首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insect order Diptera, the true flies, contains one of the four largest Mesozoic insect radiations within its suborder Brachycera. Estimates of phylogenetic relationships and divergence dates among the major brachyceran lineages have been problematic or vague because of a lack of consistent evidence and the rarity of well-preserved fossils. Here, we combine new evidence from nucleotide sequence data, morphological reinterpretations, and fossils to improve estimates of brachyceran evolutionary relationships and ages. The 28S ribosomal DNA (rDNA) gene was sequenced for a broad diversity of taxa, and the data were combined with recently published morphological scorings for a parsimony-based phylogenetic analysis. The phylogenetic topology inferred from the combined 28S rDNA and morphology data set supports brachyceran monophyly and the monophyly of the four major brachyceran infraorders and suggests relationships largely consistent with previous classifications. Weak support was found for a basal brachyceran clade comprising the infraorders Stratiomyomorpha (soldier flies and relatives), Xylophagomorpha (xylophagid flies), and Tabanomorpha (horse flies, snipe flies, and relatives). This topology and similar alternative arrangements were used to obtain Bayesian estimates of divergence times, both with and without the assumption of a constant evolutionary rate. The estimated times were relatively robust to the choice of prior distributions. Divergence times based on the 28S rDNA and several fossil constraints indicate that the Brachycera originated in the late Triassic or earliest Mesozoic and that all major lower brachyceran fly lineages had near contemporaneous origins in the mid-Jurassic prior to the origin of flowering plants (angiosperms). This study provides increased resolution of brachyceran phylogeny, and our revised estimates of fly ages should improve the temporal context of evolutionary inferences and genomic comparisons between fly model organisms.  相似文献   

2.
The Thoracica includes the ordinary barnacles found along the sea shore and is the most diverse and well-studied superorder of Cirripedia. However, although the literature abounds with scenarios explaining the evolution of these barnacles, very few studies have attempted to test these hypotheses in a phylogenetic context. The few attempts at phylogenetic analyses have suffered from a lack of phylogenetic signal and small numbers of taxa. We collected DNA sequences from the nuclear 18S, 28S, and histone H3 genes and the mitochondrial 12S and 16S genes (4,871 bp total) and data for 37 adult and 53 larval morphological characters from 43 taxa representing all the extant thoracican suborders (except the monospecific Brachylepadomorpha). Four Rhizocephala (highly modified parasitic barnacles) taxa and a Rhizocephala + Acrothoracica (burrowing barnacles) hypothetical ancestor were used as the outgroup for the molecular and morphological analyses, respectively. We analyzed these data separately and combined using maximum likelihood (ML) under "hill-climbing" and genetic algorithm heuristic searches, maximum parsimony procedures, and Bayesian inference coupled with Markov chain Monte Carlo techniques under mixed and homogeneous models of nucleotide substitution. The resulting phylogenetic trees answered key questions in barnacle evolution. The four-plated Iblomorpha were shown as the most primitive thoracican, and the plateless Heteralepadomorpha were placed as the sister group of the Lepadomorpha. These relationships suggest for the first time in an invertebrate that exoskeleton biomineralization may have evolved from phosphatic to calcitic. Sessilia (nonpedunculate) barnacles were depicted as monophyletic and appear to have evolved from a stalked (pedunculate) multiplated (5+) scalpelloidlike ancestor rather than a five-plated lepadomorphan ancestor. The Balanomorpha (symmetric sessile barnacles) appear to have the following relationship: (Chthamaloidea(Coronuloidea(Tetraclitoidea, Balanoidea))). Thoracican divergence times were estimated under ML-based local clock, Bayesian, and penalized likelihood approaches using an 18S data set and three calibration points: Heteralepadomorpha = 530 million years ago (MYA), Scalpellomorpha = 340 MYA, and Verrucomorpha = 120 MYA. Estimated dates varied considerably within and between approaches depending on the calibration point. Highly parameterized local clock models that assume independent rates (r > or = 15) for confamilial or congeneric species generated the most congruent estimates among calibrations and agreed more closely with the barnacle fossil record. Reasonable estimates were also obtained under the Bayesian procedure of Kishino et al. (2001, Mol. Biol. Evol. 18:352-361) but using multiple calibrations. Most of the dates estimated under the Bayesian procedure of Aris-Brosou and Yang (2002, Syst. Biol. 51:703-714) and the penalized likelihood method using single and/or multiple calibrations were inconsistent among calibrations and did not fit the fossil record.  相似文献   

3.
The Brachyura, within the decapod crustaceans, is one of the most species-rich taxa with up to 10 000 species. However, its phylogenetic history, evolution and fossil record remain subjects of controversy. In our study, we examined the phylogenetic relationships of the Brachyura based on morphological characters of the foregut. The cladistic analysis supports a monophyletic Brachyura including the Dromiidae and Raninidae. A clade comprising Dromiidae and Dynomenidae forms the most basal assemblage within the Brachyura, followed by the Homolidae and Latreilliidae. As a result, neither Podotremata nor Archaeobrachyura form a clade. In contrast, foregut data suggest that the classical taxon Oxystomata, comprising Calappidae, Parthenopidae, Dorippidae, Leucosiidae, Cymonomidae and Raninidae, is monophyletic. This makes the Heterotremata paraphyletic or polyphyletic. A newly established taxon, Neobrachyura, embraces some representatives of the Heterotremata and the monophyletic Thoracotremata.  相似文献   

4.
Silent mutation rate estimates for Pinus vary 50-fold, ranging from angiosperm-like to among the slowest reported for plants. These differences either reflect extraordinary genomic processes or inconsistent fossil calibration, and they have important consequences for population and biogeographical inferences. Here we estimate mutation rates from 4 Pinus species that represent the major lineages using 11 nuclear and 4 chloroplast loci. Calibration was tested at the divergence of Pinus subgenera with the oldest leaf fossil from subg. Strobus (Eocene; 45 MYA) or a recently published subg. Strobus wood fossil (Cretaceous; 85 MYA). These calibrations place the origin of Pinus 190-102 MYA and give absolute silent rate estimates of 0.70-1.31x10(-9) and 0.22-0.42x10(-9).site-1.year-1 for the nuclear and chloroplast genomes, respectively. These rates are approximately 4- to 20-fold slower than angiosperms, but unlike many previous estimates, they are more consistent with the high per-generation deleterious mutation rates observed in pines. Chronograms from nuclear and chloroplast genomes show that the divergence of subgenera accounts for about half of the time since Pinus diverged from Picea, with subsequent radiations occurring more recently. By extending the sampling to encompass the phylogenetic diversity of Pinus, we predict that most extant subsections diverged during the Miocene. Moreover, subsect. Australes, Ponderosae, and Contortae, containing over 50 extant species, radiated within a 5 Myr time span starting as recently as 18 MYA. An Eocene divergence of pine subgenera (using leaf fossils) does not conflict with fossil-based estimates of the Pinus-Picea split, but a Cretaceous divergence using wood fossils accommodates Oligocene fossils that may represent modern subsections. Because homoplasy and polarity of character states have not been tested for fossil pine assignments, the choice of fossil and calibration node represents a significant source of uncertainty. Based on several lines of evidence (including agreement with ages inferred using calibrations outside of Pinus), we conclude that the 85 MYA calibration at the divergence of pine subgenera provides a reasonable lower bound and that further refinements in age and mutation rate estimates will require a synthetic examination of pine fossil history.  相似文献   

5.
The phylogeny of Decapoda is contentious and many hypotheses have been proposed based on morphological cladistic analyses. Recent molecular studies, however, yielded contrasting results despite their use of similar data (nuclear and mitochondrial rDNA). Here we present the first application of two nuclear protein-coding genes, phosphoenolpyruvate carboxykinase and sodium-potassium ATPase alpha-subunit, to reconstruct the phylogeny of major infraorders within Decapoda. A total of 64 species representing all infraorders of Pleocyemata were analyzed with five species from Dendrobranchiata as outgroups. Maximum likelihood and Bayesian inference reveal that the Reptantia and all but one infraorder are monophyletic. Thalassinidea, however, is polyphyletic. The nodal support for most of the infraordinal and inter-familial relationships is high. Stenopodidea and Caridea form a clade sister to Reptantia, which comprises two major clades. The first clade, consisting of Astacidea, Achelata, Polychelida and three thalassinidean families (Axiidae, Calocarididae and Eiconaxiidae), corresponds essentially to the old taxon suborder Macrura Reptantia. Polychelida nests within Macrura Reptantia instead of being the most basal reptant as suggested in previous studies. The high level of morphological and genetic divergence of Polychelida from Achelata and Astacidea justifies its infraorder status. The second major reptant clade consists of Anomura, Brachyura and two thalassindean families (Thalassinidae and Upogebiidae). Anomura and Brachyura form Meiura, with moderate support. Notably thalassinidean families are sister to both major reptant clades, suggesting that the stem lineage reptants were thalassinidean-like. Moreover, some families (e.g. Nephropidae, Diogenidae, Paguridae) are paraphyletic, warranting further studies to evaluate their status. The present study ably demonstrates the utility of nuclear protein-coding genes in phylogenetic inference in decapods. The topologies obtained are robust and the two molecular markers are informative across a wide range of taxonomic levels. We propose that nuclear protein-coding genes should constitute core markers for future phylogenetic studies of decapods, especially for higher systematics.  相似文献   

6.
Molecular clocks do not support the Cambrian explosion   总被引:6,自引:0,他引:6  
The fossil record has long supported the view that most animal phyla originated during a brief period approximately 520 MYA known as the Cambrian explosion. However, molecular data analyses over the past 3 decades have found deeper divergences among animals (approximately 800 to 1,200 MYA), with and without the assumption of a global molecular clock. Recently, two studies have instead reported time estimates apparently consistent with the fossil record. Here, we demonstrate that methodological problems in these studies cast doubt on the accuracy and interpretations of the results obtained. In the study by Peterson et al., young time estimates were obtained because fossil calibrations were used as maximum limits rather than as minimum limits, and not because invertebrate calibrations were used. In the study by Aris-Brosou and Yang, young time estimates were obtained because of problems with rate models and other methods specific to the study, and not because Bayesian methods were used. This also led to many anomalous findings in their study, including a primate-rodent divergence at 320 MYA. With these results aside, molecular clocks continue to support a long period of animal evolution before the Cambrian explosion of fossils.  相似文献   

7.
The identification and application of reliable fossil calibrations represents a key component of many molecular studies of evolutionary timescales. In studies of plants, most paleontological calibrations are associated with macrofossils. However, the pollen record can also inform age calibrations if fossils matching extant pollen groups are found. Recent work has shown that pollen of the myrtle family, Myrtaceae, can be classified into a number of morphological groups that are synapomorphic with molecular groups. By assembling a data matrix of pollen morphological characters from extant and fossil Myrtaceae, we were able to measure the fit of 26 pollen fossils to a molecular phylogenetic tree using parsimony optimisation of characters. We identified eight Myrtaceidites fossils as appropriate for calibration based on the most parsimonious placements of these fossils on the tree. These fossils were used to inform age constraints in a Bayesian phylogenetic analysis of a sequence alignment comprising two sequences from the chloroplast genome (matK and ndhF) and one nuclear locus (ITS), sampled from 106 taxa representing 80 genera. Three additional analyses were calibrated by placing pollen fossils using geographic and morphological information (eight calibrations), macrofossils (five calibrations), and macrofossils and pollen fossils in combination (12 calibrations). The addition of new fossil pollen calibrations led to older crown ages than have previously been found for tribes such as Eucalypteae and Myrteae. Estimates of rate variation among lineages were affected by the choice of calibrations, suggesting that the use of multiple calibrations can improve estimates of rate heterogeneity among lineages. This study illustrates the potential of including pollen-based calibrations in molecular studies of divergence times.  相似文献   

8.
Li M  Tian Y  Zhao Y  Bu W 《PloS one》2012,7(2):e32152
Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic.  相似文献   

9.
Although the biology of the reptantian Decapoda has been much studied, the last comprehensive review of reptantian systematics was published more than 80 years ago. We have used cladistic methods to reconstruct the phylogenetic system of the reptantian Decapoda. We can show that the Reptantia represent a monophyletic taxon. The classical groups, the 'Palinura', 'Astacura' and 'Anomura' are paraphyletic assemblages. The Polychelida is the sister-group of all other reptantians. The Astacida is not closely related to the Homarida, but is part of a large monophyletic taxon which also includes the Thalassinida, Anomala and Brachyura. The Anomala and Brachyura are sister-groups and the Thalassinida is the sister-group of both of them. Based on our reconstruction of the sister-group relationships within the Reptantia, we discuss alternative hypotheses of reptantian interrelationships, the systematic position of the Reptantia within the decapods, and draw some conclusions concerning the habits and appearance of the reptantian stem species.  相似文献   

10.
Evolutionary and biogeographic studies increasingly rely on calibrated molecular clocks to date key events. Although there has been significant recent progress in development of the techniques used for molecular dating, many issues remain. In particular, controversies abound over the appropriate use and placement of fossils for calibrating molecular clocks. Several methods have been proposed for evaluating candidate fossils; however, few studies have compared the results obtained by different approaches. Moreover, no previous study has incorporated the effects of nucleotide saturation from different data types in the evaluation of candidate fossils. In order to address these issues, we compared three approaches for evaluating fossil calibrations: the single-fossil cross-validation method of Near, Meylan, and Shaffer (2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am. Nat. 165:137-146), the empirical fossil coverage method of Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171:726-742), and the Bayesian multicalibration method of Sanders and Lee (2007. Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol. Lett. 3:275-279) and explicitly incorporate the effects of data type (nuclear vs. mitochondrial DNA) for identifying the most reliable or congruent fossil calibrations. We used advanced (Caenophidian) snakes as a case study; however, our results are applicable to any taxonomic group with multiple candidate fossils, provided appropriate taxon sampling and sufficient molecular sequence data are available. We found that data type strongly influenced which fossil calibrations were identified as outliers, regardless of which method was used. Despite the use of complex partitioned models of sequence evolution and multiple calibrations throughout the tree, saturation severely compressed basal branch lengths obtained from mitochondrial DNA compared with nuclear DNA. The effects of mitochondrial saturation were not ameliorated by analyzing a combined nuclear and mitochondrial data set. Although removing the third codon positions from the mitochondrial coding regions did not ameliorate saturation effects in the single-fossil cross-validations, it did in the Bayesian multicalibration analyses. Saturation significantly influenced the fossils that were selected as most reliable for all three methods evaluated. Our findings highlight the need to critically evaluate the fossils selected by data with different rates of nucleotide substitution and how data with different evolutionary rates affect the results of each method for evaluating fossils. Our empirical evaluation demonstrates that the advantages of using multiple independent fossil calibrations significantly outweigh any disadvantages.  相似文献   

11.
Although temporal calibration is widely recognized as critical for obtaining accurate divergence-time estimates using molecular dating methods, few studies have evaluated the variation resulting from different calibration strategies. Depending on the information available, researchers have often used primary calibrations from the fossil record or secondary calibrations from previous molecular dating studies. In analyses of flowering plants, primary calibration data can be obtained from macro- and mesofossils (e.g., leaves, flowers, and fruits) or microfossils (e.g., pollen). Fossil data can vary substantially in accuracy and precision, presenting a difficult choice when selecting appropriate calibrations. Here, we test the impact of eight plausible calibration scenarios for Nothofagus (Nothofagaceae, Fagales), a plant genus with a particularly rich and well-studied fossil record. To do so, we reviewed the phylogenetic placement and geochronology of 38 fossil taxa of Nothofagus and other Fagales, and we identified minimum age constraints for up to 18 nodes of the phylogeny of Fagales. Molecular dating analyses were conducted for each scenario using maximum likelihood (RAxML + r8s) and Bayesian (BEAST) approaches on sequence data from six regions of the chloroplast and nuclear genomes. Using either ingroup or outgroup constraints, or both, led to similar age estimates, except near strongly influential calibration nodes. Using "early but risky" fossil constraints in addition to "safe but late" constraints, or using assumptions of vicariance instead of fossil constraints, led to older age estimates. In contrast, using secondary calibration points yielded drastically younger age estimates. This empirical study highlights the critical influence of calibration on molecular dating analyses. Even in a best-case situation, with many thoroughly vetted fossils available, substantial uncertainties can remain in the estimates of divergence times. For example, our estimates for the crown group age of Nothofagus varied from 13 to 113 Ma across our full range of calibration scenarios. We suggest that increased background research should be made at all stages of the calibration process to reduce errors wherever possible, from verifying the geochronological data on the fossils to critical reassessment of their phylogenetic position.  相似文献   

12.
The microgastroid complex of braconid wasps is a widely recognized and biologically coherent lineage of endoparasitoids of lepidopteran larvae (caterpillars). The complex has received significant phylogenetic attention in recent years due in part to the taxons' association with mutualistic polydnaviruses, with which they compromise host immune systems. A number of previous attempts using a variety of morphological and molecular approaches have not unequivocally resolved relationships amongst the main subfamilies. This work represents a more extensive attempt to resolve the microgastroid relationships, using seven genes (16S rRNA, cytochrome oxidase I (CO1), 28S rRNA, arginine kinase (ArgK), long wavelength rhodopsin (Ops), elongation factor 1 alpha (EF1a) and wingless (Wg)) and a greater taxonomic representation. Bayesian, likelihood and parsimony phylogenetic reconstructions of this improved data set has determined that the chelonines diverged first from the remainder of the microgastroids, however the relationships amongst the other subfamilies are still unclear, suggesting a greater nucleotide sample is required to resolve them. Examination of the contribution of individual gene trees to the phylogeny demonstrates why the relationships between subfamilies are still unclear, with not all groups monophyletic for all trees. Filtered supernetworks demonstrate that monophyly of all subfamilies is only recovered when splits found in only one or two genes are excluded, but this also results in little remaining structure left in the deep nodes to resolve inter-subfamily relationships. By increasing the breadth of the study we were also able to re-evaluate previous attempts at dating the lineage and, therefore the origin of the polydnavirus association. Previous attempts used a much reduced data set and fewer fossil calibrations. Thorough literature searches have revealed a substantial increase in the fossil calibrations and these, combined with more sophisticated molecular dating analysis, have substantially increased the age of the microgastroid lineage from previous estimates of approximately 73MYA to approximately 100MYA. Examination of the resultant linearized clock tree also allows an insight into the evolution of the more species rich subfamilies. The chelonines appear to have had a steady rate of evolution, whilst the microgastrines and cardiochilines appear to have undergone a more significant "burst" of evolution. It is hypothesized that the different parasitism strategies of subfamilies (Chelonines are egg parasitoids and the remainder are larval parasitioids) may have influenced the evolutionary rates of the groups.  相似文献   

13.
Phylogenetic relationships within decapod crustaceans are highly controversial. Even recent analyses based on molecular datasets have shown largely contradictory results. Previous studies using mitochondrial genomes are promising but suffer from a poor and unbalanced taxon sampling. To fill these gaps we sequenced the (nearly) complete mitochondrial genomes of 13 decapod species: Stenopus hispidus, Polycheles typhlops, Panulirus versicolor, Scyllarides latus, Enoplometopus occidentalis, Homarus gammarus, Procambarus fallax f. virginalis, Upogebia major, Neaxius acanthus, Calocaris macandreae, Corallianassa coutierei, Cryptolithodes sitchensis, Neopetrolisthes maculatus, and add that of Dromia personata. Our new data allow for comprehensive analyses of decapod phylogeny using the mitochondrial genomes of 50 species covering all major taxa of the Decapoda. Five species of Stomatopoda and one species of Euphausiacea serve as outgroups. Most of our analyses using Maximum Likelihood (ML) and Bayesian inference (BI) of nucleotide and amino acid datasets revealed congruent topologies for higher level decapod relationships: (((((((Anomala, Brachyura), Thalassinida: Gebiidea), Thalassinida: Axiidea), (Astacidea, Polychelida), Achelata), Stenopodidea), Caridea), Dendrobranchiata). This result corroborates several traditional morphological views and adds new perspectives. In particular, the position of Polychelida is surprising. Nevertheless, some problems can be identified. In a minority of analyses the basal branching of Reptantia is not fully resolved, Thalassinida are monophyletic; Polychelida are the sister group to Achelata, and Stenopodidea are resolved as sister group to Caridea. Despite this and although some nodal supports are low in our phylogenetic trees, we think that the largely stable topology of the trees regardless of different types of analyses suggests that mitochondrial genomes show good potential to resolve the relationship within Decapoda.  相似文献   

14.
A stable phylogenetic hypothesis for families within jellyfish class Scyphozoa has been elusive. Reasons for the lack of resolution of scyphozoan familial relationships include a dearth of morphological characters that reliably distinguish taxa and incomplete taxonomic sampling in molecular studies. Here, we address the latter issue by using maximum likelihood and Bayesian methods to reconstruct the phylogenetic relationships among all 19 currently valid scyphozoan families, using sequence data from two nuclear genes: 18S and 28S rDNA. Consistent with prior morphological hypotheses, we find strong evidence for monophyly of subclass Discomedusae, order Coronatae, rhizostome suborder Kolpophorae and superfamilies Actinomyariae, Kampylomyariae, Krikomyariae, and Scapulatae. Eleven of the 19 currently recognized scyphozoan families are robustly monophyletic, and we suggest recognition of two new families pending further analyses. In contrast to long-standing morphological hypotheses, the phylogeny shows coronate family Nausithoidae, semaeostome family Cyaneidae, and rhizostome suborder Daktyliophorae to be nonmonophyletic. Our analyses neither strongly support nor strongly refute monophyly of order Rhizostomeae, superfamily Inscapulatae, and families Ulmaridae, Catostylidae, Lychnorhizidae, and Rhizostomatidae. These taxa, as well as familial relationships within Coronatae and within rhizostome superfamily Inscapulatae, remain unclear and may be resolved by additional genomic and taxonomic sampling. In addition to clarifying some historically difficult taxonomic questions and highlighting nodes in particular need of further attention, the molecular phylogeny presented here will facilitate more robust study of phenotypic evolution in the Scyphozoa, including the evolution characters associated with mass occurrences of jellyfish.  相似文献   

15.
In spite of several classification attempts among taxa of the genus Lepus, phylogenetic relationships still remain poorly understood. Here, we present molecular genetic evidence that may resolve some of the current incongruities in the phylogeny of the leporids. The complete mitochondrial cytb, 12S genes, and parts of ND4 and control region fragments were sequenced to examine phylogenetic relationships among Chinese hare taxa and other leporids throughout the World using maximum parsimony, maximum likelihood, and Bayesian phylogenetic reconstruction approaches. Using reconstructed phylogenies, we observed that the Chinese hare is not a single monophyletic group as originally thought. Instead, the data infers that the genus Lepus is monophyletic with three unique species groups: North American, Eurasian, and African. Ancestral area analysis indicated that ancestral Lepus arose in North America and then dispersed into Eurasia via the Bering Land Bridge eventually extending to Africa. Brooks Parsimony analysis showed that dispersal events followed by subsequent speciation have occurred in other geographic areas as well and resulted in the rapid radiation and speciation of Lepus. A Bayesian relaxed molecular clock approach based on the continuous autocorrelation of evolutionary rates along branches estimated the divergence time between the three major groups within Lepus. The genus appears to have arisen approximately 10.76 MYA (+/-0.86 MYA), with most speciation events occurring during the Pliocene epoch (5.65+/-1.15 MYA approximately 1.12 +/- 0.47 MYA).  相似文献   

16.
A phylogeny of tetrapods is inferred from nearly complete sequences of the nuclear RAG-1 gene sampled across 88 taxa encompassing all major clades, analyzed via parsimony and Bayesian methods. The phylogeny provides support for Lissamphibia, Theria, Lepidosauria, a turtle-archosaur clade, as well as most traditionally accepted groupings. This tree allows simultaneous molecular clock dating for all tetrapod groups using a set of well-corroborated calibrations. Relaxed clock (PLRS) methods, using the amniote = 315 Mya (million years ago) calibration or a set of consistent calibrations, recovers reasonable divergence dates for most groups. However, the analysis systematically underestimates divergence dates within archosaurs. The bird-crocodile split, robustly documented in the fossil record as being around approximately 245 Mya, is estimated at only approximately 190 Mya, and dates for other divergences within archosaurs are similarly underestimated. Archosaurs, and particulary turtles have slow apparent rates possibly confounding rate modeling, and inclusion of calibrations within archosaurs (despite their high deviances) not only improves divergence estimates within archosaurs, but also across other groups. Notably, the monotreme-therian split ( approximately 210 Mya) matches the fossil record; the squamate radiation ( approximately 190 Mya) is younger than suggested by some recent molecular studies and inconsistent with identification of approximately 220 and approximately 165 Myo (million-year-old) fossils as acrodont iguanians and approximately 95 Myo fossils colubroid snakes; the bird-lizard (reptile) split is considerably older than fossil estimates (< or = 285 Mya); and Sphenodon is a remarkable phylogenetic relic, being the sole survivor of a lineage more than a quarter of a billion years old. Comparison with other molecular clock studies of tetrapod divergences suggests that the common practice of enforcing most calibrations as minima, with a single liberal maximal constraint, will systematically overestimate divergence dates. Similarly, saturation of mitochondrial DNA sequences, and the resultant greater compression of basal branches means that using only external deep calibrations will also lead to inflated age estimates within the focal ingroup.  相似文献   

17.
Abstract Relationships among families of the lower Diptera (formerly suborder ‘Nematocera’) have been exceptionally difficult to resolve. Multiple hypotheses based on morphology have been proposed to identify the earliest lineages of flies and place the phylogenetic origin of the higher flies (Brachycera), but convincing support is limited. Here we resolve relationships among the major groups of lower Diptera using sequence data from four nuclear markers, including both ribosomal (28S rDNA) and protein‐coding (CAD, TPI and PGD) genes. Our results support both novel and traditional arrangements. Most unexpectedly, the small, highly‐specialized family Deuterophlebiidae appears to be sister to all remaining Diptera. Other results include the resolution of the traditional infra‐orders Culicomorpha (including a novel superfamily Simulioidea = Thaumaleidae + Simuliidae), Tipulomorpha (Tipulidae sensu lato + Trichoceridae) and Bibionomorpha sensu lato. We find support for a limited Psychodomorpha (Blephariceridae, Tanyderidae and Psychodidae) and Ptychopteromorpha (Ptychopteridae), whereas the placement of several enigmatic families (Nymphomyiidae, Axymyiidae and Perissommatidae) remains ambiguous. According to genetic data, the infra‐order Bibionomorpha is sister to the Brachycera. Much of the phylogenetic signal for major lineages was found in the 28S rDNA gene, whereas protein‐coding genes performed variably at different levels. In addition to elucidating relationships, we also estimate the age of major lower dipteran clades, based on molecular divergence time estimates using relaxed‐clock Bayesian methods and fossil calibration points.  相似文献   

18.
Members of the megadiverse insect order Diptera (flies) have successfully colonized all continents and nearly all habitats. There are more than 154 000 described fly species, representing 10–12% of animal species. Elucidating the phylogenetic relationships of such a large component of global biodiversity is challenging, but significant advances have been made in the last few decades. Since Hennig first discussed the monophyly of major groupings, Diptera has attracted much study, but most researchers have used non‐numerical qualitative methods to assess morphological data. More recently, quantitative phylogenetic methods have been used on both morphological and molecular data. All previous quantitative morphological studies addressed narrower phylogenetic problems, often below the suborder or infraorder level. Here we present the first numerical analysis of phylogenetic relationships of the entire order using a comprehensive morphological character matrix. We scored 371 external and internal morphological characters from larvae, pupae and adults for 42 species, representing all infraorders selected from 42 families. Almost all characters were obtained from previous studies but required revision for this ordinal‐level study, with homology assessed beyond their original formulation and across all infraorders. We found significant support for many major clades (including the Diptera, Culicomorpha, Bibionomorpha, Brachycera, Eremoneura, Cyclorrhapha, Schizophora, Calyptratae and Oestroidea) and we summarize the character evidence for these groups. We found low levels of support for relationships between the infraorders of lower Diptera, lower Brachycera and major lineages of lower Cyclorrhapha, and this is consistent with findings from molecular studies. These poorly supported areas of the tree may be due to periods of rapid radiation that left few synapomorphies in surviving lineages.  相似文献   

19.
Previous phylogenetic attempts at resolving barnacle evolutionary relationships are few and have relied on limited taxon sampling. Here we combine DNA sequences from three nuclear genes (18S, 28S and H3) and 44 morphological characters collected from 76 thoracican (ingroup) and 15 rhizocephalan (outgroup) species representing almost all the Thoracica families to assess the tempo and mode of barnacle evolution. Using phylogenetic methods of maximum parsimony, maximum likelihood, and Bayesian inference and 14 fossil calibrations, we found that: (1) Iblomorpha form a monophyletic group; (2) pedunculated barnacles without shell plates (Heteralepadomorpha) are not ancestral, but have evolved, at least twice, from plated forms; (3) the ontogenetic pattern with 5-->6-->8-->12+ plates does not reflect Thoracica shell evolution; (4) the traditional asymmetric barnacles (Verrucidae) and the Balanomorpha are each monophyletic and together they form a monophyletic group; (5) asymmetry and loss of a peduncle have evolved twice in the Thoracica, resulting in neither the Verrucomorpha nor the Sessilia forming monophyletic groups in their present definitions; (6) the Scalpellomorpha are not monophyletic; (7) the Thoracica suborders evolved since the Early Carboniferous (340mya) with the final radiation of the Sessilia in the Upper Jurassic (147mya). These results, therefore, reject many of the underlying hypotheses about character evolution in the Cirripedia Thoracica, stimulate a variety of new thoughts on thoracican radiation, and suggest the need for a major rearrangement in thoracican classification based on estimated phylogenetic relationships.  相似文献   

20.
Were molecular data available for extinct taxa, questions regarding the origins of many groups could be settled in short order. As this is not the case, various strategies have been proposed to combine paleontological and neontological data sets. The use of fossil dates as node age calibrations for divergence time estimation from molecular phylogenies is commonplace. In addition, simulations suggest that the addition of morphological data from extinct taxa may improve phylogenetic estimation when combined with molecular data for extant species, and some studies have merged morphological and molecular data to estimate combined evidence phylogenies containing both extinct and extant taxa. However, few, if any, studies have attempted to estimate divergence times using phylogenies containing both fossil and living taxa sampled for both molecular and morphological data. Here, I infer both the phylogeny and the time of origin for Lissamphibia and a number of stem tetrapods using Bayesian methods based on a data set containing morphological data for extinct taxa, molecular data for extant taxa, and molecular and morphological data for a subset of extant taxa. The results suggest that Lissamphibia is monophyletic, nested within Lepospondyli, and originated in the late Carboniferous at the earliest. This research illustrates potential pitfalls for the use of fossils as post hoc age constraints on internal nodes and highlights the importance of explicit phylogenetic analysis of extinct taxa. These results suggest that the application of fossils as minima or maxima on molecular phylogenies should be supplemented or supplanted by combined evidence analyses whenever possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号