首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
光和激素在叶片衰老中的作用   总被引:7,自引:0,他引:7  
  相似文献   

2.
植物叶片衰老的分子机制   总被引:24,自引:1,他引:24  
文章就叶片衰老过程中基因表达调控机制的研究进展作了介绍  相似文献   

3.
以设施延迟栽培条件下叶片衰老速度不同的意大利和无核白鸡心2个葡萄品种为试材,分别进行补充红光和蓝光处理,研究不同光质对叶片衰老过程中叶绿素含量、净光合速率和内源激素含量的影响.结果表明: 与未补光对照相比,红光能够显著提高叶片的叶绿素含量和净光合速率,降低了内源赤霉素(GA3)含量,但明显减缓了脱落酸(ABA)含量的增加和玉米素核苷(ZR)总含量的减少,从而显著提高了(GA3+ZR)/ABA值,延缓叶片衰老.叶片衰老前期,蓝光处理叶片叶绿素含量、净光合速率和(GA3+ZR)/ABA值均低于对照,加速了植株的衰老进程;但在叶片衰老后期,蓝光处理叶绿素含量、净光合速率和(GA3+ZR)/ABA值逐渐高于对照,在一定程度上延缓了叶片衰老.植物内源激素生长素(IAA)则表现出叶片衰老前期促进叶片生长发育、叶片衰老后期加速衰老的双重作用.意大利叶片衰老速度较无核白鸡心慢.在本试验条件下,红光处理效果最好,有效延缓了叶片衰老进程,延长了叶片的生理功能期.  相似文献   

4.
高温逆境下植物叶片衰老机理研究进展   总被引:3,自引:0,他引:3  
叶片衰老是植物叶片发育的最后阶段,其作为一个主动的生理过程,对植物体内的营养循环再利用以及种子形成具有重要的生理意义。在植物的生长过程中,多种环境因素会影响叶片衰老进程。高温是影响叶片衰老最重要的环境因素之一。随着温室效应的加剧,研究高温胁迫下叶片衰老的调节机制对于通过调控叶片衰老进程,从而增加植物产量具有重要意义。本文对高温胁迫下叶绿体及类囊体膜的损伤、光合电子传递活力的改变、活性氧累积、光合作用相关蛋白质降解及细胞自噬方面的研究进展进行了综述。  相似文献   

5.
就叶片衰老研究在生理,生化及分子水平上的最新进展,以及有希望应用于农业,操纵叶片衰老的转基因手段作一简要综述。  相似文献   

6.
就叶片衰老研究在生理、生化及分子水平上的最新进展,以及有希望应用于农业的、操纵叶片衰老的转基因手段作一简要综述。  相似文献   

7.
植物叶片衰老与氧化胁迫   总被引:39,自引:0,他引:39  
叶片衰老是叶片生长发育进程中的最后阶段,与活性氧伤害有着密切的关系。介绍了植物叶片衰老过程中活性氧产生及清除系统的变化,讨论了对水分胁迫与氧化胁迫的交叉抗性,并对下一步的研究作出了展望  相似文献   

8.
植物叶片衰老与氧化胁迫   总被引:1,自引:0,他引:1  
叶片衰老是叶片生长发育进程中的最后阶段,与活性氧伤害有着密切的关系。介绍了植物叶片衰老过程中活性氧产生及清除系统的变化,讨论了对水分胁迫与氧化胁迫的交叉抗性,并对下一步的研究作出了展望。  相似文献   

9.
水稻叶片衰老相关基因的研究进展   总被引:2,自引:0,他引:2  
水稻叶片的衰老是制约杂交稻产量提高的主要因素之一,有数据表明水稻籽粒灌浆所需营养物质的60%~80%来自叶片的光合作用,实践证明叶片每推迟1天衰老,产量可提高产1%左右.因此,对叶片衰老的形态、生理生化及其相关分子机理等进行研究具有重要的现实意义.近年来水稻叶片衰老的相关研究表明,叶片的衰老是一个受众多因素影响的复杂过程,在这个过程中叶片发生了巨大的形态与生理生化变化,而这些变化均离不开基因的调控作用.大量实验结果表明:在衰老过程中,叶片细胞有选择地启动或增强某些基因(叶片衰老相关基因)的表达,而关闭或减弱另一些基因(衰老下调基因)的表达,由此来调控叶片衰老的进程.目前研究者已在研究衰老突变体等相关的材料中发现了许多与水稻叶片衰老有关的基因.本文重点概述了近年来水稻叶片衰老相关基因的研究状况,并对未来研究方向等问题做了思考与探讨,以期能为开展进一步的研究工作提供参考.  相似文献   

10.
植物叶片衰老过程中基因的表达与调控   总被引:6,自引:0,他引:6  
从衰老相关基因的分离、克隆、表达、调控及叶片衰老延缓几个方面,介绍叶片衰老过程中基因表达调控的研究进展。  相似文献   

11.
Phosphorus enrichment of aquatic ecosystems through diffuse source pollution is an ongoing issue worldwide. A potential solution lies in the use of fast‐growing, multipurpose feedstocks, such as trees, to limit the flow of phosphorus into riparian areas through luxury consumption. However, the perennial nature of trees and their use of leaves as storage organs for excess phosphorus may reduce the effectiveness of contaminant removal during periods of leaf abscission. In an attempt to improve phosphorus remobilization during autumnal senescence, transgenic hybrid poplar P39 (Populus alba × Populus grandidentata) and Arabidopsis thaliana harbouring a constitutively expressed low‐affinity potato phosphate transporter (35S::StPht1‐1) were generated using Agrobacterium‐mediated transformation. For both species, the highest expressing 35S::StPht1‐1 lines were grown alongside wild‐type plants and subjected to increasing phosphate applications. StPht1‐1 expression in A. thaliana led to a reduction in biomass when grown under high‐phosphate conditions and had no effect on phosphate remobilization during senescence. In contrast, StPht1‐1 constitutive expression in P39 resulted in increased leaf phosphate content in the highest expressing transgenic line and minimal to no effect on P resorption efficiency. Surprisingly, sulphate resorption showed the greatest improvement in all three transgenic poplar lines, displaying a 31%–37% increase in resorption efficiency. These results highlight the complexity of nutrient resorption mechanisms in plants.  相似文献   

12.
Transcriptome of Arabidopsis leaf senescence   总被引:21,自引:0,他引:21  
  相似文献   

13.
渍水对小麦扬麦5号旗叶和根系衰老的影响   总被引:15,自引:0,他引:15  
姜东  陶勤南  张国平 《应用生态学报》2002,13(11):1519-1521
1 引  言生育中后期渍水是长江中下游麦区小麦高产稳产的主要限制因子[13 ,16] .该区由于普遍实行稻麦多熟种植制度 ,前茬水稻使土壤浸水时间过长 ,土壤粘重 ,排水困难 ,透气性差而造成湿害 ;另外 ,该区常年麦季降雨量 5 0 0~ 80 0mm (浙江省可达 10 0 0mm)多集中于小麦生长的中后期 ,大大超过了小麦正常需水量 (35 0~ 4 5 0mm) ,从而加剧渍害[5] .  研究表明 ,渍水小麦株高、地上部干重、分蘖数、主茎绿叶片数、绿叶面积等都受到影响[1,12 ,16] ,叶片光合速率、气孔导度、细胞间隙CO2 浓度下降[8] ,RuBPCO活性降低[14…  相似文献   

14.
Pourtau N  Marès M  Purdy S  Quentin N  Ruël A  Wingler A 《Planta》2004,219(5):765-772
Leaf senescence can be triggered by a high availability of carbon relative to nitrogen or by external application of abscisic acid (ABA). Most Arabidopsis mutants with decreased sugar sensitivity during early plant development are either ABA insensitive (abi mutants) or ABA deficient (aba mutants). To analyse the interactions of carbon, nitrogen and ABA in the regulation of senescence, wild-type Arabidopsis thaliana (L.) Heynh. and aba and abi mutants were grown on medium with varied glucose and nitrogen supply. On medium containing glucose in combination with low, but not in combination with high nitrogen supply, senescence was accelerated and sucrose, glucose and fructose accumulated strongly. In abi mutants that are not affected in sugar responses during early development (abi1-1 and abi2-1), we observed no difference in the sugar-dependent regulation of senescence compared to wild-type plants. Similarly, senescence was not affected in the sugar-insensitive abi4-1 mutant. In contrast, the abi5-1 mutant did exhibit a delay in senescence compared to its wild type. As ABA has been reported to induce senescence and ABA deficiency results in sugar insensitivity during early development, we expected senescence to be delayed in aba mutants. However, the aba1-1 and aba2-1 mutants showed accelerated senescence compared to their wild types on glucose-containing medium. Our results show that, in contrast to sugar signalling in seedlings, ABA is not required for the sugar-dependent induction of leaf senescence. Instead, increased sensitivity to osmotic stress could have triggered early senescence in the aba mutants.Abbreviations ABA Abscisic acid - aba Abscisic acid deficient - abi Abscisic acid insensitive - Fv/Fm Maximum efficiency of photosystem II photochemistry  相似文献   

15.
Abstract: Senescence is a form of programmed cell death (PCD) which leads to the death of whole organs, e.g., leaves or flowers, and eventually to the death of entire plants. Like all forms of PCD, senescence is a highly regulated and energy consuming process. Senescence parameters, like protein content, chlorophyll content, expression of photosynthesis-associated genes or senescence-associated genes (SAGs), reveal that senescence occurs in old leaves derived from young plants (6 week old) as well as in young leaves derived from older plants (8 week old), indicating that it is governed by the actual age of the leaves. In order to analyse the differential gene expression profiles during leaf senescence, hybridizations of high-density genome arrays were performed with: i) individual leaves within the rosette of a 6-week-old plant and ii) leaves of the same position within the rosette but harvested from plants of different ages, ranging from 5 to 8 weeks. Cluster and genetree analyses, according to the expression pattern revealed that genes which are up-regulated with respect to the age of the entire plant, showed completely different expression profiles with respect to the age of the individual leaves within one rosette. This was observed even though the actual difference in leaf age was approximately the same. This indicates that gene expression appears to be governed by different parameters: i) the age of the individual leaf and ii) the age and developmental stage of the entire plant.  相似文献   

16.
《Journal of plant physiology》2014,171(3-4):269-275
Ethylene and hydrogen peroxide are involved in the modulation of stress responses in plants, but their interrelation is not well understood. This work was designed to find differences between the actions of ethylene and H2O2 on antioxidants and senescence markers. Leaves of Nicotiana tabacum were sprayed with H2O2 or with ethephon (precursor of ethylene). To find the possible modulation of responses to acute abiotic stress, ethephon- and H2O2-sprayed leaves were further subjected to high irradiance (HL). The application of H2O2 strongly stimulated ethylene synthesis (ACC). Ethylene and H2O2, as single factors, stimulated the trolox equivalent antioxidant capacity (TEAC) and the activity of catalase (CAT), in contrast to HL alone (stimulation of nonspecific peroxidases and the total glutathione pool). However, after combined treatments (ethylene + HL and H2O2 + HL), the stimulatory action of H2O2 was related to TEAC and CAT activity, while the application of ethylene stimulated the total glutathione pool. Hydrogen peroxide enhanced the expression of the three CAT genes (Cat1, Cat2 and Cat3), in contrast to ethylene (Cat2 and Cat3) and HL (Cat1). In regard to the markers of senescence and pathogenesis the most pronounced difference between the actions of ethylene and H2O2, as single factors, was related to NPR1, whereas when leaf spraying was combined with HL, differences were found at WRKY53 and PR1a. HL reversed the stimulatory effects of H2O2/ethylene-driven enhancements of the expression of several genes (Cat1, Cat2, NPR1, WRKY53). These results show that multiple stressors, as usually encountered by plants in nature, may largely change those expression patterns of genes determined in a single factor analysis. Moreover, the actions of HL (often considered the internal H2O2 trigger) and of exogenous H2O2 on gene expression are clearly different.  相似文献   

17.
Polyamines (PAs) retarded the senescence of leaf discs of two diverse speciesof rose viz., Rosa bourboniana andRosa damascena, while polyamine biosynthetic inhibitorsdifluoromethylornithine (DFMO), difluoromethylarginine (DFMA), methylglyoxal-bis(guanylhydrazone) (MGBG) and abscisic acid (ABA) promoted senescence. Sperminewas significantly the most effective polyamine in retarding senescence inR. bourboniana while MGBG and DFMA were more prominent inaccelerating senescence in R. damascena and R.bourboniana respectively. Protein and RNA content were significantlyhigher in polyamine treated leaf discs compared to those treated with polyaminebiosynthetic inhibitors and ABA. Total and reducing sugars decreased under alltreatments while the starch content increased significantly only in polyaminetreated leaf discs. Peroxidase and cellulase activities were retarded bypolyamine treatments and accelerated by polyamine biosynthetic inhibitors andABA. The role of PAs is discussed in relation to senescence.  相似文献   

18.
The impact of light intensity on shade-induced leaf senescence   总被引:2,自引:0,他引:2  
Plants often have to cope with altered light conditions, which in leaves induce various physiological responses ranging from photosynthetic acclimation to leaf senescence. However, our knowledge of the regulatory pathways by which shade and darkness induce leaf senescence remains incomplete. To determine to what extent reduced light intensities regulate the induction of leaf senescence, we performed a functional comparison between Arabidopsis leaves subjected to a range of shading treatments. Individually covered leaves, which remained attached to the plant, were compared with respect to chlorophyll, protein, histology, expression of senescence-associated genes, capacity for photosynthesis and respiration, and light compensation point (LCP). Mild shading induced photosynthetic acclimation and resource partitioning, which, together with a decreased respiration, lowered the LCP. Leaf senescence was induced only under strong shade, coinciding with a negative carbon balance and independent of the red/far-red ratio. Interestingly, while senescence was significantly delayed at very low light compared with darkness, phytochrome A mutant plants showed enhanced chlorophyll degradation under all shading treatments except complete darkness. Taken together, our results suggest that the induction of leaf senescence during shading depends on the efficiency of carbon fixation, which in turn appears to be modulated via light receptors such as phytochrome A.  相似文献   

19.
ARR5-gene expression was studied in the course of natural leaf senescence and detached leaf senescence in the dark using Arabidopsis thaliana plants transformed with the P ARR5 -GUS gene construct. GUS-activity was measured as a marker of ARR5-gene expression. Chlorophyll and total protein amounts were also estimated to evaluate leaf senescence. Natural leaf senescence was accompanied by the progressive decline in the GUS-activity in leaves of the 2nd and 3rd nodes studied, and this shift of GUS-activity was more pronounced than the loss of chlorophyll content. The ability of the ARR5-gene promoter to respond to cytokinin was not eliminated during natural leaf senescence, as was demonstrated by a cytokinin-induced increase in GUS activity in leaves after their detachment and incubation on benzyladenine (BA, 5 × 10−6 M) in the dark. Leaf senescence in the dark was associated with the further decrease in the GUS-activity. The ARR5-gene promoter response to cytokinin was enhanced with the increase of the age of plants, taken as a source of leaves for cytokinin treatments. Hence, although the expression of the ARR5 gene reduces during natural and dark/detached leaf senescence, the ARR5-gene sensitivity to cytokinin was maintained in both cases and even increased with the leaf age. This data suggest that the ARR5 gene, which belongs to the type-A negative regulators of plant response to cytokinin, could be a feedback regulator able to prevent retardation by cytokinin of leaf senescence when it is important for plant life. Growth regulators either reduced ARR5 gene response to cytokinin during senescence of mature detached leaves in the dark (SA, meJA, ABA, SP) or increased it (IAA), thus modifying the resulting rate of its expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号