首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin E isoforms have opposing regulatory effects on leucocyte recruitment during inflammation. Furthermore, in vitro, vitamin E isoforms have opposing effects on leucocyte migration across endothelial cells by regulating VCAM (vascular cell-adhesion molecule)-1 activation of endothelial cell PKCα (protein kinase Cα). However, it is not known whether tocopherols directly regulate cofactor-dependent or oxidative activation of PKCα. We report in the present paper that cofactor-dependent activation of recombinant PKCα was increased by γ-tocopherol and was inhibited by α-tocopherol. Oxidative activation of PKCα was inhibited by α-tocopherol at a 10-fold lower concentration than γ-tocopherol. In binding studies, NBD (7-nitrobenz-2-oxa-1,3-diazole)-tagged α-tocopherol directly bound to full-length PKCα or the PKCα-C1a domain, but not PKCζ. NBD-tagged α-tocopherol binding to PKCα or the PKCα-C1a domain was blocked by diacylglycerol, α-tocopherol, γ-tocopherol and retinol, but not by cholesterol or PS (phosphatidylserine). Tocopherols enhanced PKCα-C2 domain binding to PS-containing lipid vesicles. In contrast, the PKCα-C2 domain did not bind to lipid vesicles containing tocopherol without PS. The PKCα-C1b domain did not bind to vesicles containing tocopherol and PS. In summary, α-tocopherol and γ-tocopherol bind the diacylglycerol-binding site on PKCα-C1a and can enhance PKCα-C2 binding to PS-containing vesicles. Thus the tocopherols can function as agonists or antagonists for differential regulation of PKCα.  相似文献   

2.
Protein kinase Cθ (PKCθ) is a novel PKC that plays a key role in T lymphocyte activation. To understand how PKCθ is regulated in T cells, we investigated the properties of its N-terminal C2 domain that functions as an autoinhibitory domain. Our measurements show that a Tyr(P)-containing peptide derived from CDCP1 binds the C2 domain of PKCθ with high affinity and activates the enzyme activity of the intact protein. The Tyr(P) peptide also binds the C2 domain of PKCδ tightly, but no enzyme activation was observed with PKCδ. Mutations of PKCθ-C2 residues involved in Tyr(P) binding abrogated the enzyme activation and association of PKCθ with Tyr-phosphorylated full-length CDCP1 and severely inhibited the T cell receptor/CD28-mediated activation of a PKCθ-dependent reporter gene in T cells. Collectively, these studies establish the C2 domain of PKCθ as a Tyr(P)-binding domain and suggest that the domain may play a major role in PKCθ activation via its Tyr(P) binding.  相似文献   

3.
We have constructed the expression plasmids harboring protein kinase C (PKC) mutant cDNAs with a series of deletions in the PKC coding region. These plasmids were transfected into COS7 cells to characterize the PKC mutants. Immunoblot analysis using the anti-PKC antibody identified proteins with the Mr values expected from the PKC mutant cDNAs in the extracts from COS7 cells. The wild-type PKC, when expressed in COS7 cells, conferred increased phorbol ester binding activity on intact cells; but the PKC mutants with the deletion around the C1 region did not show this activity. The wild-type PKC showed protein kinase activity dependent on phospholipid, Ca2+, and phorbol ester, whereas these PKC mutants exhibited protein kinase activity independent of the activators in a cell-free system. A PKC mutant cDNA with the deletion in the C2 region gave increased phorbol ester binding activity. Protein kinase activity of this mutant was much less dependent on Ca2+ compared with the wild-type PKC. A PKC mutant cDNA with the deletion in the C3 region conferred increased phorbol ester binding activity, but neither activator-dependent nor -independent protein kinase activity. These results indicate that elimination of the C1 region of PKC gives rise to constitutively active PKC independent of phospholipid, Ca2+, and phorbol ester and that the C1-C3 regions play distinct roles in the regulatory and catalytic function of PKC. In another series of experiments, transfection of some PKC mutant cDNAs with the deletions around the C1 region into Chinese hamster ovary and Jurkat cells activated the activator protein-1-binding element or the c-fos gene enhancer linked to the chloramphenicol acetyltransferase reporter gene in the absence of phorbol ester. Microinjection of these constructs into Xenopus oocytes induced initiation of germinal vesicle breakdown, indicating that they stimulated the PKC pathway in vivo. Thus, the phorbol ester-independent PKC mutant cDNAs could be a powerful tool to investigate the transmembrane signaling pathway mediated by PKC.  相似文献   

4.
The binding equilibrium of deuteroporphyrin IX to human serum albumin and to bovine serum albumin was studied, by monitoring protein-induced changes in the porphyrin fluorescence and taking into consideration the self-aggregation of the porphyrin. To have control over the latter, the range of porphyrin concentrations was chosen to maker dimers (non-covalent) the dominant aggregate. Each protein was found to have one high-affinity site for deuteroporphyrin IX monomers, the magnitudes of the equilibrium binding constants (25 degrees C, neutral pH, phosphate-buffered saline) being 4.5 (+/- 1.5) X 10(7) M-1 and 1.7 (+/- 0.2) X 10(6) M-1 for human serum albumin and for bovine serum albumin respectively. Deuteroporphyrin IX dimers were found to bind directly to the protein, each protein binding one dimer, with high affinity. Two models are proposed for the protein-binding of porphyrin monomers and dimers in a porphyrin system having both species: a competitive model, where each protein molecule has only one binding site, which can be occupied by either a monomer or a dimer; a non-competitive model, where each protein molecule has two binding sites, one for monomers and one for dimers. On testing the fit of the data to the models, an argument can be made to favour the non-competitive model, the equilibrium binding constants of the dimers, for the non-competitive model (25 degrees C, neutral pH, phosphate-buffered saline), being: 8.0 (+/- 1.8) X 10(8) M-1 and 1.2 (+/- 0.6) X 10(7) M-1 for human serum albumin and bovine serum albumin respectively.  相似文献   

5.
The protein kinase C (PKC) family of serine/threonine kinases is an attractive drug target for the treatment of cancer and other diseases. Natural product curcumin is known to interact with PKC isoforms through the C1 domain and modulate PKC activity. The reported results demonstrate that the symmetric curcumin molecule might act as two separate units during its recognition of C1 domains. To understand the importance of the two halves of curcumin in PKC binding and to develop effective PKC regulators, we synthesized a series of alkyl cinnamates (1-8), characterized absorption and fluorescence properties and measured binding affinities with the C1b subdomains of PKC isoforms. The binding parameters of the monomeric compounds and liposomes containing compounds confirmed their interaction with the C1b subdomains of PKCδ and PKCθ. The molecular docking analysis with PKCδ and PKCθ C1b subdomains revealed that the alkyl cinnamates form hydrogen bond with the backbone of the protein at the same binding site as that of diacylglycerol and phorbol esters. The results show that the alkyl cinnamates bind to the activator binding site of PKCs and both methoxy and hydroxyl groups play important roles in the binding process.  相似文献   

6.
The protein kinase C (PKC) family of serine/threonine kinases is an attractive drug target because of its involvement in the regulation of various cellular functions, including cell growth, differentiation, metabolism, and apoptosis. The endogenous PKC activator diacylglycerol contains two long carbon chains, which are attached to the glycerol moiety via ester linkage. Natural product curcumin (1), the active constituent of Curcuma L., contains two carbonyl and two hydroxyl groups. It modulates PKC activity and binds to the activator binding site (Majhi et al., Bioorg. Med. Chem.2010, 18, 1591). To investigate the role of the carbonyl and hydroxyl groups of curcumin in PKC binding and to develop curcumin derivatives as effective PKC modulators, we synthesized several isoxazole and pyrazole derivatives of curcumin (2-6), characterized their absorption and fluorescence properties, and studied their interaction with the activator-binding second cysteine-rich C1B subdomain of PKCδ, PKCε and PKCθ. The EC(50)s of the curcumin derivatives for protein fluorescence quenching varied in the range of 3-25 μM. All the derivatives showed higher binding with the PKCθC1B compared with PKCδC1B and PKCεC1B. Fluorescence emission maxima of 2-5 were blue shifted in the presence of the C1B domains, confirming their binding to the protein. Molecular docking revealed that hydroxyl, carbonyl and pyrazole ring of curcumin (1), pyrazole (2), and isoxazole (4) derivatives form hydrogen bonds with the protein residues. The present result shows that isoxazole and pyrazole derivatives bind to the activator binding site of novel PKCs and both carbonyl and hydroxy groups of curcumin play roles in the binding process, depending on the nature of curcumin derivative and the PKC isotype used.  相似文献   

7.
8.
Pig kidney fructose-1,6-bisphosphatase is a homotetrameric enzyme which does not contain tryptophan. In a previous report the guanidine hydrochloride-induced unfolding of the enzyme has been described as a multistate process [Reyes, A. M., Ludwig, H. C., Ya?ez, A. J., Rodriguez, P. H and Slebe, J. C. (2003) Biochemistry 42, 6956-6964]. To monitor spectroscopically the unfolding transitions, four mutants were constructed containing a single tryptophan residue either near the C1-C2 or the C1-C4 intersubunit interface of the tetramer. The mutants were shown to retain essentially all of the structural and kinetic properties of the enzyme isolated from pig kidney. The enzymatic activity, intrinsic fluorescence, size-exclusion chromatographic profiles and 1-anilinonaphthalene-8-sulfonate binding by the mutants were studied under unfolding equilibrium conditions. The unfolding profiles were multisteps, and formation of hydrophobic structures was detected. The enzymatic activity of wild-type and mutant FBPases as a function of guanidine hydrochloride concentration showed an initial enhancement (maximum approximately 30%) followed by a biphasic decay. The activity and fluorescence results indicate that these transitions involve conformational changes in the fructose-1,6-bisphosphate and AMP domains. The representation of intrinsic fluorescence data as a 'phase diagram' reveals the existence of five intermediates, including two catalytically active intermediates that have not been previously described, and provides the first spectroscopic evidence for the formation of dimers. The intrinsic fluorescence unfolding profiles indicate that the dimers are formed by selective disruption of the C1-C2 interface.  相似文献   

9.
The protein kinase C (PKC) family of serine/threonine kinases is an attractive drug target for the treatment of cancer and other diseases. Diacylglycerol (DAG), phorbol esters and others act as ligands for the C1 domain of PKC isoforms. Inspection of the crystal structure of the PKCδ C1b subdomain in complex with phorbol-13-O-acetate shows that one carbonyl group and two hydroxyl groups play pivotal roles in recognition of the C1 domain. To understand the importance of two hydroxyl groups of phorbol esters in PKC binding and to develop effective PKC activators, we synthesized DAG like diacyltetrols (DATs) and studied binding affinities with C1b subdomains of PKCδ and PKCθ. DATs, with the stereochemistry of natural DAGs at the sn-2 position, were synthesized from (+)-diethyl L-tartrate in four to seven steps as single isomers. The calculated EC(50) values for the short and long chain DATs varied in the range of 3-6 μM. Furthermore, the fluorescence anisotropy values of the proteins were increased in the presence of DATs in a similar manner to that of DAGs. Molecular docking of DATs (1b-4b) with PKCδ C1b showed that the DATs form hydrogen bonds with the polar residues and backbone of the protein, at the same binding site, as that of DAG and phorbol esters. Our findings reveal that DATs represent an attractive group of C1 domain ligands that can be used as research tools or further structurally modified for potential drug development.  相似文献   

10.
Protein kinase C (PKC) is a family of enzymes, which play important roles in intracellular signal transduction. We have designed novel PKC ligands having an isobenzofuranone template, based on the proposed interaction of DAG (1,2-diacyl-sn-glycerol) with the PKCdelta C1B ligand-binding domain. Several isobenzofuranone derivatives were synthesized and their PKCalpha binding activities were evaluated. The pivaloyl derivative 1f was found to be a strong PKCalpha ligand, and the structure-activity relationship is well explained by our proposed binding model.  相似文献   

11.
Receptors for activated protein kinase C (RACKs) have been isolated from the particulate cell fraction of heart and brain. We previously demonstrated that binding of protein kinase C (PKC) to RACKs requires PKC activators and is via a site on PKC that is distinct from the substrate binding site. Here, we examine the possibility that the C2 region in the regulatory domain of PKC is involved in binding of PKC to RACKs. The synaptic vesicle-specific p65 protein contains two regions homologous to the C2 region of PKC. We found that three p65 fragments, containing either one or two of these PKC C2 homologous regions, bound to highly purified RACKs. Binding of the p65 fragments and PKC to RACKs was mutually exclusive; preincubation of RACKs with the p65 fragments inhibited PKC binding, and preincubation of RACKs with PKC inhibited binding of the p65 fragments. Preincubation of the p65 fragments with a peptide resembling the PKC binding site on RACKs also inhibited p65 binding to RACKs, suggesting that PKC and p65 bind to the same or nearby regions on RACKs. Since the only homologous region between PKC and the p65 fragments is the C2 region, these results suggest that the C2 region on PKC contains at least part of the RACK binding site.  相似文献   

12.
Protein kinase C (PKC) is a family of serine/threonine kinases that play a central role in cellular signal transduction. The second messenger diacylglycerol having two long carbon chains acts as the endogenous ligand for the PKCs. Polyphenol curcumin, the active constituent of Curcuma longa is an anti-cancer agent and modulates PKC activity. To develop curcumin derivatives as effective PKC activators, we synthesized several long chain derivatives of curcumin, characterized their absorption and fluorescence properties and studied their interaction with the activator binding second cysteine-rich C1B subdomain of PKCδ, PKCε and PKCθ. Curcumin (1) and its C16 long chain analog (4) quenched the intrinsic fluorescence of PKCδC1B, PKCεC1B and PKCθC1B in a manner similar to that of PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA). The EC50s of the curcumin derivatives for fluorescence quenching varied in the range of 4–11 μM, whereas, EC50s for TPA varied in the range of 3–6 μM. Fluorescence emission maxima of 1 and 4 were blue shifted and the fluorescence anisotropy values were increased in the presence of the C1B domains in a manner similar to that shown by the fluorescent analog of TPA, sapintoxin-D, confirming that they were bound to the proteins. Molecular docking of 1 and 4 with novel PKC C1B revealed that both the molecules form hydrogen bonds with the protein residues. The present result shows that curcumin and its long chain derivatives bind to the C1B subdomain of novel PKCs and can be further modified structurally to improve its binding and activity.  相似文献   

13.
14.
Shen N  Guryev O  Rizo J 《Biochemistry》2005,44(4):1089-1096
Protein kinase C (PKC) isozymes and other receptors of diacylglycerol (DAG) bind to this widespread second messenger through their C(1) domains. These alternative DAG receptors include munc13-1, a large neuronal protein that is crucial for DAG-dependent augmentation of neurotransmitter release. Whereas the structures of several PKC C(1) domains have been determined and have been shown to require little conformational changes for ligand binding, it is unclear whether the C(1) domains from other DAG receptors contain specific structural features with key functional significance. To gain insight into this question, we have determined the three-dimensional structure in solution of the munc13-1 C(1) domain using NMR spectroscopy. The overall structure includes two beta-sheets, a short C-terminal alpha-helix, and two Zn(2+)-binding sites, resembling the structures of PKC C(1) domains. However, the munc13-1 C(1) domain exhibits striking structural differences with the PKC C(1) domains in the ligand-binding site. These differences result in occlusion of the binding site of the munc13-1 C(1) domain by a conserved tryptophan side chain that in PKCs adopts a completely different orientation. As a consequence, the munc13-1 C(1) domain requires a considerable conformational change for ligand binding. This structural distinction is expected to decrease the DAG affinity of munc13-1 compared to that of PKCs, and is likely to be critical for munc13-1 function. On the basis of these results, we propose that augmentation of neurotransmitter release may be activated at higher DAG levels than PKCs as a potential mechanism for uncoupling augmentation of release from the multitude of other signaling processes mediated by DAG.  相似文献   

15.
Collagen VI, a microfibrillar protein found in virtually all connective tissues, is composed of three distinct subunits, alpha1(VI), alpha2(VI), and alpha3(VI), which associate intracellularly to form triple helical heterotrimeric monomers then dimers and tetramers. The secreted tetramers associate end-to-end to form beaded microfibrils. Although the basic steps in assembly and the structure of the tetramers and microfibrils are well defined, details of the interacting protein domains involved in assembly are still poorly understood. To explore the role of the C-terminal globular regions in assembly, alpha3(VI) cDNA expression constructs with C-terminal truncations were stably transfected into SaOS-2 cells. Control alpha3(VI) N6-C5 chains with an intact C-terminal globular region (subdomains C1-C5), and truncated alpha3(VI) N6-C1, N6-C2, N6-C3, and N6-C4 chains, all associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, dimers and tetramers, which were secreted. These data demonstrate that subdomains C2-C5 are not required for monomer, dimer or tetramer assembly, and suggest that the important chain selection interactions involve the C1 subdomains. In contrast to tetramers containing control alpha3(VI) N6-C5 chains, tetramers containing truncated alpha3(VI) chains were unable to associate efficiently end-to-end in the medium and did not form a significant extracellular matrix, demonstrating that the alpha3(VI) C5 domain plays a crucial role in collagen VI microfibril assembly. The alpha3(VI) C5 domain is present in the extracellular matrix of SaOS-2 N6-C5 expressing cells and fibroblasts demonstrating that processing of the C-terminal region of the alpha3(VI) chain is not essential for microfibril formation.  相似文献   

16.
E A Nalefski  A C Newton 《Biochemistry》2001,40(44):13216-13229
Conventional isoforms of protein kinase C (PKC) are activated when their two membrane-targeting modules, the C1 and C2 domains, bind the second messengers diacylglycerol (DG) and Ca2+, respectively. This study investigates the mechanism of Ca2+-induced binding of PKC betaII to anionic membranes mediated by the C2 domain. Stopped-flow fluorescence spectroscopy reveals that Ca2+-induced binding of the isolated C2 domain to anionic vesicles proceeds via at least two steps: (1) rapid binding of two or more Ca2+ ions to the free domain with relatively low affinity and (2) diffusion-controlled association of the Ca2+-occupied domain with vesicles. Ca2+ increases the affinity of the C2 domain for anionic membranes by both decreasing the dissociation rate constant (k(off)) and increasing the association rate constant (k(on)) for membrane binding. For binding to vesicles containing 40 mol % anionic lipid in the presence of 200 microM Ca2+, k(off) and k(on) are 8.9 s(-1) and 1.2 x 10(10) M(-1) x s(-1), respectively. The k(off) value increases to 150 s(-1) when free Ca2+ levels are rapidly reduced, decreasing the average lifetime of the membrane-bound C2 domain (tau = k(off)(-1)) from 110 ms in the presence of Ca2+ to 6.7 ms when Ca2+ is rapidly removed. Experiments addressing the role of electrostatic interactions reveal that they stabilize either the initial C2 domain-membrane encounter complex or the high-affinity membrane-bound complex. Specifically, lowering the phosphatidylserine mole fraction or including MgCl2 in the binding reaction decreases the affinity of the C2 domain for anionic vesicles by both reducing k(on) and increasing k(off) measured in the presence of 200 microM Ca2+. These species do not affect the k(off) value when Ca2+ is rapidly removed. Studies with PKC betaII reveal that Ca2+-induced binding to membranes by the full-length protein proceeds minimally via two kinetically resolvable steps: (1) a rapid bimolecular association of the enzyme with vesicles near the diffusion-controlled limit and, most likely, (2) subsequent conformational changes of the membrane-bound enzyme. As is the case for the C2 domain, k(off) for full-length PKC betaII increases when Ca2+ is rapidly removed, reducing tau from 11 s in the presence of Ca2+ to 48 ms in its absence. Thus, both the C2 domain and the slow conformational change prolong the lifetime of the PKC betaII-membrane ternary complex in the presence of Ca2+, with rapid membrane release triggered by removal of Ca2+. These results provide a molecular basis for cofactor regulation of PKC whereby the C2 domain searches three-dimensional space at the diffusion-controlled limit to target PKC to relatively common anionic phospholipids, whereupon a two-dimensional search is initiated by the C1 domain for the more rare, membrane-partitioned DG.  相似文献   

17.
The PKC isozymes represent the most prominent family of signaling proteins mediating response to the ubiquitous second messenger diacylglycerol. Among them, PKCθ is critically involved in T-cell activation. Whereas all the other conventional and novel PKC isoforms have twin C1 domains with potent binding activity for phorbol esters, in PKCθ only the C1b domain possesses potent binding activity, with little or no activity reported for the C1a domain. In order to better understand the structural basis accounting for the very weak ligand binding of the PKCθ C1a domain, we assessed the effect on ligand binding of twelve amino acid residues which differed between the C1a and C1b domains of PKCθ. Mutation of Pro9 of the C1a domain of PKCθ to the corresponding Lys9 found in C1b restored in vitro binding activity for [3H]phorbol 12,13-dibutyrate to 3.6 nM, whereas none of the other residues had substantial effect. Interestingly, the converse mutation in the C1b domain of Lys9 to Pro9 only diminished binding affinity to 11.7 nM, compared to 254 nM in the unmutated C1a. In confocal experiments, deletion of the C1b domain from full length PKCθ diminished, whereas deletion of the C1a domain enhanced 5-fold (at 100 nM PMA) the translocation to the plasma membrane. We conclude that the Pro168 residue in the C1a domain of full length PKCθ plays a critical role in the ligand and membrane binding, while exchanging the residue (Lys240) at the same position in C1b domain of full length PKCθ only modestly reduced the membrane interaction.  相似文献   

18.
We have used attenuated total internal reflection infrared spectroscopy (ATR-IR) spectroscopy to study the association of the C2 domain from protein kinase Cα (PKCα) with different phospholipid membranes, so as to characterise the mode of membrane docking and its modulation by the second-messenger lipid PIP?. In parallel, we have also examined the membrane interaction of the C2 domain from cytosolic phospholipase A?. PIP? did not induce significant changes in secondary structure of the membrane-bound PKCα-C2 domain, nor did binding of the PKCα-C2 domain change the dichroic ratios of the lipid chains, whereas the C2 domain from phospholipase A? did perturb the lipid chain orientation. Measurements of the dichroic ratios for the amide I and amide II protein bands were combined so as to distinguish the tilt of the β-sheets from that of the β-strands within the sheet. When associated with POPC/POPS membranes, the β-sandwich of the PKCα-C2 domain is inclined at an angle α=35° to the membrane normal, i.e., is oriented more nearly perpendicular than parallel to the membrane. In the process of membrane docking, the tilt angle increases to α=44° in the presence of PIP?, indicating that the β-sandwich comes closer to the membrane surface, so confirming the importance of this lipid in determining docking of the C2 domain and consequent activation of PKCα.  相似文献   

19.
The oxidative folding, particularly the arrangement of disulfide bonds of recombinant extracellular N-terminal domains of the corticotropin-releasing factor receptor type 2a bearing five cysteines (C2 to C6), was investigated. Depending on the position of a His-tag, two types of disulfide patterns were found. In the case of an N-terminal His-tag, the disulfide bonds C2-C3 and C4-C6 were found, leaving C5 free, whereas the C-terminal position of the His-tag led to the disulfide pattern C2-C5 and C4-C6, and leaving C3 free. The latter pattern is consistent with the disulfide arrangement of the extracellular N-terminal domain of the corticotropin-releasing factor (CRF) receptor type 1, which has six cysteines (C1 to C6) and in which C1 is paired with C3. However, binding data of the two differently disulfide-bridged domains show no significant differences in binding affinities to selected ligands, indicating the importance of the C-terminal portion of the N-terminal receptor domains, particularly the disulfide bond C4-C6 for ligand binding.  相似文献   

20.
The regulatory domain of conventional protein kinase C (PKC) contains two membrane-targeting modules, the C2 domain that is responsible for Ca2+-dependent membrane binding of protein, and the C1 domain composed of two cysteine-rich zinc fingers (C1a and C1b) that bind diacylglycerols and phorbol esters. To understand the individual roles and the interplay of the C1 and C2 domains in the membrane binding and activation of PKC, we functionally expressed isolated C1 and C2 domains of PKC-alpha and measured their vesicle binding and monolayer penetration. Results indicate that the C2 domain of PKC-alpha is responsible for the initial Ca2+- and phosphatidylserine-dependent electrostatic membrane binding of PKC-alpha, whereas the C1 domain is involved in subsequent membrane penetration and diacylglycerol binding, which eventually lead to enzyme activation. To determine the roles of individual zinc fingers in the C1 domain, we also mutated hydrophobic residues in the C1a (Trp58 and Phe60) and C1b (Tyr123 and Leu125) domains of the native PKC-alpha molecule and measured the effects of mutations on vesicle binding, enzyme activity and monolayer penetration. Results show that the hydrophobic residues in the C1a domain are essential for the membrane penetration and activation of PKC-alpha, whereas those in the C1b domain are not directly involved in these processes. Based on these results in conjunction with our previous structure-function studies of the C2 domain (Medkova, M., and Cho, W. (1998) J. Biol. Chem. 273, 17544-17552), we propose a mechanism for the in vitro membrane binding and activation of conventional PKC that accounts for the temporal and spatial sequences of PKC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号