首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under certain culture conditions, neonatal rat superior cervical ganglion neurons display not only a number of expected adrenergic characteristics but, paradoxically, also certain cholinergic functions such as the development of hexamethonium-sensitive synaptic contacts and accumulation of choline acetyltransferase (ChAc). The purpose of this study was to determine whether the entire population of cultured neurons was aquiring cholinergic capabilities, or whether this phenomenon was restricted to a subpopulation. After 1--6 and 8 wk in culture, neurons were fixed in KMnO4 after incubation in norepinephrine and prepared for electron microscopy analysis of synaptic vesicle content to determine whether vesicles were dense cored or clear. ChAc, acetylcholinesterase (AChE), and DOPA-decarboxylase (DDC) activities were assayed in sister cultures. In the period from 1 to 8 wk in culture, the average ChAc activity per neuron increased 1,100-fold, and the DDC and AChE activities increased 20- and 30-fold, respectively. After 1 wk in culture, 48 of 50 synaptic boutons contained predominantly dense-cored vesicles, but by 8 wk the synaptic vesicle population was predominantly of the clear type. At intermediate times, the vesicle population in many boutons was mixed. The morphology of the synaptic contacts on neuronal surfaces was that characteristic of autonomic systems, with no definite clustering of the vesicles adjacent to the area of contact. Increased vesicle size correlated with increasing age in culture and the presence of a dense core. Considering these data along with available physiological studies, we conclude that these cultures contain one population of neurons that is initially adrenergic. Over time, under conditions of this culture system, this population develops cholinergic mechanisms. That a neuron may, at a given time, express both cholinergic and adrenergic mechanisms is suggested by the approximately equal numbers of clear and dense-cored vesicles in the boutons found at the intermediate times.  相似文献   

2.
Continuous neurotransmitter release is subjected to synaptic vesicle availability, which in turn depends on vesicle recycling and the traffic of vesicles between pools. We studied the role of Synaptotagmin-7 (Syt-7) in synaptic vesicle accessibility for release in hippocampal neurons in culture. Synaptic boutons from Syt-7 knockout (KO) mice displayed normal basal secretion with no alteration in the RRP size or the probability of release. However, stronger stimuli revealed an increase in the size of the reserve and resting vesicle pools in Syt-7 KO boutons compared with WT. These data suggest that Syt-7 plays a significant role in the vesicle pool homeostasis and, consequently, in the availability of vesicles for synaptic transmission during strong stimulation, probably, by facilitating advancing synaptic vesicles to the readily releasable pool.  相似文献   

3.
The ultrastructure of mouse neuroblastoma cells in tissue culture.   总被引:11,自引:0,他引:11  
Neuroblastoma cells grown in suspension culture are round and have no distinctive structural characteristics. However, cells transferred to substrates flatten, develop long neurites, and assume the morphology of normal neurons. The resemblance of monolayered neuroblastoma cells to normal neurons is amplified by treatment with hypertonic medium; under these conditions, cell division is inhibited and the neurites become long and differentiated. The treated cells contain clusters of clear vesicles, 400-600 A in diameter, which are morphologically indistinguishable from the synaptic vesicles of normal neurons. Specialized cell contacts are observed between the treated cells as well as between confluent cells grown in normal medium.  相似文献   

4.
The tuberculo-ventral tract represents a short nervous circuit within the auditory cochlear nuclei. Tuberculo-ventral neurons of the dorsal cochlear nucleus send isofrequency inhibitory inputs to bushy cells of the ventral cochlear nucleus. Injection of wheat germ agglutinin conjugated to horseradish peroxidase into the rat ventral cochlear nucleus, labelled tuberculo-ventral neurons retrogradely in the deep polymorphic layer of the ipsilateral dorsal cochlear nucleus. Five to 20% of the perimeter of these cells was covered by synaptic boutons, most of which contained flat and pleomorphic vesicles. These boutons contained glycine and sometimes GABA. Occasional small axo-somatic boutons contained round vesicles and were immunonegative for both glycine and GABA. This study shows that the synaptic profile of tuberculo-ventral neurons is different from that of other medium-size glycinergic neurons within the polymorphic layer or more superficial regions of the dorsal cochlear nucleus like cartwheel neurons. In fact the latter mostly receive boutons that contain pleomorphic vesicles.  相似文献   

5.
Final motor neurons in sympathetic and parasympathetic ganglia receive synaptic inputs from preganglionic neurons. Quantitative ultrastructural analyses have shown that the spatial distribution of these synapses is mostly sparse and random. Typically, only about 1%-2% of the neuronal surface is covered with synapses, with the rest of the neuronal surface being closely enclosed by Schwann cell processes. The number of synaptic inputs is correlated with the dendritic complexity of the target neuron, and the total number of synaptic contacts is related to the surface area of the post-synaptic neuron. Overall, most neurons receive fewer than 150 synaptic contacts, with individual preganglionic inputs providing between 10 and 50 synaptic contacts. This variation is probably one determinant of synaptic strength in autonomic ganglia. Many neurons in prevertebral sympathetic ganglia receive additional convergent synaptic inputs from intestinofugal neurons located in the enteric plexuses. The neurons support these additional inputs via larger dendritic arborisations together with a higher overall synaptic density. There is considerable neurochemical heterogeneity in presynaptic boutons. Some synapses apparently lack most of the proteins normally required for fast transmitter release and probably do not take part in conventional ganglionic transmission. Furthermore, most preganglionic boutons in the ganglionic neuropil do not form direct synaptic contacts with any neurons. Nevertheless, these boutons may well contribute to slow transmission processes that need not require conventional synaptic structures.  相似文献   

6.
In this study we investigated the arrangement of synapses on local axon collaterals of Golgi-stained pyramidal neurons in the mouse cerebral cortex. As synaptic markers we considered axonal swellings visible at high magnification under the light microscope. Such axonal swellings coincide with synaptic boutons, as has been demonstrated in a number of combined light and electron microscopic studies. These studies also indicated that, in most cases, one bouton corresponds precisely to one synapse. Golgi-impregnated axonal trees of 20 neocortical pyramidal neurons were drawn with a camera lucida. Axonal swellings were marked on the drawings. Most swellings were ‘en passant’; occasionally, they were situated at the tip of short, spine-like processes. On axon collaterals, the average interval between swellings was 4.5 μm. On the axonal main stem, the swellings were always less densely packed than on the collaterals. Statistical analysis of the spatial distribution of the swellings did not reveal any special patterns. Instead, the arrangement of swellings on individual collaterals follows a Poisson distribution. Moreover, the same holds to a large extent for the entire collection of pyramidal cell collaterals. This suggests that a single Poisson process, characterized by only one rate parameter (number of synapses per unit length), describes most of the spatial distribution of synapses along pyramidal cell collaterals. These findings do not speak in favour of a pronounced target specificity of pyramidal neurons at the synaptic level. Instead, our results support a probabilistic model of cortical connectivity. Received: 6 June 1993/Accepted in revised form: 22 December 1993  相似文献   

7.
Summary Layer IVc of the human striate area consists mainly of a great number of small spinous local circuit neurons which store numerous characteristic lipofuscin granules. Since the neurons of the neighbouring layers are almost devoid of pigment deposits the boundaries of lamina IVc are easily traceable. Hence, the pigment granules can be used as internal markers to unequivocally identify these small pigmented spinous local circuit neurons of lamina IVc in ultrathin sections. They have a large spherical nucleus surrounded by a narrow cytoplasmic rim poor in organelles, and very scarcely receive axosomatic symmetric synapses.Within layer IVc four types of synaptic boutons can be distinguished. Type-1-boutons are large, contain a few and loosely arranged round vesicles and make asymmetric synaptic contacts with dendrites and dendritic spines. The type-2-boutons which are also large are filled with densely packed round vesicles which accumulate at the presynaptic membrane. The large type-3-boutons are characterized by elongated vesicles and symmetric synaptic contact zones. These boutons generate several fingerlike protrusions. Small profiles which contain elongated vesicles and form symmetric synaptic contacts, are most probably parts of these protrusions. The large amount of small boutons with round vesicles and asymmetric synaptic contact zones are tentatively described as type-4-boutons although it is far from certain that they represent a uniform class. The presumable origins of the different types of boutons are discussed.Supported by the Deutsche Forschungsgemeinschaft (Br. 634/1)Dedicated to Prof. Dr. med. H. Leonhardt in honor of his 60th birthday  相似文献   

8.
Summary The ultrastructural study of the lateral geniculate nucleus (LGN) of the tree shrew (Tupaia glis) revealed two types of neurons: (1) a large thalamocortical relay cell (TCR), which may bear cilia, and (2) a small Golgi type-II interneuron (IN) with an invaginated nucleus. The narrow rim of pale cytoplasm of the IN contains fewer lysosomes and fewer Nissl bodies than the cytoplasm of the TCR. The IN perikarya, which in some cases establish somatosomatic contacts, frequently contain flattened or pleomorphic synaptic vesicles. The ratio of TCR to IN is 31.Three types of axon terminals were observed in the LGN. Two of them contain round synaptic vesicles but differ in size. The large RL boutons undergo dark degeneration after enucleation; they are the terminals of retino-geniculate fibers. The smaller RS boutons show dark degeneration after ablation of the visual cortex; they are the terminals of the cortico-geniculate fibers. The third type of bouton (F1 does not degenerate after either intervention. The boutons of this type are filled with flattened vesicles and are believed to be intrageniculate terminals. F2-profiles were interpreted as presynaptic dendrites of the IN. The characteristic synaptic glomeruli found in the LGN contain in their center an optic terminal. These optic terminals establish synaptic contacts with dendrites or spine-like dendritic protrusions of TCRs as well as with presynaptic dendrites. Synaptic triads were also seen. The distribution of the individual types of synaptic contacts in layers 3 and 4 was determined. Layer 4 contains only one third of the retino-geniculate synapses and of the synaptic contacts of F1-terminals.  相似文献   

9.
Subcellular distribution of clathrin in cultured hypothalamic neurons.   总被引:1,自引:0,他引:1  
The subcellular distribution of clathrin has been examined in developing hypothalamic neurons cultured in a chemically defined medium up to synapse formation (12-13 days in vitro) and exposed, or not, to a depolarizing concentration of KCl (60 mM for 3 min) followed, or not, by a return to control KCl concentration (3 mM KCl for 3 min). Previous studies have shown that such treatments induce in synaptic boutons a rapid vesicle depletion followed by massive restoration. Using an enzyme immunoassay, we have compared the relative proportion of assembled and unassembled pools of clathrin as a function of exposure to depolarizing or repolarizing concentrations of KCl. In parallel we have localized clathrin at the electron microscopic level using immunoperoxidase. Clathrin concentration in culture is lower (0.36 vs 0.75%) and the proportion of unassembled clathrin is much higher than in the adult brain (82 vs 14%). These proportions were not affected by depolarizing or repolarizing treatments. Morphologically clathrin was exclusively detected in two neuron compartments: perikarya and synaptic boutons. In perikarya clathrin was localized as a thick coat on plasma membrane coated pits and in the Golgi zone on coated buds and vesicles, presumably located in a trans compartment. In synaptic boutons clathrin immunoreaction was found as an irregular thin rim around synaptic vesicles, whatever the polarization state of the cells, but coated vesicles were extremely rare. Taken together these findings raise the problem of the functional meaning and localization of the large unassembled pool of clathrin in such neurons and question its role in vesicular traffic in synaptic boutons.  相似文献   

10.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

11.
Summary The rhythmic constriction of the heart tubes in the leech Hirudo medicinalis is controlled by an identified set of motor neurons (HE cells) and interneurons (HN cells) (reviewed by Calabrese and Peterson 1983). Electrophysiological recordings have indicated particular synaptic relationships among HE and HN cells. In the present study, the synaptic framework mediating the interactions among HE cells and HN cells was examined anatomically. Using light and electron microscopy of physiologically identified, HRP-injected cells, we have examined the zones of interaction and types of contacts between specific cells. HE cells, which have very fine, threadlike processes, interact with their contralateral homologues throughout most of the middle third of the ganglionic neuropil. When HE-cell neuntes come together, the apposed plasma membranes are rigidly parallel, separated by an intercellular gap of 6 nm, for up to 6 m. These specializations must form the structural basis for the strong electrical coupling observed (Peterson 1983) between HE-cell pairs. HE cells also emit from the main neurite a series of extremely fine processes that extend dorsally. These appear in the light microscope to contact processes of the ipsilateral HN cell of the same ganglion, and are also in a position to make contact with the axons of more anterior HN cells. The intraganglionic processes of HN cells, which are studded with large varicosities, ramify in part of the region of neuropil occupied by HE-cell processes, as well as more posteriorly. Contacts between HE and HN cells, which are known to be mostly inhibitory synaptic contacts, are seen in the electron microscope to be formed between medium-diameter HN processes, which are filled with clear round synaptic vesicles, and multiple fine tendrils of the HE cell that surround the HN process. Certain HN cells form reciprocal inhibitory synapses with their contralateral homologues. These contacts occur near the midline, sometimes in the major mass of neuropil and sometimes embedded in the extracellular material that ensheathes the neuropil. The contacts are between medium-and small-diameter profiles that are both filled with synaptic vesicles. Our findings indicate that various classes of physiological interactions among HE and HN cells are mediated by anatomically distinct types of contacts and, at least in some cases, are segregated from each other on the neuritic trees of the cells.  相似文献   

12.
Simultaneous pre- and postsynaptic intracellular recordings were used to study the mechanism of presynaptic terminal recruitment in a multifunction interneurone in the snail Helix pomatia. The interneurone was presynaptic to at least 20 neurones. The synaptic efficiency was correlated with the presence of presynaptic depolarizing after-potentials (DAPs) electrotonically produced by the delayed firing of remote terminal processes. These processes have large swellings filled with neurosecretory vesicles. The terminals were recruited in a graded manner when the interneurone was fired with a prolonged current. The terminal recruitment was enhanced by stimulating various efferent nerves, which presumably activated presynaptic receptors for dopamine. A few animals (three out of 300) had two electrically coupled interneurones. Simultaneous recordings from both cells showed that the terminals could be fired independently of the soma-axon activity. The graded and local firing of the presynaptic terminals was attributed to the electrical load that the large boutons exert on electrotonically spreading presynaptic impulses.  相似文献   

13.
Ultrastructure of the rat mesencephalic trigeminal nucleus.   总被引:1,自引:0,他引:1  
  相似文献   

14.
Summary The ultrastructure of nerve cells and the finestructural organization of synaptic contacts have been investigated in the intestinal nerve in the snail Helix pomatia. Three types of nerve cells, occurring singly or in groups, can be distinguished on the basis of the ultrastructure of their perikaryon and content of granules. The peripheral output of these nerve cells has been verified by retrograde CoCl2 and NiCl2 staining. Both axosomatic and axo-axonic specialized synaptic contacts occur in the intestinal nerve. Presynaptic elements of these synaptic contacts contain 100–120 nm granular vesicles or 120–200 nm neurosecretory-like granules. Following intracellular horseradish peroxidase (HRP) labelling of identified central neurons responsible for peripheral regulatory processes, several labelled axons running toward the periphery can be followed throughout the branches of the intestinal nerve. These labelled axon processes (either primary axon or small collaterals) form specialized synaptic contacts, inside the intestinal nerve, and are always in a postsynaptic position. The occurrence of peripheral axo-somatic and axo-axonic synapses provides a morphological basis for integrative processes taking place in the intestinal nerve (peripheral nervous system) of Helix pomatia.  相似文献   

15.
Summary A monoclonal antibody that recognises the C-terminal part of substance P was used to study immunoreactive structures in the substantia nigra by the unlabeled antibody, peroxidase-antiperoxidase procedure. Immunoreactivity was present in nerve fibres in all parts of the substantia nigra, particularly in the pars reticulata and pars lateralis. Electron microscopically two types of bouton immunoreactive for substance P were found: Type 1 contained large electron-lucent vesicles, occasional large granulated vesicles and formed symmetrical synapses with dendrites. Type 2 boutons contained smaller, round electron-lucent vesicles, many large granular vesicles and formed asymmetrical synapses (having prominent postjunctional dense bodies) with dendrites and perikarya.Immunoreactive fibres with varicosities that had been identified light microscopically were studied in serial sections in the electron microscope. Each identified varicosity contained synaptic vesicles and formed a single synapse. An individual fibre formed boutons of only one kind (type 1 or type 2) and could form multiple synapses with the same neuron. Thus, an identified fibre in the pars compacta had eight varicosities, each of which was in synaptic contacts (type 2) with the dendrites or soma of the same neuron.The results are consistent with the concept that substance P is a synaptic transmitter in the substantia nigra and indicate that neurons in this region may receive a significant input from substance P-containing afferents, and that there are at least two types of such afferent fibres.  相似文献   

16.
Large neurons in the dorsal cochlear nucleus of the guinea pig which project to the inferior colliculus were identified after injections of the neural tracer WGA-HRP. Retrograde labelled cells (pyramidal and giant neurons) in the dorsal cochlear nucleus were glycine and GABA immunonegative and showed a similar ultrastructure. Between 30 and 60% of their perimeter was covered by axo-somatic boutons, most of which (>50%) contained pleomorphic synaptic vesicles. Other boutons (about 40% of total) contained flat vesicles and few (5-6%) contained round vesicles, a characteristic of the excitatory cells innervating the inferior colliculus. Immunogold-cytochemistry, coupled to silver intensification, showed that more than 50% of axo-somatic pleomorphic boutons and over 90% of boutons containing flat and pleomorphic vesicles store glycine. Rare WGA-HRP labelled axo-somatic boutons containing flat-pleomorphic vesicles were seen on pyramidal and giant neurons. This suggests that a few inhibitory collicular terminals contact the excitatory large neurons in the dorsal cochlear nucleus.  相似文献   

17.
Summary Synaptic connections were studied by means of electron microscopy in the sensory pineal organ of the ayu, Plecoglossus altivelis, a highly photosensitive teleost species. Three types of specific contacts were observed in the pineal end-vesicle: 1) symmetrically organized gap junctions between the basal processes of adjacent photoreceptor cells; 2) sensory synapses endowed with synaptic ribbons, formed by basal processes of photoreceptor cells and dendrites of pineal neurons; 3) conventional synapses between pineal neurons, containing both clear and dense-core vesicles at the presynaptic site. Based on these findings, the following interpretations are given: (i) The gap junctions may be involved in an enhancement of electric communication and signal encoding between pineal photoreceptor cells. (ii) The sensory synapses transmit photic signals from the photoreceptor cells to pineal nerve cells. (iii) The conventional synapses are assumed to be involved in a lateral interaction and/or summation of information in the sensory pineal organ. A concept of synaptic relationships among the sensory and neuronal elements in the pineal organ of the ayu is presented.Fellow of the Alexander von Humboldt Foundation, Federal Republic of Germany  相似文献   

18.
Using light and electron microscopy the neurons, glial cells and capillaries in hypoglossal nucleus of the rats have been examined up to 20 days after birth. The neuronal nuclei are usually situated ecentrically. The mitochondria and extensively developed Golgi-zones occupy the perinuclear region. The microtubules and lysosomes become more numerous with aging. At the earliest periods rough endoplasmic reticulum (ER) occupies the neuronal periphery, whereas after 14th day it is extended to the perinuclear region also. The ER forms elongated and concentric lamellated bodies and subsurface cisternae. At this time nucleolus like bodies are also numerous in the cytoplasm. After 4th and 6th days the extensive growth of dendrites, containing many cell organelles, and axons rich in microtubules are observed. Only at the birthday do neurons contain glycogen deposit. After 1st day the glycogen leaves the pericaryon, but it persists a long time in the neuronal processes. The symmetrical and asymmetrical contacts are characteristic for the examined period. The axo-somatic and axo-dendritic synapses are more abundant, but "double synapses" are also established. More synaptic boutons possess besides synaptic vesicles dense-core vesicles at the earlier periods. The quantity of asymmetric synapses increases with differentiation. Extensive cell degeneration has been established between 8 and 18th days. At 4 and 6 days the glial cells penetrate from subependymal layer and they have satellite neuronal position. This is more pronounced between 14 and 18 days when the oligodendrocytes are more numerous and active. At the same time fibrous astrocyte like cells are appeared. Microglial cells were not observed. Capillary differentiation, expressed by changes of the endothelial cells, pericytes and connective tissue cells, continues after birth also.  相似文献   

19.
The well known type of synapse between a presynaptic process containing vesicles and a "clear" postsynaptic process can be commonly observed in the various lobes of the brain of Octopus. The presynaptic vesicles are aggregated near regions of the synaptic membranes which show specialisation and asymmetric "thickening" indicating functional polarisation, and here chemical transmission is presumed to take place. In addition, in the vertical lobe a very interesting serial arrangement of synaptic contacts occurs. Presynaptic bags, formed from varicosities of fibres from the superior frontal lobe, contact the trunks of amacrine cells in the manner just described. The trunks, however, although apparently postsynaptic are themselves packed with synaptic vesicles. The trunks, in turn, make "presynaptic" contacts with clear spinous processes of other neurons of yet undetermined origin. Typical polarised membrane specialisations occur at the contact regions. The trunk vesicles aggregated closest to the contact regions have a shell of particles round their walls. At present, there is no way of telling whether the membrane conductance to the various ions is differently affected at either of the transmission sites, and, if an inhibitory mechanism is involved, whether it is of the presynaptic or postsynaptic variety.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号