首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hepatocyte growth factor (HGF) prevents liver failure in various animal models including endotoxin-induced acute liver failure. We were interested to find out whether human HGF exerts anti-inflammatory effects by modulation of cytokine synthesis. Therefore, human HepG2 cells were cultured with increasing concentrations of HGF. HGF dose-dependently upregulated the production of interleukin-1 receptor antagonist (IL-1Ra). Incubation of HepG2 cells with interleukin-1beta (IL-1beta) caused an increase in IL-1Ra levels, while interleukin-6 (IL-6) had no effect on IL-1Ra synthesis. Co-stimulation of HepG2 cells with HGF + IL-1beta resulted in a synergistic effect on IL-1Ra mRNA and protein expression. Stimulation of freshly isolated mouse hepatocytes from male C57 BL/6 mice with HGF increased IL-1Ra mRNA and protein synthesis dose-dependently. A co-stimulation with HGF and IL-1beta had a synergistic effect on IL-1Ra mRNA expression but only a partially additive effect on IL-1Ra protein synthesis. HGF-induced IL-1Ra production was significantly decreased by the mitogen-activated protein kinase (MAPK) inhibitor PD98059. Accordingly, HGF stimulation specifically increased MAPK-dependent signalling pathway (p42/44). In contrast, in preactivated PBMC mRNA expression and protein synthesis of IL-1Ra, interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-alpha) were unaffected after stimulation with HGF. In conclusion, our data suggest that HGF exerts anti-inflammatory effects by modulating the signal transduction cascade leading to increased expression of IL-1Ra, which might explain the protective and regenerative properties of this cytokine in animal models of liver failure.  相似文献   

3.
Several well-differentiated human hepatoma cell lines (HepG2, Hep3B) have been used to identify factors which regulate hepatic gene expression during the host response to inflammation/tissue injury (acute phase response). Studies in these cell lines, as well as in primary cultures of rat, rabbit, and mouse hepatocytes, have demonstrated that interleukin-1 beta (IL-1 beta), tumor necrosis factor (TNF-alpha), and interferon-beta 2 (IFN-beta 2) each mediate changes in expression of several hepatic acute phase genes. In this study we identify a subclone of the HepG2 cell line in which there is a selective defect in IL-1 beta-mediated acute phase gene expression. Recombinant human IL-1 beta mediates an increase in synthesis of the positive acute phase complement protein factor B and a decrease in synthesis of negative acute phase protein albumin in the parent uncloned HepG2 cell line (HG2Y), but not in the subclone HG2N. Recombinant human IFN-beta 2 and TNF-alpha, however, regulate acute phase protein synthesis in the subclone HG2N; i.e. IFN-beta 2 and TNF-alpha increase synthesis of factor B and decrease synthesis of albumin in both HG2Y and HG2N cells. Equilibrium binding analysis with 125I-rIL-1 beta at 4 degrees C showed that both HG2N and HG2Y cells bind IL-1 beta specifically and saturably. HG2N and HG2Y possess 3.8 and 4.0 x 10(3) plasma membrane receptors/cell with affinities of 0.96 and 1.07 x 10(-9) M, respectively. Thus, the defect in this subclone of the HepG2 cell line is likely to involve the signal transduction pathway for the biological activity of IL-1 beta and will be useful in elucidation of this signal transduction pathway.  相似文献   

4.
The objective of this study was to examine effects of interleukin-6 (IL-6) on the expression and activity of the drug resistance transporters (MDR1 and MRP) in human hepatoma cell lines. Expression and activity of MDR1 and MRP transporters were examined in IL-6-treated and control HuH 7 and HepG2 cells using semi-quantitative RT-PCR analysis and by rhodamine 123 and 5-carboxyfluorescin efflux assays. Results from RT-PCR demonstrated expression of MRP3, MRP6, and MDR1 in HuH 7 cells and expression of MRP1, MRP2, MRP3, MRP6, and MDR1 in HepG2 cells. Compared with controls, treatment of HuH 7 cells with IL-6 (10 ng/mL, 24 h) resulted in a 1.8-fold increase in MRP-mediated efflux of 5-CF with a corresponding 1.5-fold induction of MRP3 mRNA levels (p < 0.05). Similarly, in HepG2 cells, a 2-fold increase in MRP functional activity and a 1.8-fold induction of MRP1 mRNA levels were seen in the IL-6 treated cells (p < 0.05). Treatment of cells with IL-6 was also found to cause significant reductions in the expression and activity of MDR1 in HuH 7 cells, but not in HepG2 cells. Our data suggest that IL-6 induces MRP expression and activity in human hepatoma cell lines. Suppressive effects of IL-6 on MDR1 expression and activity were also observed in HuH 7 cells. This underscores the importance of examining the regulation of multiple drug resistance proteins as these proteins may have opposing regulatory mechanisms in malignant cells.  相似文献   

5.
Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (18-30 yr old) performed 30 min of constant work rate cycle ergometry (approximately 80% peak O2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1alpha (1.84-fold) and -1beta (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair.  相似文献   

6.
7.
8.
Conditioned medium from human monocyte-macrophages incubated under various conditions was tested for its ability to stimulate fibrinogen mRNA levels in the hepatoma cell line HepG2. Recombinant human interleukin-6 (IL-6) stimulated fibrinogen mRNA levels 4.4-fold over control levels; this response was blocked by an anti-IL-6 antibody. Conditioned medium from 3-day-cultured monocyte-macrophages produced a slight stimulation of fibrinogen synthesis in HepG2 cells which was enhanced when the monocyte-macrophages had been treated with lipopolysaccharide (LPS). This stimulation was blocked by the anti IL-6 antibody. The cytokines, interleukin-1 (IL-1) and tumour necrosis factor (TNF) were also detected in the conditioned medium from the 3-day-cultured monocyte-macrophages. Monocyte-macrophages were cultured for 17 days and then incubated with acetylated low density lipoprotein (AcLDL) for 48 h. Such cells were 'foamy' in appearance and showed a 4-fold increase in apoE mRNA and a 10 to 50-fold increase in apoE secretion. This increase in apoE production was suppressed by almost a third when cells were coincubated with AcLDL and LPS. Conditioned medium from these 17-day-cultured AcLDL-treated human monocyte-macrophages did not stimulate fibrinogen mRNA synthesis in HepG2 cells, nor did the conditioned medium contain detectable levels of cytokines. These results suggest that cytokine production from foam cells in the atherosclerotic lesion is unlikely to be a major contributing factor in determining the elevated fibrinogen levels seen in the plasma of patients with IHD.  相似文献   

9.
10.
Serum levels of phospholipase A2 (PLA2) activity have been shown to be elevated in cases of septic shock and rheumatoid arthritis. The cellular origin of serum PLA2, however, is not known. In this report, we demonstrate that human group II PLA2 expression and secretion are induced in hepatoma cells (HepG2) following treatment with interleukin-6 (IL-6), tumor necrosis factor (TNF), and interleukin-1 (IL-1). Of the three cytokines, IL-6 is the most potent. Significant synergy is observed between IL-6 and IL-1 and between IL-6 and TNF, but not between IL-1 and TNF. PLA2 induction does not occur in human YT cells, which are known to have receptors for both IL-1 and IL-6, indicating that the regulatory mechanism involved is cell type-specific. The results of RNA blot analysis indicate that the PLA2 gene is regulated in HepG2 cells at the pretranslational level. Induction of PLA2 synthesis in HepG2 cells in response to these cytokines resembles the induction of the acute phase plasma proteins which are synthesized in cultured hepatocytes and hepatoma cells following exposure to the same cytokines and in liver in response to inflammation and infection. In addition, a putative IL-6-responsive element, which is homologous to a similar element found in several acute phase genes, is present in the 5'-promoter-proximal region of the PLA2 gene. These results suggest that serum PLA2 is synthesized in and secreted from liver cells in response to inflammatory stimuli, mediated primarily by IL-6, and therefore should be classified as an acute phase protein.  相似文献   

11.
12.
13.
The main goal of this study is to elucidate the mechanisms of the signal transmission for radiation-induced bystander response. The NF-κB-dependent gene expression of IL8, IL6, PTGS2/COX2, TNF and IL33 in directly irradiated human skin fibroblasts produced the cytokines and prostaglandin E2 (PGE2) with autocrine/paracrine functions, which further activated signaling pathways and induced NF-κB-dependent gene expression in bystander cells. As a result, bystander cells also started expression and production of interleukin-8, interleukin-6, COX-2-generated PGE2 and interleukin-33 (IL-33) followed by autocrine/paracrine stimulation of the NF-κB and MAPK pathways. A blockage of IL-33 transmitting functions with anti-IL-33 monoclonal antibody added into the culture media decreased NF-κB activation in directly irradiated and bystander cells. On the other hand, the IGF-1-Receptor kinase regulated the PI3K–AKT pathway in both directly irradiated and bystander fibroblasts. A pronounced and prolonged increase in AKT activity after irradiation was a characteristic feature of bystander cells. AKT positively regulated IL-33 protein expression levels. Suppression of the IGF-R1–AKT–IL-33 pathway substantially increased radiation-induced or TRAIL-induced apoptosis in fibroblasts. Taken together, our results demonstrated the early activation of NF-κB-dependent gene expression first in directly irradiated and then bystander fibroblasts, the further modulation of critical proteins, including IL-33, by AKT in bystander cells and late drastic changes in cell survival and in enhanced sensitivity to TRAIL-induced apoptosis after suppression of the IGF-1R–AKT–IL-33 signaling cascade in both directly irradiated and bystander cells.  相似文献   

14.
目的研究人白介素22(IL-22)对T细胞介导的肝损伤小鼠的治疗作用。方法利用刀豆蛋白A(ConA)建立T细胞介导的肝损伤小鼠模型,检测静脉注射IL-22对肝损伤小鼠血清丙氨酸转氨酶(ALT)、天门冬氨酸转氨酶(AST)活性的影响,同时取小鼠肝组织进行病理学检查。并采用半定量RT-PCR方法检测IL-22刺激HepG2和LO2细胞后,对c-myc及Bcl-2基因转录表达水平的影响。结果IL-22明显降低ConA致小鼠急性肝损伤血清ALT、AST值的升高,减轻ConA对肝组织的病理损伤。体外检测IL-22对HepG2和LO2细胞表达c-myc及Bcl-2基因转录水平有促进作用。结论IL-22对T细胞介导的肝损伤小鼠模型具有治疗作用,该作用可能是通过IL-22促进肝细胞的抗凋亡因子的表达实现的。  相似文献   

15.
16.
Interleukin-6 (IL-6) induces changes in gene expression and the N-glycosylation pattern of acute-phase proteins in hepatocytes. IL-6 exerts its action via a cell surface receptor complex consisting of an 80 kDa IL-6 binding protein (gp80) and a 130 kDa glycoprotein (gp130) involved in signal transduction. A genetically engineered gp80-derived soluble human IL-6-receptor (shIL-6-R) significantly enhanced the IL-6 effect on N-glycosylation changes (revealed by reactivity with the lectin-concanavalin A) of a1-protease inhibitor (PI) secreted by human hepatoma cells (HepG2). Stable transfection of IL-6-cDNA into HepG2 cells (HepG2-IL-6) resulting in constitutive secretion of 2 micrograms of IL-6 per 10(6) cells in 24 h led to a down-regulation of surface-bound gp80 and subsequent homologous desensitization of HepG2-IL-6 cells towards IL-6. Soluble human IL-6-R functionally substituted membrane-bound gp80 resulting in a reconstitution of responsiveness of HepG2-IL-6 cells.  相似文献   

17.
Iron-mediated organ damage is common in patients with iron overload diseases, namely, hereditary hemochromatosis. Massive iron deposition in parenchymal organs, particularly in the liver, causes organ dysfunction, fibrosis, cirrhosis, and also hepatocellular carcinoma. To obtain deeper insight into the poorly understood and complex cellular response to iron overload and consequent oxidative stress, we studied iron overload in liver-derived HepG2 cells. Human hepatoma HepG2 cells were exposed to a high concentration of iron for 3 days, and protein expression changes initiated by the iron overload were studied by two-dimensional electrophoresis and mass spectrometry. From a total of 1,060 spots observed, 21 spots were differentially expressed by iron overload. We identified 19 of them; 11 identified proteins were upregulated, whereas 8 identified proteins showed a decline in response to iron overload. The differentially expressed proteins are involved in iron storage, stress response and protection against oxidative stress, protein folding, energy metabolism, gene expression, cell cycle regulation, and other processes. Many of these molecules have not been previously suggested to be involved in the response to iron overload and the consequent oxidative stress.  相似文献   

18.
戚梦  刘城移  李琳  袁源  吴小平  傅俊生 《菌物学报》2019,38(9):1510-1518
本文探究蛹虫草活性成分虫草素对四氯化碳(CCl4)造成的小鼠急性肝损伤的保护作用及其分子机制。首先建立四氯化碳致小鼠急性肝损伤的动物模型,通过检测血清生化指标、肝功指标的变化及HE染色观察组织切片病理的病变情况,评价虫草素的保肝效果,进一步通过Western blot检测虫草素能否通过激活Nrf-2/Keap1信号通路及其下游抗氧化因子(HO-1、NQO-1)的表达来提高机体抗氧化损伤能力以及抑制炎症因子(TNFα、TNFβ、IL-6、IL-10)的表达。对比模型组结果显示,虫草素能极显著降低(P<0.01)小鼠血清中ALT、AST及肝脏中MDA水平,并能极显著提高肝脏中SOD水平(P<0.01);HE染色结果显示虫草素能有效降低改善受损肝组织中的炎细胞浸润及纤维组织增生;Western blot结果表明虫草素能够通过激活Nrf-2信号通路,促进下游抗氧化因子及抗炎因子的表达,从而降低炎症反应。虫草素对CCl4致小鼠急性肝损伤具有一定的保护作用,其机制与Nrf-2信号通路相关,实验结果为后续蛹虫草及虫草素的开发应用奠定基础。  相似文献   

19.
A method based on a surface plasmon resonance technique for detection of changes in concentration and glycosylation of proteins in cell culture supernatant is described. The method was used to analyze alpha(1)-acid glycoprotein (AGP) produced by a human hepatoma cell line (HepG2). Cell culture supernatant was injected to a BIACORE 2000 instrument and AGP was captured on the sensor chip by immobilized antibodies. The captured glycoprotein was then analyzed for content of carbohydrate epitopes using three different lectins, Aleuria aurantia lectin (AAL), Sambucus nigra agglutinin (SNA), and Triticum vulgaris agglutinin (wheat germ agglutinin, WGA). The method was used to analyze changes in concentration and glycosylation of AGP produced by HepG2 cells grown with or without three different cytokines, interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and transforming growth factor beta-1 (TGF beta(1)). Using the described method it was shown that when HepG2 cells were grown in the presence of IL-6 both AGP concentration and fucosylation increased. When HepG2 cells instead were grown in the presence of TGF beta(1) AGP fucosylation increased whereas AGP concentration decreased.  相似文献   

20.
Liu X  Niu T  Liu X  Hou W  Zhang J  Yao L 《Gene》2012,503(1):48-55
Previous studies have demonstrated that N-Myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor that is downregulated in many human cancers and when overexpressed, can inhibit tumor growth and metastasis. However, its molecular function, its modulatory targets, and signaling pathways associated with it remain unclear. Here, in an effort to identify the genes modulated by NDRG2 expression, a microarray study was conducted to detect the expression profile of HepG2 cells overexpressing NDRG2 or LacZ. Gene Ontology (GO) biological process analysis revealed that genes related to G protein signaling pathway were upregulated. Five of them were selected and verified by real-time PCR. Gene sets related to M phase of cell cycle were downregulated. This was in agreement with cell cycle analysis. Signaling pathway analysis demonstrated apparent augmented hematopoietic cell lineage pathway and cell adhesion, but reduced glycosylphosphatidylinositol (GPI)-anchor biosynthesis, protein degradation and SNARE interactions. Furthermore, through motif analysis and experimental validation, we found that the p38 phosphorylation can be increased by NDRG2. Our research provides the molecular basis for understanding the role of NDRG2 in tumor cells and raises interesting questions about its mechanisms and potential use in cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号