇,采用q RT-PCR以及Western blot等方法检测HO-1以及棕色脂肪标志基因的表达。通过q RT-PCR检测小鼠脂肪组织炎症因子、UCP-1以及HO-1的表达。结果:白藜芦醇在体内可以明显抑制高脂引起的肥胖,糖耐量异常,同时促进棕色脂肪标志基因UCP-1,PGC-1以及PRDM16的表达。白藜芦醇还可抑制肥胖小鼠脂肪组织炎症因子的增加以及抗炎蛋白HO-1的表达。在体外分化的成熟的皮下脂肪细胞中,白藜芦醇同样可以促进棕色脂肪标志基因UCP-1,PGC-1以及PRDM16的表达。白藜芦醇通过促进抗炎蛋白HO-1的表达抑制高脂引起的脂肪炎症反应。结论:白藜芦醇可以通过促进白色脂肪棕色化以及抑制慢性低度炎症抑制高脂引起的肥胖、糖耐量异常以及改善胰岛素敏感性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号