首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemocyanins from Crustacea usually are found as 1 × 6 or 2 × 6-meric assemblies. An exception is the hemocyanin isolated from thalassinidean shrimps where the main component is a 24-meric structure. Our analysis of oxygen binding data of the thalassinidean shrimp Upogebia pusilla based on a three-state MWC-model revealed that despite the 24-meric structure the functional properties can be described very well based on the hexamer as allosteric unit. In contrast to the hemocyanins from other thalassinidean shrimps the oxygen affinity of hemocyanin from U. pusilla is increased upon addition of l-lactate. A particular feature of this hemocyanin seems to be that l-lactate already enhances oxygen affinity under resting conditions which possibly compensates the rather low intrinsic affinity observed in absence of l-lactate. The fast rate of oxygen dissociation might indicate that in this hemocyanin a higher cooperativity is less important than a fast response of saturation level to changes in oxygen concentration.  相似文献   

2.
The hemocyanin from the crayfish Jasus edwardsii(=lalandii) has been studied using ultracentrifugation, viscosity, circular dichroism and oxygen binding techniques. Sedimentation velocity experiments at pH 7.0 indicated the presence of principal species with S 20w=16.4 S, and at higher pH the presence of a species with S20,w=5.2S. Sedimentation equilibrium experiments yielded molecular weights of 490 000 and 81 000 respectively, indicating that the larger unit is a hexamer of the monomer unit. However, preliminary experiments with gel filtration and electrophoresis under denaturing conditions indicate that more than one monomer species may be present with molecular weight in the range 76-100 000. Circular dichroism (CD) spectra are presented at pH 7.0,8.6,10.0 and 11.0 for oxy-, deoxy- and apo-hemocyanins. Slight differences were observed in the magnitude of the bands in the presence or absence of Mg++. Oxygen binding studies have been made at pH 6.1,7.0,8.8 and 10.6, in the presence of 0.01 M MgCl2. The extent of cooperative binding was indicated by a maximum value of n=3.7, and a pronounced bohr effect was observed.  相似文献   

3.
Hemocyanins are multi-functional proteins, although they are well known to be respiratory proteins of invertebrate to date. In the present study, the agglutination ability of two oligomers of hemocyanin, hexamer and dodecamer, with pathogenic bacteria and red blood cells (RBCs) is investigated in pacific white shrimp, Litopenaeus vannamei. Hexameric hemocyanin exhibits an extremely high stability even in the absence of Ca2+ and in alkaline pH. Dodecamer (di-hexamer) is easily dissociated into hexamers in unphysiological conditions. Hexamer and dodecamer are interchanged reciprocally with environmental conditions. Both oligomers can bind to bacteria and RBCs, but agglutination is observed only using dodecamer but not using hexamer in agglutination assay. However, the agglutination is detected when hexamer is utilized in the presence of antiserum against hemocyanin. These results indicate that dodecamer of hemocyanin is required for agglutination with bacteria and RBCs. It can be logically inferred that there is only one carbohydrate-binding site to bacterial cells and RBCs in the hexamer, while at least two sites in the dodecamer. Our finding has provided new insights into structural–functional relationship of hemocyanin.  相似文献   

4.
Hemocyanins are large oligomeric respiratory proteins found in many arthropods and molluscs. The hemocyanin of the tarantula Eurypelma californicum is a 24-mer protein complex with molecular mass of 1, 726,459 Da that consists of seven different polypeptides (a-g), each occupying a distinct position within the native molecule. Here we report the complete molecular structure of the E. californicum hemocyanin as deduced from the corresponding cDNAs. This represents the first complex arthropod hemocyanin to be completely sequenced. The different subunits display 52-66% amino acid sequence identity. Within the subunits, the central domain, which bears the active center with the copper-binding sites A and B, displays the highest degree of identity. Using a homology modeling approach, the putative three-dimensional structure of individual subunits was deduced and compared. Phylogenetic analyses suggest that differentiation of the individual subunits occurred 400-550 million years ago. The hemocyanin of the stemline Chelicerata was probably a hexamer built up of six distinct subunit types a, b/c, d, e, f, and g, whereas that of the early Arachnida was originally a 24-mer that emerged after the differentiation of subunits b and c.  相似文献   

5.
Summary Structural and functional studies of the hemocyanin of the semi-terrestrial ghost crab,Ocypode quadrata, demonstrate a variety of differences in comparison to the hemocyanin of aquatic crabs. These differences may be related to the terrestrial habit of this crab. Unlike aquatic crabs, the major (56%) blood component is the hexamer; the remaining 44% is dodecamer. The hexamers and dodecamers are not in rapid equilibrium. Electrophoretic analysis of the subunit composition indicates three major components referred to as 1, 3, and 4, and one minor component referred to as component 2. These components, although electrophoretically distinct, are alike immunologically. Components 1 and 2 are essentially absent from purified hexamers, whereas they compose 1/3 of the subunits in dodecamers. These results suggest that they are involved in linking hexamers to form dodecamers, and that two, rather than one, subunits are involved in the bridge. Oxygen-binding measurements show a higher degree of cooperativity, and a much reduced allosteric effect ofl-lactate on the dialyzed hemocyanin as compared to the hemocyanin of aquatic crabs. Exercise rapidly, induces a large drop in hemolymph pH (0.5 units) and a corresponding increase in lactate concentrations (to 10 mM).  相似文献   

6.
Hemocyanin from the blue crab, Callinectes sapidus, sediments at 25.7 S and has a native molecular weight of 940 000 +/- 20 000. Under solution conditions of increased pH (approximately 10) or ionic strength, the native molecule dissociates to a 17 S species. Reversal of this dissociation was unsuccessful. At pH 10 and with the removal of Mg2+, the 17 S species reversibly dissociates to form a subunit species which sediments at 6 S. A comparison of the circular dichroic spectra of the 25.7 S and 6 S hemocyanins suggests that little happens to the structural integrity of the polypeptide backbone upon the two dissociations. Molecular weight estimations under reducing and denaturing conditions indicate that the 6 S hemocyanin species represents the constituent polypeptide chain of the protein molecule. Chemical analysis suggests the presence of a small amount, less than 3%, of carbohydrate bound to the polypeptide chain. Electrophoresis of the hemocyanin in the presence of sodium dodecyl sulfate or urea reveals two major electrophoretic species of either slightly different chemical composition or slightly different polypeptide chain length.  相似文献   

7.
Native Paralithodes camtschaticae hemocyanin is found as a mixture of dodecamers (24S; 80%) and hexamers (16S; 20%). Removal of Ca2+ ions by dialysis against EDTA-containing buffer solution at neutral pH induces complete dissociation of the 24S form into the 16S form. Under these conditions, a further increase in pH to 9.2 produces complete dissociation of the hexamers into monomers (5S). In both cases, the dissociation process is reversible. The dodecamer (24S) is composed of two different hexamers which can be discriminated only by ion-exchange chromatography in the presence of Ca2+ ions. At alkaline pH and in the presence of EDTA, two major monomeric fractions can be separated by ion-exchange chromatography: ParcI (60%) and ParcII (40%). The reassociation properties of the two fractions were studied separately to define their ability to form hexamers and dodecamers. The oxygen-binding properties of the different aggregation states were investigated. Native hemocyanin binds O2 co-operatively (nH = 3) and with low affinity (p50 approximately 103 Torr). The two monomeric fractions, ParcI and ParcII, are not co-operative and the affinity is twice that of the native protein (p50 approximately 65 and 52 Torr). Oxygen-binding measurements of native hemocyanin carried out at different pH values indicate a strong positive Bohr effect within the pH range 6.5-8.0 and an increase in oxygen affinity at pH below 6.5.  相似文献   

8.
The range of allosteric interaction in the 24-meric hemocyanin from the tarantula Eurypelma californicum was studied by measuring the oxygen-binding properties of defined oligomeric fragments. Dissociation intermediates comprising 19, 12, 7 or 6 subunits were obtained by incubation of native hemocyanin with 10 mM-cysteine at pH 4.4, with 40 mM-dithiothreitol at pH 7 or 8, by short-term alkaline (pH 9.6) treatment or by treatment with 4 M-urea. These could be stabilized by returning to neutral buffer conditions and, in the case of the dodecamer, by carboxymethylation. Conditions were chosen so that part of the starting material remained intact to serve as control in the oxygen-binding measurements. Oxygen equilibrium curves were obtained by a very sensitive fluorimetric/polarographic method. Oxygen affinity and the magnitude of the Bohr effect remain constant from the hexamer up to the control four-hexamer. Co-operativity, in contrast, increases with aggregate size in two steps: n (hexamer) = n (heptamer) less than n (dodecamer) = n (19-mer) less than n (4-hexamer). The characteristic pH-dependence of nH is absent in the hexa- and heptamer but is weakly indicated in the dodecamer, and fully established in the four-hexamer. Results from different preparations are highly consistent, if nH is expressed as a percentage of the control values. Full co-operativity is reached only in the four-hexamer, disproving the dodecameric half-molecule (the smallest repeating unit) as the allosteric unit. The stepwise increase in co-operativity appears to be correlated with higher levels of symmetry in the hierarchy of quaternary structure.  相似文献   

9.
Six subunits (I to VI) were isolated from hemocyanin of an Asian horseshoe crab, Tachypleus gigas, by anion exchange chromatography of the dissociated hemocyanin. The subunit preparations were nearly homogeneous as judged by alkaline electrophoresis, but they still showed the presence of isoproteins in isoelectric focusing. The subunits were reassembled (in 10 mM CaCl2 at pH 7.5) and tested for restoration of the cooperativity in O2 binding. The reassembly of the subunits gave equilibrium mixtures of the monomer and hexamer with small amounts of larger molecules. Homogeneous and heterogeneous hexamers were prepared by reassembling a single kind or two kinds of subunits, followed by isolation of the hexamer fraction by gel filtration. Among the homohexamers, only the subunit V hexamer showed cooperativity in O2 binding with the Hill coefficient of 1.6. Among the heterohexamers the subunit I/V hybrid was most noteworthy, showing a Hill coefficient (1.7) higher than that of any other heterohexamer examined. It was concluded that there are specific interactions between the subunits I and V. It is suggested that their interactions are important for the cooperativity in the native hemocyanin.  相似文献   

10.
1. The hemocyanins of the Naticidae family, E. heros, N. duplicata, P. draconis, P. lewisii and C. oldroydii were investigated by sedimentation velocity and scanning transmission electron microscopy. 2. At pH 8.0, 0.05 M Mg2+ E. heros hemocyanin is found to be predominantly in the tri-decameric state with a sedimentation coefficient (So20,w) of 131.3 (+/- 0.6) S. While the hemocyanin of N. duplicata is also mainly in the 130 S form, the hemocyanin of C. oldroydii is largely in the di-decameric form with a sedimentation coefficient close to 100 S. Other Naticidae hemocyanins, those of P. lewisii and P. draconis, have mixtures of the 100 S and 130 S di- and tri-decamers, and minor amounts of 150 S and faster sedimenting components. 3. The average particle masses based on STEM measurements are 8.85 x 10(6), 1303 x 10(6), and 17.1 x 10(6) da for the di-, tri-, and tetra-decameric assemblies of hemocyanin. 4. The subunit mol. wts of C. oldroydii hemocyanin and the published values for E. heros hemocyanin at alkaline pHs and in the presence of 8.0 M urea range from 4.2 x 10(5) to 4.8 x 10(5), suggesting the same decameric organization of the sub-assemblies of the Naticidae hemocyanins as for other molluscan hemocyanins. 5. The appearance of the larger hemocyanin particles in the electron micrographs support the hypothesis for their assembly that was based on similar studies of the hemocyanins of the Melongenidae family. According to this scheme the formation of higher aggregates is accomplished by the tail-to-head addition of each decameric unit to a central di-decamer which itself has the tail-to-tail Mellema and Klug arrangement of decamers. In this model all the higher aggregates terminate from either end with the same "collar" ends.  相似文献   

11.
Non-histone protein fraction NHCP2 eluted from hydroxyapatite with 100mM phosphate buffer (pH6.8) of undigested, nuclease-sensitive and nuclease-resistant nuclei of hamster Kirkman-Robbins hepatoma and liver was studied by two-dimensional gel electrophoresis and microcomplement fixation test in the presence of antibodies elicited against NHCP2 of examined tissues. The NHCP2 of undigested nuclei as well as from two chromatin fractions with different susceptibility to nuclease of both tissues, besides many common components, showed some differences in their non-histone patterns especially within molecular weights of 17 000–24 000, 36 000–44 000 and 60 000–90 000. Immunological analysis confirmed the high specificity of hepatoma non-histone components of the NHCP2 fraction. However, these components appeared not to be exclusively localized either in nuclease-sensitive or nuclease-resistant part of chromatin of neoplastic tissue.  相似文献   

12.
Hexameric hemocyanin from a spiny lobster, Panulirus japonicus, comprises three major subunits (Ib, II and III) and one minor subunit (Ia), as reported in the preceding paper in this journal. It has previously been shown that the O2 equilibria of Panulirus hemocyanin can be described by a concerted model extended to three affinity states [Makino, N. (1986) Eur. J. Biochem. 154, 49-55]. In this study the equilibrium binding of O2 to the reassociated subunits (Ib, II and III) was examined at various pH in the presence or absence of Ca2+ in order to test the applicability of the three-state model to the homogeneous hexamers. The hexameric structure of the reassembled subunits was less stable than that of the native protein under the conditions examined. The model could be fitted to the O2-binding isotherms of the homohexamers composed of the subunits II or III, if the molecular dissociation of the protein was taken into account. It was postulated that the monomeric hemocyanin has the same ligand affinity as that of the hexamer in the intermediate-affinity state (S). The fitting of the model to the O2 binding of the subunit I was unsuccessful mainly because of the low cooperativity of the assembled subunits.  相似文献   

13.
1. When normal, monodisperse hemocyanin (60.5S) from Limulus Rolyphemus was irradiated in neutral buffer with x-rays, several new, more rapidly sedimenting ultracentrifugal components (86S, 107S, 122S) were produced, with a corresponding loss in the amount of the unaffected protein. The amount of the effect was roughly proportional to the amount of irradiation. 2. The new resolvable components apparently represented an association of the primary particles into aggregates of 2, 3, and 4 primary particles respectively. 3. The proportional amount of hemocyanin affected decreased almost to the vanishing point as the concentration of the protein was raised to high levels. 4. The absolute effect, i.e. the total number of particles affected in a given volume, increased with the concentration of hemocyanin, at least for concentrations below 15 per cent. 5. The presence of 33 per cent horse serum during irradiation inhibited the effect on the hemocyanin almost completely, with hemocyanin concentrations of both 0.8 and 14 per cent. 6. The presence of 2.8 per cent egg albumin during irradiation lowered the effect by about 70 per cent in the case of dilute preparations (0.8 per cent hemocyanin), but by only about 25 per cent in the case of 14 per cent solutions. 7. A lowering of the solution''s oxygen tension during irradiation enhanced the effect, almost doubling it in some cases. 8. The probable theoretical significance of these and other observations are discussed in the text.  相似文献   

14.
M Tamura  K Nogimori  S Murai  M Yajima  K Ito  T Katada  M Ui  S Ishii 《Biochemistry》1982,21(22):5516-5522
The subunit structure of islet-activating protein (IAP), pertussis toxin, has been analyzed to study a possibility that this protein is one of the A-B toxins [Gill, D. M. (1978) in Bacterial Toxins and Cell Membranes (Jeljaszewicz, J., & Wadstrom, T., Eds.) pp 291-332, Academic Press, New York]. Heating IAP with 1% sodium dodecyl sulfate caused its dissociation into five dissimilar subunits named S-1 (with a molecular weight of 28 000), S-2 (23 000), S-3 (22 000), S-4 (11 700), and S-5 (9300), as revealed by polyacrylamide gel electrophoresis; their molar ratio in the native IAP was 1:1:1:2:1. The molecular weight of IAP estimated by equilibrium ultracentrifugation was 117 000 which was not at variance with the value obtained by summing up molecular weights of the constituent subunits. The preparative separation of these IAP subunits was next undertaken; exposure of IAP to 5 M ice-cold urea for 4 days followed by column chromatography with carboxymethyl-Sepharose caused sharp separation of S-1 and S-5, leaving the other subunits as two dimers. These dimers were then dissociated into their constituent subunits, i.e., S-2 and S-4 for one dimer and S-3 and S-4 for the other, after 16-h exposure to 8 M urea; these subunits were obtained individually upon further chromatography on a diethylaminoethyl-Sepharose column. Subunits other than S-1 were adsorbed as a pentamer by a column using haptoglobin as an affinity adsorbent. The same pentamer was obtained by adding S-5 to the mixture of two dimers. Neither this pentamer nor other oligomers (or protomers) exhibited biological activity in vivo. Recombination of S-1 with the pentamer at the 1:1 molar ratio yielded a hexamer which was identical with the native IAP in electrophoretic mobility and biological activity to enhance glucose-induced insulin secretion when injected into rats. In the broken-cell preparation, S-1 was biologically as effective as the native IAP; both catalyzed ADP-ribosylation of a protein in membrane preparations from rat C6 glioma cells. In conclusion, IAP is an oligomeric protein consisting of an A (active) protomer (the biggest subunit) and a B (binding) oligomer which is produced by connecting two dimers by the smallest subunit in a noncovalent manner. Rationale for this terminology is discussed based on the A-B model.  相似文献   

15.
In the haemolymph of Oniscidea haemocyanin exists mainly in the form of hexamer 16S (90%); the 5S and 24S components are present in small amounts. Alkaline dissociation of the examined 16S haemocyanins is dependent on pH and divalent cations (Ca2+,Mg2+). The 16S component consists of 23-24.5% acidic amino acids, 15-18% basic amino acids and small quantities of tryptophan and cysteine.  相似文献   

16.
Higher order assemblies of molluscan hemocyanins   总被引:2,自引:0,他引:2  
1. The hemocyanins of the Fissurellidae, Naticidae and Melongenidae families of marine gastropods as well as some other molluscs including some members of the Opistobranchia and Bivalvia groups have hemocyanins which exist in solution as tri-decameric and mixed, multi-decameric aggregates characterized by sedimentation coefficients close to 100 S, 130 S, 150 S, 170 S and 200 S to 230 S. 2. The particle masses of the molluscan hemocyanins appear to be integral multiples close to 4.4 x 10(6) daltons. Thus, particle mass values of 4.47 x 10(6), 8.67 x 10(6) and 13.40 x 10(6) daltons were obtained for representative decameric, di-decameric, and tri-decameric components of Stenoplax conspicua, Fasciolaria tulipa and Euspira (Lunatia) heros hemocyanins. For Busycon contrarium, a gastropod with a mixed multidecameric hemocyanin, scanning transmission electron microscopic (STEM) measurements gave particle masses ranging from 8.89 x 10(6) and 13.20 x 10(6) for the di- and tri-decameric components to 38.87 x 10(6) and 43.40 x 10(6) daltons for highest nano- and deca-decameric aggregates. 3. The electron microscopic images of both uranyl acetate-stained and unstained specimens of hemocyanin aggregates indicate a non-random mode of assembly of the multi-decameric particles. This is most apparent from the electron micrographs of the moon snail hemocyanins. The tri-decameric and tetra-decameric particles seem to be assembled from a single di-decameric unit of the Mellema and Klug arrangement, with the collar ends facing outward, to which decameric units have been added from one or both ends, in a unidirectional tail-to-head to tail-to-collar manner. Consequently, all the aggregates including the higher, Melongenidae polymers have the appearance of closed cylinders terminating with the collar ends. 4. The radial distribution of the end-on views of the hemocyanin of the moon-snail Calinatioina oldroydii, show that the radial mass drops to zero at the center of the cylindrical particles consisting of one, two, or three decamers. This suggests that no caps are present at the ends of the hemocyanin particles which would inhibit or terminate their linear assembly. 5. The light-scattering behavior of B. contrarium and Marisa cornarietis hemocyanins examined as a function of increasing reagent concentration using the hydrophobic urea and Hofmeister salt series of reagents, show distinct aggregation and increase in molecular weights at low concentrations of reagent. Together with the stabilizing influence of Mg2+ and Ca2+ ions, this suggests polar and ionic stabilization of the inter-decameric contacts between the central di-decamers and the added decameric units of the higher aggregates of molluscan hemocyanins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
P D Jeffrey 《Biochemistry》1979,18(12):2508-2513
Examination and measurement of electron micrographs of negatively stained hemocyanin molecules from Cherax destructor show that the predominant aggregated forms, the 16S and 24S components, are typical structures for arthropod hexamers and dodecamers, respectively. In Cherax hemocyanin the hexamers are formed from the monomeric (Mr congruent to 75,000) subunits, M1 and M2, while the dodecamers contain in addition a dimeric (Mr congruent to 150,000) subunit, M3'. Studies of the composition of solutions of the subunits M1 and m2 to which calcium ions have been added at pH 7.8 show that, under these conditions, reassembly occurs to particles indistinguishable from native hexamers. It is noteworthy that dodecamers are not seen since this confirms the previous suggestion that incorporation of the dimeric subunit in the assembly process is necessary for their formation. The results obtained from Cherax hemocyanin are related to those of previous structural studies of arthropod hemocyanins. In particular, the possible controlling role of certain specific subunits in arthropod hemocyanin oligomers containing more than one kind of subunit is illustrated with a model for the Cherax dodecamer, in which the dimeric subunit is shared between the two halves of the molecule.  相似文献   

18.
Molecular weights of all hemocyanin aggregates which can be homogeneously isolated have been measured by sedimentation equilibrium. The larger aggregates, which are the ones present under physiological conditions, are, to a very close approximation, integral multiples of a 4.4 x 10(6)-dalton, 60 S species. Dissociation of the 60 S species at high pH gives heterogeneous samples in which the smallest species has a molecular weight of 300,000. The smallest subunit which can be produced in denaturing solvents also has a molecular weight of 300,000.  相似文献   

19.
Morphological autoradiography was used to determine the hepatocyte percentage in the regenerating liver of mice in S-, G-, M-, post-M phases at various times after partial hepatectomy, namely at 24, 30, 36 and 42 hours. The total number of cells in the above mentioned phases turned out to be very little at 24 and 30 hours. At 36 h., the percentage of cells in S phase (labelled nuclei) as well as in G2 phase (unlabelled morphologically obvious premitotic nuclei) appeared to be high. The two alternative explanation of G2 hepatocytes emerging at 36 hours were verified to find out if they are a) that is called "a reserved G2 population", or b) a population characterized by a shorter (down to 2 or 3 h) time of S phase.  相似文献   

20.
The hemocyanin from the spiny lobster Panulirus interruptus, a hexamer with a molecular weight of approximately 540,000, was crystallized in space group P21 with two molecules in the unit cell and cell dimensions a = 119.8 A?, b = 193.1 A?, c = 122.2 A? and β = 118.1 °. With screened precession photographs a three-dimensional set of reflections was collected up to 10 Å resolution. Both the conventional and the fast rotation function programs were applied and gave results that were in excellent agreement with each other. The hemocyanin hexamer has 32 point group symmetry. Its 3-fold molecular axis runs approximately parallel to the crystallographic 2-fold screw axis.X-ray diffraction data to 5 Å resolution were collected by the oscillation method. Rotation function studies with data between 7 and 5 Å resolution confirmed the 10 Å studies and, furthermore, showed that the rotation axes relating subunits within one hexameric molecule can be distinguished from the rotation axes relating subunits belonging to different hexamers in the unit cell. The local 3-fold axis in the hexamer makes an angle of about 6 ° with the crystallographic 2-fold screw axis.For a mercury and a platinum derivative three-dimensional data sets were collected to 5 Å by the oscillation method. The difference Patterson of the platinum derivative could be solved. The eventual number of heavy-atom sites was 36 for the platinum derivative and 70 for the mercury derivative. From the well-occupied sites the point-group symmetry of the molecule could be established accurately. In addition, the centre of the hexamer could be located within 0.2 Å.Protein phases were obtained from isomorphous as well as anomalous differences. A “best” electron density map calculated with these phases showed the shape of the hexameric molecule as well as the boundaries of the six subunits. Correlation coefficients between the densities of the subunits showed little variation, suggesting a random distribution of the different subunit types (Van Eerd & Folkerts, 1981) over the six positions in the hexamer.The subunits are positioned at the corner of an antiprism. When viewed along the 3-fold axis the hexamer is roughly hexagonal in shape, with a diameter of approximately 120 Å. Viewed along one of the 2-fold axes the molecule is of rectangular shape with dimensions 95 Å × 120 Å. The subunit can be described as an ellipsoid of irregular shape with axes of 80 Å, 55 Å and 48 Å. Each subunit makes extensive contacts with three other subunits in the hexamer and, possibly, a much weaker contact with a fourth subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号