首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
γ-Glutamyltranspeptidase from Pseudomonas nitroreducens IFO12694 (PnGGT) exhibited higher hydrolytic activity than transfer activity, as compared with other γ-glutamyltranspeptidases (GGTs). PnGGT showed little activity towards most of L-amino acids and towards glycyl-glycine, which is often used as a standard γ-glutamyl accepter in GGT transfer reactions. The preferred substrates for PnGGT as a γ-glutamyl accepter were amines such as methylamine, ethylamine, and isopropylamine.  相似文献   

2.
Whole cells of Bradyrhizobium japonicum USDA 6 showed both (+)-γ-lactamase activity and (−)-γ-lactamase activity. Insight into the genome of B. japonicum USDA 6 revealed two potential γ-lactamases: a type I (+)-γ-lactamase and a (−)-γ-lactamase, making it the first strain to contain two totally different enantioselective lactamases. Both recombinant enzymes could easily be used to prepare either optically pure (+)-γ-lactam ((+)-2-azabicyclo[2.2.1]hept-5-en-3-one) or optically pure (−)-γ-lactam ((−)-2-azabicyclo[2.2.1]hept-5-en-3-one), which are versatile synthetic building blocks for the synthesis of various carbocyclic nucleosides and carbocyclic sugar analogues. Bioinformatic analysis showed that the type I (+)-γ-lactamase belongs to the amidase signature family, with 504 amino acids; the (−)-γ-lactamase, which consists of 274 amino acids, belongs to the hydrolase family. Here, we report that B. japonicum USDA contains a (−)-γ-lactamase in addition to a (+)-γ-lactamase, and it is the (−)-γ-lactamase from this strain that is examined in detail in this Letter. Enzymatic synthesis of optically pure (+)-γ-lactam with nearly 50% isolated yield and >99% ee was achieved.  相似文献   

3.
The structure of the hydrolyzed product (F-2) with a molecular mass of about 2 kDa released from γ-polyglutamic acid by the γ-glutamyl hydrolase YwtD of Bacillus subtilis was analyzed. The results showed that F-2 is an optically heterogeneous polymer consisting of D- and L-glutamic acid in an 80:20 ratio with D-glutamic acid on both the N- and C-terminal sides, suggesting that YwtD is an enzyme that cleaves the γ-glutamyl bond between D- and D-glutamic acid recognizing adjacent L-glutamic acid toward the N-terminal region.  相似文献   

4.
《Biomarkers》2013,18(7):486-492
Serum γ-glutamyltransferase (GGT) is thought to derive from the liver, but its values predict morbidity and mortality for several diseases, such as cardiac infarction, stroke, diabetes, renal failure and cancer. We assessed total GGT and its fractions in the culture supernatants of human cell lines (melanoma, prostate cancer, bronchial epithelium) by gel filtration chromatography. We also compared the GGT elution profile in plasma and the corresponding very-low-density lipoprotein (VLDL) fraction. All the cell lines tested released soluble GGT whose activity increased in parallel with the cell growth. Released GGT presented a molecular weight of 2000?kDa, identical to the b-GGT fraction of human plasma and corresponding to that of VLDL. But ultracentrifugation studies showed that b-GGT had a higher density than VLDL. The b-GGT present in human plasma can be produced by tissues other than the liver, thus explaining the increase of serum GGT observed in diseases of other organs.  相似文献   

5.
The trunk wood of Clinostemon mahuba contains eight (3R)-2-alkylidene-3-hydroxy-4-methylenebutanolides, seven (3R,4S)-2-alkylidene-3-hydroxy-4-methylbutanolides and seven (3S,4S)-2-alkylidene-3-hydroxy-4-methylbutanolides distinguished by the alkylidene side chains with respect to their E- or Z-geometry, ethenyl, ethynyl or ethyl terminals and lengths (C16 or C18).  相似文献   

6.
In many organisms, γ-glutamylmethylamide is a significant amino acid constituent. In this research, a novel method of γ-glutamylmethylamide synthesis is presented. The synthesis of γ-glutamylmethylamide was catalysed by immobilized recombinant γ-glutamyltranspeptidase and used L-glutamylhydrazine as an economical substrate. The optimal enzymes and γ-glutamyltranspeptidase reaction conditions for the production of γ-glutamylmethylamide were 200?mM L-glutamylhydrazine, 1?M methylamine, and 0.1?g/ml immobilized γ-glutamyltranspeptidase cells at pH 10 and 37?°C for 10?h. The immobilized γ-glutamyltranspeptidase cells were used for 10 reactions, and the average conversion ratio from L-glutamylhydrazine to γ-glutamylmethylamide reached 93.2%. The activity of immobilized recombinant γ-glutamyltransferase was not inhibited by 200?mM L-glutamylhydrazine. The immobilized γ-glutamyltranspeptidase cells exhibited favourable operational stability.  相似文献   

7.
The activity and specificity of γ-glutamyltranspeptidase in immature seeds of some leguminous plants did not reflect the γ-glutamyl peptide pattern  相似文献   

8.
The antiepilepsy drug vigabatrin (1; 4-aminohex-5-enoic acid; γ-vinyl GABA) is a mechanism-based inactivator of the pyridoxal 5'-phosphate (PLP)-dependent enzyme γ-aminobutyric acid aminotransferase (GABA-AT). Inactivation has been shown to proceed by two divergent mechanisms (Nanavati, S. M. and Silverman, R. B. (1991) J. Am. Chem. Soc. 113, 9341–9349), a Michael addition pathway (Scheme 2, pathway a) and an enamine pathway (Scheme 2, pathway b). Analogs of vigabatrin with a cyclopropyl or cyanocyclopropyl functionality in place of the vinyl group (2–5) were synthesized as potential inactivators of GABA-AT that can inactivate the enzyme only through a Michael addition pathway, but they were found to be only weak inhibitors of the enzyme.  相似文献   

9.
Mitochondrial H+-ATPase complex, purified by the lysolecithin extraction procedure, has been resolved into a “membrane” (NaBr-F0) and a “soluble” fraction by treatment with 3.5 M sodium bromide. The NaBr-F0 fraction is completely devoid of p, 8, and e subunits of the F, ATPase and largely devoid of α and γ subunits of F1, where F0 is used to denote the membrane fraction and F1, coupling factor 1. This is confirmed by complete loss of ATPase and P1-ATP exchange activities. The addition of F1 (400 μg · mg?1 F0) results in complete restoration of oligomycin sensitivity without any reduction in the F1-ATPase activity. Presumably, this is due to release of ATPase inhibitor protein from the F1-F0 complex consequent to sodium bromide extraction. Restoration of Pf-ATP exchange and H+-pumping activities require coupling factor B in addition to FpATPase. The oligomycin-sensitive ATPase and 32P1ATP exchange activities in reconstituted Fr F0 have the same sensitivity to uncouplers and energy transfer inhibitors as in starting submitochondrial particles from the heavy layer of mitochondria and F1-F0 complex. The data suggest that the altered properties of NaBr-F0 observed in other laboratories are probably inherent to their F1F0 preparations rather than to sodium bromide treatment itself.

The H+-ATPase (F1-F0) complex of all known prokaryotic (3, 8, 9, 10, 21, 32, 34) and eukaryotic (11, 26, 30, 33, 35–37) phosphorylating membranes contain two functionally and structurally distinct entities. The hydrophilic component F1, composed of five unlike subunits, shows ATPase activity that is cold labile as well as uncoupler-and oligomycin-insensitive. The membrane-bound hydrophobic component F0, having no energy-linked catalytic activity of its own, is indirectly assayed by its ability to regain oligomycin sensitive ATPase and P1-ATP exchange activities on binding to F1-ATPase (33). The purest preparations of bovine heart mitochondrial F0 show seven or eight major components in polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate or SDS-PAGE (1, 2, 12, 14), ranging from 6 to 54 ku in molecular weight (12). The precise structure and polypeptide composition of mitochondrial Fo is not known.

The F0 preparations from bovine heart reported so far have been derived from H+-ATPase preparations isolated in the presence of cholate and deoxycholate (11, 33, 36, 37). The ATPase and P1-ATP exchange activity of the preparations so obtained are low, dependent upon additional phospholipids and coupling factors; they show altered sensitivity to energy transfer inhibitors as compared to submitochondrial particles from the heavy layer of the mitochondria or ETPh (1. 2, 12, 14, 29, 33). Recently, lysolecithin has been successfully employed to extract highly active H+-ATPase from beef (17, 19, 28) and pig (24) heart mitochondria. The beef heart H+-ATPase preparation has the same ratio of ATPase to PrATP exchange activity and apparently the same sensitivity to energy transfer inhibitors as submitochondrial particles (17). The present communication describes resolution of this F1-F0 preparation using sodium bromide (NaBr) and reconstitution of ATPase and Pr ATP exchange activities. The NaBr-F0 prepared from this preparation shows no dependence on lipids, and the same or increased sensitivity to energy transfer inhibitors when reconstituted with F1-ATPase. Furthermore, F1 ATPase activity does not decrease on binding of F1 to NaBr-F0, even though the reconstituted ATPase activity is 99% sensitive to oligomy-cin and dicyclohexylcarbodiimide. These properties are in contrast to the properties of F0 reported by other workers (12, 14).  相似文献   

10.
Gamma-hydroxybutyric acid (GHB) is a substance naturally present within mammal species. Properties of a neurotransmitter or neuromodulator are generally suggested for this substance. GHB is therapeutically used as an anaesthetic, but can be used for criminal offences (date-rape drug). It appears that the window of detection of GHB is very short in both blood and urine, and therefore its presence is very difficult to prove after a rape case. Twenty microl of blood or urine were pipetted into a glass tube, followed by 20 microl GHB-d(6) and 45 microl acetonitrile. After vortexing and efficient centrifugation, the supernatant was collected and evaporated to dryness. The residue was derivatized with BSTFA+1% TMCS for 20 min at 70 degrees C. After injection on a 30-m HP5 MS capillary column, GHB (m/z 233, 204 and 147) and GHB-d(6) (m/z 239) were identified by mass spectrometry. The procedure was linear from 1 to 200 mg/l for both blood and urine. Precisions were in the range 4 to 11%. The method appears simple, specific and rapid as an accurate result can be obtained within 1 h.  相似文献   

11.
目的:探讨红霉素对支气管上皮细胞16-HBE谷氨酰半胱氨酸合成酶(γ-GCS)和谷胱甘肽(GSH)的影响。方法:应用红霉素5μg/ml分别孵育细胞16-HBE细胞2h,8h,16h,24h。分别应用显色法,Westemblot和荧光定量PCR方法检测细胞内GSH,γ-GCS重链蛋白和mRNA的表达。结果:经红霉素孵育后,16、24h后,细胞内GSH、γ-GCS重链蛋白和mRNA的表达较对照组增加。结论:红霉素对支气管上皮细胞谷氨酰半胱氨酸合成酶(γ-GCS)和GSH的合成有上调作用。  相似文献   

12.
γ-Methylene-10-deazaaminopterin (MDAM), a unique dihydrofolate reductase inhibitor, has demonstrated antitumor activity against a broad spectrum of human solid tumors in preclinical studies. A novel reversed-phase, ion-pair high-performance liquid chromatography (HPLC) assay that uses fluorescence detection has been developed to quantitate levels of MDAM and its major metabolite, 7-hydroxy-γ-methylene-10-deazaaminopterin (7-OH-MDAM), in human plasma. The recovery of MDAM and 7-OH-MDAM from plasma was >97% by a simple one-step deproteinization process using tetrabutylammonium bromide (TBABr) and methanol. MDAM and 7-OH-MDAM remained stable in plasma over a 28-day test period at ambient temperatures, and neither compound was light-sensitive. The limit of quantitation was 0.005 μM for both MDAM and 7-OH-MDAM. This assay has been found to be simple, sensitive and reproducible in determining plasma concentrations of MDAM and 7-OH-MDAM in patients with solid cancers in a phase I trial.  相似文献   

13.
Four fractions with ribonuclease activity have been isolated from tea leaves by DEAE-cellulose column chromatography and designated as RNase Tf-1, RNase Tf-2, RNase Tf-3 and RNase Tf-4. The bigger fractions of both RNase Tf-3 and RNase Tf-4 have been partially purified by Sephadex G-100 column chromatography.

RNase Tf-3 and RNase Tf-4 were respectively found to have their optimum pH at 4.75 and 4.9 and molecular weights of approximately 13,000 and 16,000, as determined by gel filtration. Both enzymes were inhibited by Cu2+ and Hg2+, and inactivated by heating at over 50°C. By addition of yeast RNA to the two enzymes, however, their thermostabilities increased. The activities of the enzymes were stable in a pH range of 4.5 to 6.5. Like other plant RNases, RNase Tf-3 and RNase Tf-4 appeared to have no preference for base in RNA.  相似文献   

14.
Mutations in protein kinase Cγ (PKCγ) cause the neurodegenerative disease spinocerebellar ataxia type 14 (SCA14). In this study, expression of an extensive panel of known SCA14-associated PKCγ mutations as fusion proteins in cell culture led to the consistent formation of cytoplasmic aggregates in response to purinoceptor stimulation. Aggregates co-stained with antibodies to phosphorylated PKCγ and the early endosome marker EEA1 but failed to redistribute to the cell membrane under conditions of oxidative stress. These studies suggest that Purkinje cell damage in SCA14 may result from a reduction of PKCγ activity due its aberrant sequestration in the early endosome compartment.  相似文献   

15.
16.
The uv circular dichroism (CD) spectra of aquomet hemoglobins A and F were followed to monitor their R→T conformational change. Titration studies with inositol hexaphosphate (IHP) for both adult and fetal hemoglobin showed identical total ellipticity changes although HbF was found to possess an inherently negative ultraviolet CD spectrum. By monitoring changes in the protein portion of the molecule, a dissociation constant for IHP of 16 μM was obtained for HbF. Chemical modification of HbF was found to leave the negative ellipticity unperturbed relative to native HbF. The results suggest that the negative ellipticity seen for stripped aquomet HbF is not due to a T conformation, but rather to an amino acid substitution in the γ chain of HbF.  相似文献   

17.
Two isozymes of γ-glutamyltranspeptidase, GGT-A and GGT-B, were purified to electrophoretic homogeneity from a culture broth of Bacillus subtilis TAM-4, which produces poly(γ-glutamic acid) (PGA) de novo. GGT-A was composed of three subunits with molecular weights of 23,000 (I), 39,000 (II), and 40,000 (III). GGT-B was composed of two subunits with molecular weights of 22,000 (I) and 39,000 (II). The N-terminal amino acid sequences of GGT-A subunit I and GGT-B subunit I were very similar. GGT-A subunit II and GGT-B subunit II had an identical N-terminal amino acid sequence. That of GGT-A subunit III showed no similarity to the other subunits. Both GGTs had similar enzymatic properties (optimum pH and temperature: pH 8.8 and 55°C) but showed a significantly different thermal stability at 55°C. Both GGT-A and -B used d-γ-glutamyl-p-nitroanilide as well as the l-isomer as the γ-glutamyl donor and used various amino acids and peptides as the acceptor. It was also found that the PGA produced by the strain was hydrolyzed to glutamic acid by its own GGTs.  相似文献   

18.
The degradation of glutathione (GSH) in the yeast Saccharomyces cerevisiae appears to be mediated only by γ-glutamyltranspeptidase and cysteinylglycine dipeptidase. Other enzymes of the γ-glutamyl cycle, γ-glutamyl cyclotransferase and 5-oxo-l-prolinase, are not present in the yeast. In vivo transpeptidation was shown in the presence of a high intracellular level of γ-glutamyltranspeptidase, but only when the de-repressing nitrogen source was a suitable acceptor of the transferase reaction. In contrast, when the de-repressing source was not an acceptor of the transferase reaction (e.g. urea), only glutamate was detected. Intracellular GSH is virtually inert when the level of γ-glutamyltranspeptidase is low. Possible roles for in vivo transpeptidation are discussed.  相似文献   

19.
《MABS-AUSTIN》2013,5(2):409-421
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.  相似文献   

20.
The plasma disappearance, metabolism and uptake in the brain of [3H-Phe4]-DT gamma E and [3H-Lys9]-DE gamma E were investigated following systemic administration of these neuroleptic-like peptides to rats. 3H-DT gamma E, 3H-DE gamma E and their radioactive metabolites in plasma and brain extracts were determined by reversed-phase HPLC. Plasma disappearance of DT gamma E upon intravenous (IV) dosing followed a biphasic pattern with half-lives of 0.7 min (distribution phase) and 5.5 min (elimination phase). For DE gamma E the plasma disappearance curve was best characterized by a one-compartment model since a second elimination phase was hardly detectable by our methods. The corresponding half-life was 0.6 min, probably representative for the initial distribution phase of DE gamma E. Both neuropeptides distributed rapidly over the larger part of the extracellular fluid. Following the IV route of administration, brain uptake of DT gamma E and DE gamma E appeared to be low. Brain levels of DT gamma E decreased from 0.0075% to 0.0031% of the administered dose/g tissue at 2-15.5 min after injection, whereas those of DE gamma E decreased very rapidly from 0.0174% of the dose/g brain tissue to below the detection limit at 2-4.5 min after injection. As compared to the IV route of administration, subcutaneous (SC) injection of DE gamma E resulted into lower but remarkably longer-lasting peptide concentrations in plasma as well as in brain, possibly because of a sustained release from the SC site of injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号