首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hyoscyamus muticus hairy root segments were infected with Agrobacterium tumefaciens ASE containing the binary vector pCGN1548 with a green fluorescent protein (GFP) reporter gene under the control of the CaMV 35S promoter. The roots were incubated on callus-inducing medium to generate transformed cells. Transformants were selected on medium containing 50 and 100 mg/L kanamycin and screened by visual inspection for GFP expression. Highly fluorescent cells were incubated on phytohormone-free medium for regeneration of the hairy root phenotype. This infection technique can be applied directly to existing hairy root cultures which have been previously characterized and selected for desirable physiological traits. These studies also indicate that GFP is not toxic to H. muticus plant tissue and that H. muticus hairy roots have minimal autofluorescence which allows for clear observation of GFP.  相似文献   

2.
Experimentation was initiated to explore insight into the redox-catalysis reaction derived from the heme prosthetic group of chimeric Vitreoscilla hemoglobin (VHb). Two chimeric genes encoding chimeric VHbs harboring one and two consecutive sequences of Fc-binding motif (Z-domain) were successfully constructed and expressed in E. coli strain TG1. The chimeric ZVHb and ZZVHb were purified to a high purity of more than 95% using IgG-Sepharose affinity chromatography. From surface plasmon resonance, binding affinity constants of the chimeric ZVHb and ZZVHb to human IgG were 9.7 x 10(7) and 49.1 x 10(7) per molar, respectively. More importantly, the chimeric VHbs exhibited a peroxidase-like activity determined by activity staining on native PAGE and dot blotting. Effects of pH, salt, buffer system, level of peroxidase substrate and chromogen substrate were determined in order to maximize the catalytic reaction. From our findings, the chimeric VHbs displayed their maximum peroxidase-like activity at the neutral pH (approximately 7.0) in the presence of high concentration (20-40 mM) of hydrogen peroxide. Under such conditions, the detection limit derived from the calibration curve was at 250 ng for the chimeric VHbs, which was approximately 5-fold higher than that of the horseradish peroxidase. These findings reveal the novel functional role of Vitreoscilla hemoglobin indicating a high trend of feasibility for further biotechnological and medical applications.  相似文献   

3.
Expression of the gene encoding bacterial hemoglobin (VHb) from Vitreoscilla has been previously used to improve recombinant cell growth and enhance product formation under microaerobic conditions. It is very likely that the properties of VHb are not optimized for foreign hosts; therefore, we used error-prone PCR to generate a number of randomly mutated vhb genes to be expressed and studied in Escherichia coli. In addition, the mutated VHb proteins also contained an extension of eight residues (MTMITPSF) at the amino terminus. VHb mutants were screened for improved growth properties under microaerobic conditions and 15 clones expressing mutated hemoglobin protein were selected for further characterization and cultivated in a microaerobic bioreactor to analyze the physiological effects of novel VHb proteins on cell growth. The expression of four VHb mutants, carried by pVM20, pVM50, pVM104, and pVM134, were able to enhance microaerobic growth of E. coli by approximately 22%, 155%, 50%, and 90%, respectively, with a concomitant decrease of acetate excretion into the culture medium. The vhb gene in pVM20 contains two mutations substituting residues Glu19(A17) and Glu137(H23) to Gly. pVM50 expresses a VHb protein carrying two mutations: His36(C1) to Arg36 and Gln66(E20) to Arg66. pVM104 and pVM134 express VHb proteins carrying the mutations Ala56(E10) to Gly and Ile24(B5) to Thr, respectively. Our experiments also indicate that the positive effects elicited by mutant VHb-expression from pVM20 and pVM50 are linked to the peptide tail. Removal of the N-terminal sequence reduced cell growth approximately 23% and 53%, respectively, relative to wild-type controls. These results clearly demonstrate that it is possible to obtain mutated VHb proteins with improved characteristics for improving microaerobic growth of E. coli by using combined mutation techniques, addition of a peptide tail, and random error-prone PCR.  相似文献   

4.
Bacteria engineered with the gene (vgb) encoding Vitreoscilla hemoglobin (VHb) typically produce more protein than unengineered cells, and it has generally been assumed that VHb is responsible for this effect. Here, using matched strains of E. coli that bear a recombinant alpha-amylase gene (MK57) or the alpha-amylase gene and vgb (MK79), we provide evidence supporting this assumption. Sodium nitrite (which is known to inhibit heme proteins) was tested over a range of concentrations regarding effects on growth, alpha-amylase production, respiration, and VHb function in MK57 and MK79. Nitrite concentrations were identified at which respiration of cell membranes was inhibited only slightly and to approximately equal degrees in both strains, while whole cell respiration was inhibited to a greater extent and about twice as much in MK79 as MK57. This suggests that these concentrations inhibit VHb while having a much smaller effect on cytochrome oxidase. Direct measurements of VHb showed, in fact, that the same nitrite concentrations greatly decreased the levels of active (ferrous) and, to a somewhat lesser extent, total (ferrous plus ferric) VHb in MK79. Finally, these same nitrite concentrations reversed the advantage regarding alpha-amylase production of MK79 over MK57 seen at 0 mM nitrite, linking the presence of active VHb with the increase in alpha-amylase production.  相似文献   

5.
Dimeric hemoglobin (VHb) from the bacterium Vitreoscilla sp. strain C1 displays 30 to 53% sequence identity with the heme-binding domain of flavohemoglobins (flavoHbs) and exhibits the presence of potential sites for the interaction with its FAD/NADH reductase partner. The intersubunit contact region of VHb indicates a small interface between two monomers of the homodimer, suggesting that the VHb dimers may dissociate easily. Gel filtration chromatography of VHb exhibited a 25 to 30% monomeric population of VHb, at a low protein concentration (0.05 mg/ml), whereas dimeric VHb remained dominant at a high protein concentration (10 mg/ml). The structural characteristics of VHb suggest that the flavoreductase can also associate and interact with VHb in a manner analogous to flavoHbs and could yield a flavo-VHb complex. To unravel the functional relevance of the VHb-reductase association, the reductase domain of flavoHb from Ralstonia eutropha (formerly Alcaligenes eutrophus) was genetically engineered to generate a VHb-reductase chimera (VHb-R). The physiological implications of VHb and VHb-R were studied in an hmp mutant of Escherichia coli, incapable of producing any flavoHb. Cellular respiration the of the hmp mutant was instantaneously inhibited in the presence of 10 microM nitric oxide (NO) but remained insensitive to NO inhibition when these cells produced VHb-R. In addition, E. coli overproducing VHb-R exhibited NO consumption activity that was two to three times slower in cells overexpressing only VHb and totally undetectable in the control cells. A purified preparation of VHb-R exhibited a three- to fourfold-higher NADH-dependent NO uptake activity than that of VHb alone. Overproduction of VHb-R in the hmp mutant of E. coli conferred relief from the toxicity of sodium nitroprusside, whereas VHb alone provided only partial benefit under similar condition, suggesting that the association of VHb with reductase improves its capability to relieve the deleterious effect of nitrosative stress. Based on these results, it has been proposed that the unique structural features of VHb may allow it to acquire two functional states in vivo, namely, a single-domain homodimer that may participate in facilitated oxygen transfer or a two-domain heterodimer in association with its partner reductase that may be involved in modulating the cellular response under different environmental conditions. Due to this inherent structural flexibility, it may perform multiple functions in the cellular metabolism of its host. Separation of the oxidoreductase domain from VHb may thus provide a physiological advantage to its host.  相似文献   

6.
Summary Hairy root culture of Hyoscyamus albus was established by transformation with Agrobacterium rhizogenes strain A4. The growth and production of five tropane alkaloids were investigated under various culture conditions. Among the four basal culture media tested, Woody Plant medium was the best for growth of the hairy roots, but a high amount of tropane alkaloids was obtained with Gamborg's B5 medium. Sucrose concentration in B5 medium had little effect on the growth, while 3% sucrose was suitable for the alkaloid production. Addition of KNO3 to Woody Plant medium affected the growth, whereas the alkaloid content was not markedly improved. Supplement of some metal ions to B5 medium stimulated the alkaloid production. In particular, Cu2+ remarkably enhanced both the growth and the alkaloid yield. The hairy roots cultured under 16 h/day light survived for more than 32 days compared with those cultured in the dark.Abbreviations EDTA ethylenediaminetetraacetic acid - HPLC high performance liquid chromatography - MeOH methanol - MS medium Murashige and Skoog medium - WP medium McCown's Woody Plant medium - B5 medium Gamborg B5 medium - wt weight  相似文献   

7.
里氏木霉是生产纤维素酶的重要菌株,在其浸没式发酵过程中,氧传递是重要影响因素。为了减轻溶氧的限制,本研究借助根癌农杆菌将透明颤菌血红蛋白基因vgb引入里氏木霉。qPCR结果表明,pki及gpd启动子均可以有效启动vgb在里氏木霉中的表达。进一步实验结果表明,在摇瓶培养中,供氧充足情况下野生菌和转化株的生长无明显差异,但是在静止培养条件下,氧气供应受限,转化菌株的干重是野生菌的17.8~25.5倍。  相似文献   

8.
Kaur R  Ahuja S  Anand A  Singh B  Stark BC  Webster DA  Dikshit KL 《FEBS letters》2008,582(23-24):3494-3500
Although Vitreoscilla hemoglobin (VHb) carries a conventional globin fold, its proximal site geometry is unique in having a hydrogen-bonding network between proximal site residues, HisF8-TyrG5-GluH23 and TyrG5-TyrH12. TyrG5 and TyrH12 were mutated to study their relevance in VHb function. VHb G5 mutants (Tyr95Phe and Tyr95Leu showed no stable oxyform and nitric oxide dioxygenase activity, whereas, VHb H12 mutants (Tyr126Phe and Tyr126Leu) displayed little change in their oxygen affinity indicating a crucial role of Tyr95 in protein function. The VHb H12 mutant, Tyr126Leu, enhanced the intracellular pool of oxygen and cell growth better than VHb. Molecular modeling suggests that the replacement of tyrosine with leucine in Tyr126Leu creates an opening on the protein surface that may facilitate oxygen diffusion and accumulation.  相似文献   

9.
In this study, the effects of ploidy level and culture medium were studied on the production of tropane alkaloids. We have successfully produced stable tetraploid hairy root lines of Hyoscyamus muticus and their ploidy stability was confirmed 30?months after transformation. Tetraploidy affected the growth rate and alkaloid accumulation in plants and transformed root cultures of Egyptian henbane. Although tetraploid plants could produce 200% higher scopolamine than their diploid counterparts, this result was not observed for corresponding induced hairy root cultures. Culture conditions did not only play an important role for biomass production, but also significantly affected tropane alkaloid accumulation in hairy root cultures. In spite of its lower biomass production, tetraploid clone could produce more scopolamine than the diploid counterpart under similar growth conditions. The highest yields of scopolamine (13.87?mg?l?1) and hyoscyamine (107.7?mg 1?1) were obtained when diploid clones were grown on medium consisting of either Murashige and Skoog with 60?g/l sucrose or Gamborg??s B5 with 40?g/l sucrose, respectively. Although the hyoscyamine is the main alkaloid in the H. muticus plants, manipulation of ploidy level and culture conditions successfully changed the scopolamine/hyoscyamine ratio towards scopolamine. The fact that hyoscyamine is converted to scopolamine is very important due to the higher market value of scopolamine.  相似文献   

10.
In order to increase the production of the pharmaceuticals hyoscyamine and scopolamine in hairy root cultures, a binary vector system was developed to introduce the T-DNA of the Ri plasmid together with the tobacco pmt gene under the control of CaMV 35S promoter, into the genome of Datura metel and Hyoscyamus muticus. This gene codes for putrescine:SAM N-methyltransferase (PMT; EC. 2.1.1.53), which catalyses the first committed step in the tropane alkaloid pathway. Hairy root cultures overexpressing the pmt gene aged faster and accumulated higher amounts of tropane alkaloids than control hairy roots. Both hyoscyamine and scopolamine production were improved in hairy root cultures of D. metel, whereas in H. muticus only hyoscyamine contents were increased by pmt gene overexpression. These roots have a high capacity to synthesize hyoscyamine, but their ability to convert it into scopolamine is very limited. The results indicate that the same biosynthetic pathway in two related plant species can be differently regulated, and overexpression of a given gene does not necessarily lead to a similar accumulation pattern of secondary metabolites.  相似文献   

11.
Dimeric hemoglobin (VHb) from the bacterium Vitreoscilla sp. strain C1 displays 30 to 53% sequence identity with the heme-binding domain of flavohemoglobins (flavoHbs) and exhibits the presence of potential sites for the interaction with its FAD/NADH reductase partner. The intersubunit contact region of VHb indicates a small interface between two monomers of the homodimer, suggesting that the VHb dimers may dissociate easily. Gel filtration chromatography of VHb exhibited a 25 to 30% monomeric population of VHb, at a low protein concentration (0.05 mg/ml), whereas dimeric VHb remained dominant at a high protein concentration (10 mg/ml). The structural characteristics of VHb suggest that the flavoreductase can also associate and interact with VHb in a manner analogous to flavoHbs and could yield a flavo-VHb complex. To unravel the functional relevance of the VHb-reductase association, the reductase domain of flavoHb from Ralstonia eutropha (formerly Alcaligenes eutrophus) was genetically engineered to generate a VHb-reductase chimera (VHb-R). The physiological implications of VHb and VHb-R were studied in an hmp mutant of Escherichia coli, incapable of producing any flavoHb. Cellular respiration the of the hmp mutant was instantaneously inhibited in the presence of 10 μM nitric oxide (NO) but remained insensitive to NO inhibition when these cells produced VHb-R. In addition, E. coli overproducing VHb-R exhibited NO consumption activity that was two to three times slower in cells overexpressing only VHb and totally undetectable in the control cells. A purified preparation of VHb-R exhibited a three- to fourfold-higher NADH-dependent NO uptake activity than that of VHb alone. Overproduction of VHb-R in the hmp mutant of E. coli conferred relief from the toxicity of sodium nitroprusside, whereas VHb alone provided only partial benefit under similar condition, suggesting that the association of VHb with reductase improves its capability to relieve the deleterious effect of nitrosative stress. Based on these results, it has been proposed that the unique structural features of VHb may allow it to acquire two functional states in vivo, namely, a single-domain homodimer that may participate in facilitated oxygen transfer or a two-domain heterodimer in association with its partner reductase that may be involved in modulating the cellular response under different environmental conditions. Due to this inherent structural flexibility, it may perform multiple functions in the cellular metabolism of its host. Separation of the oxidoreductase domain from VHb may thus provide a physiological advantage to its host.  相似文献   

12.
人工设计合成密码子优化的 VHb 基因及其天然的低氧启动子序列,并进行融合 T7 终止子克隆至 L-Phe 的高表达质粒中,构建高产 L-phe 的抗贫氧高密度发酵基因工程菌.高密度发酵过程中的低氧情况可诱导 VHb 基因的表达,含VHb 的工程菌较对照工程菌发酵结果显示:菌株的稳定期延长约4h,提高菌株的产酸周期,L-phe 产量提高约14%.  相似文献   

13.
Hyoscyamine (Hyos) and scopolamine (SCP) are drugs widely used as antimuscarinic to treat diseases such as Parkinson’s or to calm schizoid patients. In this study, with the aim of enhancing tropane alkaloid production in H. reticulatus hairy root cultures, the effects of the signalling molecule acetylsalicylic acid (ASA) were investigated at different concentrations (0, 0.01, 0.1 and 1 mM) and inoculation times (24 and 48 h). As well as reducing biomass production, ASA treatment significantly enhanced the activity of catalase, guaiacol peroxidase and ascorbate peroxidase (p < 0.01), which was highest at 48 h of exposure to 1 mM of ASA. The highest accumulation of Hyos and SCP (1.6- and 3.5-fold more than in the control, respectively) was obtained at 24 h of exposure to 0.1 mM ASA. Additionally, semi-quantitative RT-PCR analysis showed an increased expression of the hyoscyamine-6-beta-hydroxylase (h6h) gene, involved in the last Hyos and SCP biosynthetic step, which correlated with the enhanced level of Hyos and SCP production under ASA elicitation. Our findings suggest that ASA, by stimulating the expression of key biosynthetic genes and enzymes, can be applied to increase commercial tropane alkaloid production in a H. reticulatus hairy root system.  相似文献   

14.
Hyoscyamus muticus hairy root clones were established following infection with Agrobacterium rhizogenes strains A4, LBA-9402 and 15834 and with A. tumefaciens strain C58C1pRTGus104. The accumulation of tropane alkaloids hyoscyamine, littorine and scopolamine was evaluated by micellar electrokinetic capillary electrophoresis. Littorine was reported for the first time in these clones as well as in the roots of the intact plant and confirmed by collision induced dissociation-mass spectrometry. Tropane alkaloid content in hairy roots was compared with leaves and roots of normal plants at two vegetative stages. Significant differences appeared between the alkaloid contents of the different clones. In particular, all the hairy root clones and the roots of the intact plant produced 1.5-3 and 4.5-9 times more littorine than scopolamine, respectively. The only exception was clone KB7, carrying the h6h gene, which overproduced scopolamine. The aerial parts of H. muticus plants did not contain any littorine, thus indicating different transportation or translocation mechanisms of the various tropane alkaloids.  相似文献   

15.
16.
The 1-deoxy-D-xylulose-5-phosphate (DXP) pathway (non-mevalonate pathway) leading to terpenoids via isopentenyl diphosphate (IPP) has been shown to occur in most bacteria and in all higher plants. Treatment with the antibiotic fosmidomycin, a specific inhibitor of DXP reductoisomerase, considerably inhibited the accumulation of the alkaloids ajmalicine, tabersonine, and lochnericine by Catharanthus roseus hairy root cultures in the exponential growth phase. However, fosmidomycin did not significantly affect alkaloid levels in stationary phase hairy root cultures. Feeding with 1-deoxy-D-xylulose, 10-hydroxygeraniol, or loganin resulted in significant increases in alkaloid production by exponential phase hairy root cultures. These results suggest that the DXP pathway is a major provider of carbon for the monoterpenoid pathway leading to the formation of indole alkaloids in C. roseus hairy roots in the exponential phase.  相似文献   

17.
The influence of buffered media upon the growth and alkaloid productivity of Catharanthus roseus hairy root culture was examined. As expected, the buffers minimized shifts in the pH of the media and had slightly negative effects upon growth. The growth of the hairy roots remained optimal in unbuffered media. The specific yield of lochnericine was significantly lower in response to the addition of buffers, while tabersonine was significantly higher. In contrast, the specific yields of ajmalicine, serpentine, and horhammericine remained unchanged.  相似文献   

18.
The use of nanotechnology and biotechnology to improve the production of plant bioactive compounds is growing. Hyoscyamus reticulatus L. is a major source of tropane alkaloids with a wide therapeutic use, including treatment of Parkinson's disease and to calm schizoid patients. In the present study, hairy roots were obtained from two‐week‐old cotyledon explants of H. reticulatus L. using the A7 strain of Agrobacterium rhizogenes. The effects of different concentrations of the signaling molecule nano‐zinc oxide (ZnO) (0, 50, 100 and 200 mg/L), with three exposure times (24, 48 and 72 h), on the growth rate, antioxidant enzyme activity, total phenol contents (TPC), tropane alkaloid contents and hyoscyamine‐6‐beta‐hydroxylase (h6h) gene expression levels were investigated. Growth curve analysis revealed a decrease in fresh and dry weight of ZnO‐treated hairy roots compared to the control. ANOVA results showed that the antioxidant activity of the enzymes catalase, guaiacol peroxidase and ascorbate peroxidase was significantly higher in the ZnO‐treated hairy roots than in the control, as was the TPC. The highest levels of hyoscyamine (37%) and scopolamine (37.63%) were obtained in hairy roots treated with 100 mg/L of ZnO after 48 and 72 h, respectively. Semi‐quantitative RT‐PCR analysis revealed the highest h6h gene expression was in hairy roots treated with 100 mg/L of ZnO after 24 h. It can be concluded that ZnO is as an effective elicitor of tropane alkaloids such as hyoscyamine and scopolamine due to its enhancing effect on expression levels of the biosynthetic h6h gene.  相似文献   

19.
Germination of Hyoscyamus muticus L. seeds was investigated under different temperature, light and kinetin treatments. Diurnal temperature fluctuation of 25°C for 14 h and 5°C for 10 h, strongly promoted germination. Kinetin (60 mg/1) substituted for the periodic temperature changes. Both kinetin and diurnal temperature fluctuation increased the IAA level in the seeds prior to germination. A natural inhibitor (Rf 0.6–0.8) did not disappear in response to either treatment.  相似文献   

20.
In vitro cultures of hairy root derived from Catharanthus roseus accumulate higher levels of indole alkaloids than cell suspension cultures. Hairy roots were interconverted to undifferentiated cells by manipulation of the culture medium. When the concentration of micronutrients in the culture medium was five times that of Phillips and Collins (1979) medium, cell suspensions formed from the hairy roots. The alkaloid content was five times lower in the cell suspensions than in the control, but upon regeneration of the roots the alkaloid content regained its original level. The formation of cell suspensions from hairy roots was also accompanied by a reduction in tryptophan decarboxylase and the strictosidine synthase activity to less than 5% and 30%, respectively. 3-Hydroxymethylglutaryl coenzyme A reductase activity was the same in the cell suspension and in the regenerated line. Received: 12 February 1998 / Revision received: 21 May 1998 / Accepted: 5 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号