首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a variety of synthetic analogs of porcine endothelin (pET), we have studied the effects of these analogs on receptor binding activity and cytosolic free Ca2+ concentrations ([Ca2+]i) in cultured rat vascular smooth muscle cells (VSMC). Removal of C-terminal Trp21 residue, truncated derivatives pET(1-15) and (16-21), substitution of disulfide bond, Cys(3-11) or Cys(1-15), by Cys (Acm), all resulted in a complete loss of receptor binding activity and [Ca2+]i response, while N-terminal elongation of Lys-Arg residues, but not oxidation of Met7 residue, decreased receptor binding activity and [Ca2+]i response. [Cys1-15,Cys3-11]pET was far more potent than [Cys1-11,Cys3-15]pET in receptor binding and [Ca2+]i response. These data indicate that the C-terminal Trp21 as well as the proper double cyclic structure formed by the intramolecular disulfide bonds of the pET molecule are essential for receptor binding and subsequent [Ca2+]i increase in rat VSMC.  相似文献   

2.
A novel cyclic GRF analog, cyclo(Asp8-Lys12)-[Asp8,Ala15]-GRF(1-29)-NH2, i.e. cyclo8,12[Asp8,Ala15]-GRF(1-29)-NH2, was synthesized by the solid phase procedure and found to retain significant biological activity. Solid phase cyclization of Asp8 to Lys12 proceeded rapidly (approximately 2 h) using the BOP reagent. Substitution of Ala2 with D-Ala2 and/or NH2-terminal replacement (desNH2-Tyr1 or N-MeTyr1) in the cyclo8,12[Asp8,Ala15]-GRF(1-29)-NH2 system resulted in highly potent analogs that were also active in vivo. Conformational analysis (circular dichroism and molecular dynamics calculations based on NOE-derived distance constraints) demonstrated that cyclo8,12[Asp8,Ala15]-GRF(1-29)-NH2 contains a long alpha-helical segment even in aqueous solution. A series of cyclo8,12 stereoisomers containing D-Asp8 and/or D-Lys12 were prepared and also found to be highly potent and to retain significant alpha-helical conformation. The high biological activity of cyclo8,12[N-MeTyr1,D-Ala2,Asp8,Ala15]-GRF(1-29)- NH2 may be explained on the basis of retention of a preferred bioactive conformation.  相似文献   

3.
Cultured rat astrocytes, which express functional urotensin II (UII)/UII-related peptide (URP) receptors (UT), represent a very suitable model to investigate the pharmacological profile of UII and URP analogs towards native UT. We have recently designed three URP analogs [D-Trp4]URP, [Orn5]URP and [D-Tyr6]URP, that act as UT antagonists in the rat aortic ring bioassay. However, it has been previously reported that UII/URP analogs capable of inhibiting the contractile activity of UII possess agonistic activity on UT-transfected cells. In the present study, we have compared the ability of URP analogs to compete for [125 I]URP binding and to modulate cytosolic calcium concentration ([Ca2+]c) in cultured rat astrocytes. All three analogs displaced radioligand binding: [D-Trp4]URP and [D-Tyr6]URP interacted with high- and low-affinity sites whereas [Orn5]URP only bound high-affinity sites. [D-Trp4]URP and [D-Tyr6]URP both induced a robust increase in [Ca2+]c in astrocytes while [Orn5]URP was totally devoid of activity. [Orn5]URP provoked a concentration-dependent inhibition of URP- and UII-evoked [Ca2+]c increase and a rightward shift of the URP and UII dose-response curves. The present data indicate that [D-Trp4]URP and [D-Tyr6]URP, which act as UII antagonists in the rat aortic ring assay, behave as agonists in the [Ca2+]c mobilization assay in cultured astrocytes, whereas [Orn5]URP is a pure selective antagonist in both rat aortic ring contraction and astrocyte [Ca2+]c mobilization assays.  相似文献   

4.
Histidyl-proline diketopiperazine [cyclo(His-Pro)] has recently been shown to inhibit prolactin (PRL) secretion in vitro and in vivo. This peptide is well known as a metabolite of thyrotropin-releasing hormone (TRH), which is one of the endogenous secretagogues of PRL. In this study, we investigated the effect of cyclo (His-Pro) on the cytosolic Ca2+ concentration [[Ca2+]i) in cultured lactotrophs by using a lactotroph-enriched fraction separated from female rat pituicytes by centrifugal elutriation. TRH (10 nM) induced a rapid rise in [Ca2+]i in the lactotrophs, followed by a plateau phase of prolonged increase in [Ca2+]i. In contrast, the addition of 100 microM of cyclo (His-Pro) caused no changes in the basal level or the TRH-induced plateau response of [Ca2+]i. Although pretreatment with cyclo (His-Pro) tended to decrease the biphasic increase in [Ca2+]i induced by TRH, the inhibitory effect was not statistically significant. These results demonstrated that cyclo (His-Pro) has no effect on [Ca2+]i in lactotrophs, and does not affect the TRH-induced increase in [Ca2+]i, indicating that the inhibition of PRL secretion by cyclo (His-Pro) may be primarily mediated by other intracellular messengers such as cyclic nucleotides and secondarily involved in other inhibitory systems including that of dopamine.  相似文献   

5.
Three cyclic hexapeptides bearing carboxyl groups, cyclo(L-Asp-L-Phe-L-Pro)2, cyclo(L-Aad-L-Phe-L-Pro)2 (Aad represents alpha-amino adipic acid residue), and cyclo(D-Asp-D-Phe-L-Pro)2 were synthesized and investigated on conformation, complexation with metal ions, and interaction with lipid membrane. These cyclic hexapeptides were found to take several different conformations, though their reference compounds, cyclo(L-Leu-L-Phe-L-Pro)2 and cyclo[D-Asp(OMe)-D-Phe-L-Pro]2, took a single C2 symmetric conformation. Cyclo(D-Asp-D-Phe-L-Pro)2 formed complexes with Ba2+ and Ca2+, whereas cyclo(L-Asp-L-Phe-L-Pro)2 and cyclo(L-Aad-L-Phe-L-Pro)2 did not. The latter two take amphiphilic structures and were distributed to lipid membrane more easily than cyclo(D-Asp-D-Phe-L-Pro)2. Cyclo(D-Asp-L-Phe-L-Pro)2 binds Ca2+ on the lipid membrane.  相似文献   

6.
An analog of alpha-factor, the Saccharomyces cerevisiae tridecapeptide mating pheromone (Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr), in which the side chains of Lys7 and Gln10 were covalently linked, was synthesized using solid phase methodologies. The yield of the purified cyclic analog cyclo7,10[Nle12]alpha-factor was 30%, and its structure was verified by amino acid analysis, peptide sequencing, fast atom bombardment-mass spectrometry, and proton nuclear magnetic resonance spectroscopy. Cyclo7,10[Nle12]alpha-factor caused growth arrest and morphological alterations in S. cerevisiae MATa cells qualitatively identical to those induced by linear pheromone and was one-fourth to one-twentieth as active as the linear alpha-factor depending upon the S. cerevisiae strain tested. Consistent with the relative activities of the linear and cyclic peptides, binding competition studies indicated that cyclo7,10[Nle12]alpha-factor had approximately 20-40-fold less affinity for the alpha-factor receptor. Hydrolysis of the cyclic peptide by the target cells did not lead to opening of the ring and was less rapid than that of linear alpha-factor. The alpha-factor antagonist des-Trp1-[Ala3,Nle12]alpha-factor reversed the activity of the cyclic analog, and cyclo7,10[Nle12]alpha-factor was not active at the restrictive temperature in a temperature-sensitive receptor mutant. These results support the conclusion that the cyclic alpha-factor occupies the same binding site within the receptor as is occupied by the natural pheromone. The cyclic alpha-factor represents a rare example of an agonist among covalently constrained congeners of small linear peptide messengers.  相似文献   

7.
Interaction of synthetic sarafotoxin with rat vascular endothelin receptors   总被引:4,自引:0,他引:4  
The effects of synthetic analogs of sarafotoxin (STX) S6b, a snake venom peptide with a high sequence homology to the endothelium-derived vasoconstrictor endothelin (ET), on ET receptor binding activity and cytosolic free Ca2+ concentration [( Ca2+]i) were studied in cultured rat vascular smooth muscle cells. Binding studies revealed that [Cys1-15, Cys3-11] STX competed with 125I-ET for the binding to its vascular receptors with lower affinity than that of ET, but was far more effective than [Cys1-11, Cys3-15]STX in inhibiting the binding. [Cys1-15, Cys3-11]STX had a less potent effect on increasing [Ca2+]i than ET, whereas [Cys1-11, Cys3-15]STX was inactive. These data suggest that there may exist heterogenous subpopulations of the vascular ET/STX receptors, and that the proper double cyclic structure of STX is essential for interacting with its putative receptors to induce the [Ca2+]i response.  相似文献   

8.
Astrocytes synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN) an endogenous ligand of both central-type benzodiazepine (CBR) and metabotropic receptors. We have recently shown that ODN exerts a protective effect against hydrogen peroxide (H(2)O(2))-induced oxidative stress in astrocytes. The purpose of the present study was to determine the type of receptor and the transduction pathways involved in the protective effect of ODN in cultured rat astrocytes. We have first observed a protective activity of ODN at very low concentrations that was abrogated by the metabotropic ODN receptor antagonist cyclo(1-8)[DLeu(5)]OP, but not by the CBR antagonist flumazenil. We have also found that the metabotropic ODN receptor is positively coupled to adenylyl cyclase in astrocytes and that the glioprotective action of ODN upon H(2)O(2)-induced astrocyte death is PKA- and MEK-dependent, but PLC/PKC-independent. Downstream of PKA, ODN induced ERK phosphorylation, which in turn activated the expression of the anti-apoptotic gene Bcl-2 and blocked the stimulation by H(2)O(2) of the pro-apoptotic gene Bax. The effect of ODN on the Bax/Bcl-2 balance contributed to abolish the deleterious action of H(2)O(2) on mitochondrial membrane integrity and caspase-3 activation. Finally, the inhibitory effect of ODN on caspase-3 activity was shown to be PKA and MEK-dependent. In conclusion, the present results demonstrate that the potent glioprotective action of ODN against oxidative stress involves the metabotropic ODN receptor coupled to the PKA/ERK-kinase pathway to inhibit caspase-3 activation.  相似文献   

9.
We synthesized analogs modified in the ribose unit (ribose linked to N1 of adenine) of cyclic ADP-ribose (cADPR), a Ca2+-mobilizing second messenger. The biological activities of these analogs were determined in NG108-15 neuroblastoma x glioma hybrid cells that were pre-loaded with fura-2 acetoxymethylester and subjected to whole-cell patch-clamp. Application of the hydrolysis-resistant cyclic ADP-carbocyclic-ribose (cADPcR) through patch pipettes potentiated elevation of the cytoplasmic free Ca2+ concentration ([Ca2+]i) at the depolarized membrane potential. The increase in [Ca2+]i evoked upon sustained membrane depolarization was significantly larger in cADPcR-infused cells than in non-infused cells and its degree was equivalent to or significantly greater than that induced by cADPR or beta-NAD+. 8-Chloro-cADPcR and two inosine congeners (cyclic IDP-carbocyclic-ribose and 8-bromo-cyclic IDP-carbocyclic-ribose) did not induce effects similar to those of cADPcR or cADPR. Instead, 8-chloro-cADPcR together with cADPR or cADPcR caused inhibition of the depolarization-induced [Ca2+]i increase as compared with either cADPR or cADPcR alone. These results demonstrated that our cADPR analogs have agonistic or antagonistic effects on the depolarization-induced [Ca2+]i increase and suggested the presence of functional reciprocal coupling between ryanodine receptors and voltage-activated Ca2+ channels via cADPR in mammalian neuronal cells.  相似文献   

10.
HIV-1 infection commonly leads to neuronal cell death and a debilitating syndrome known as AIDS-related dementia complex. The HIV-1 protein Tat is neurotoxic, and because cell survival is affected by the intracellular calcium concentration ([Ca2+]i), we determined mechanisms by which Tat increased [Ca2+]i and the involvement of these mechanisms in Tat-induced neurotoxicity. Tat increased [Ca2+]i dose-dependently in cultured human fetal neurons and astrocytes. In neurons, but not astrocytes, we observed biphasic increases of [Ca2+]i. Initial transient increases were larger in astrocytes than in neurons and in both cell types were significantly attenuated by antagonists of inositol 1,4,5-trisphosphate (IP3)-mediated intracellular calcium release [8-(diethylamino)octyl-3,4,5-trimethoxybenzoate HCI (TMB-8) and xestospongin], an inhibitor of receptor-Gi protein coupling (pertussis toxin), and a phospholipase C inhibitor (neomycin). Tat significantly increased levels of IP3 threefold. Secondary increases of neuronal [Ca2+]i in neurons were delayed and progressive as a result of excessive calcium influx and were inhibited by the glutamate receptor antagonists ketamine, MK-801, (+/-)-2-amino-5-phosphonopentanoic acid, and 6,7-dinitroquinoxaline-2,3-dione. Secondary increases of [Ca2+]i did not occur when initial increases of [Ca2+]i were prevented with TMB-8, xestospongin, pertussis toxin, or neomycin, and these inhibitors as well as thapsigargin inhibited Tat-induced neurotoxicity. These results suggest that Tat, via pertussis toxin-sensitive phospholipase C activity, induces calcium release from IP3-sensitive intracellular stores, which leads to glutamate receptor-mediated calcium influx, dysregulation of [Ca2+]i, and Tat-induced neurotoxicity.  相似文献   

11.
We investigated cellular mechanisms mediating the parathyroid hormone (PTH)-induced increase in cytosolic free Ca2+ concentration ([Ca2+]i) in isolated perfused rabbit connecting tubules. Prior and/or concomitant exposure to 0.5 mM of N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-8), a cyclic nucleotide-dependent protein kinase inhibitor, abolished the rise in [Ca2+]i produced by 0.1 nM PTH in five connecting tubules and suppressed it by approximately 50% in another five. In the latter, there was a delayed onset in the rise of [Ca2+]i. Such responses contrasted to the prompt increase in [Ca2+]i in PTH-stimulated control tubules. However, when H-8 was withdrawn, [Ca2+]i rose within minutes to reach a plateau value similar to the uninhibited response to PTH in controls, indicating rapidly reversible inhibition by H-8. In an otherwise identical protocol, 0.5 mM H-8 also reversibly suppressed the rise in [Ca2+]i induced by 0.175 mM 8-Br-cAMP. In contrast to the stimulatory effect of 8-Br-cAMP on [Ca2+]i, 1 mM 8-Br-cGMP caused no increase. At a concentration of 0.4 mM, the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate (Rp-cAMPS), a well-characterized cAMP-dependent protein kinase inhibitor, totally abolished the rise in [Ca2+]i caused by 0.1 nM PTH. We conclude that a cAMP-dependent protein kinase plays an important role in the PTH-stimulated rise in [Ca2+]i in the rabbit connecting tubule. Since the increase in [Ca2+]i was shown previously to depend on extracellular Ca2+, we propose that cAMP-dependent protein phosphorylation is important in mediating PTH-stimulated Ca2+ fluxes across plasma membranes of connecting tubule cells.  相似文献   

12.
Platelet-activating factor (PAF) initiated polyphosphoinositide (polyPI) breakdown and a rise of intracellular calcium concentration ([Ca2+]i) in neuroblastoma x glioma hybrid NG 108-15 cells. The accumulation of [3H]inositol trisphosphate and [3H]inositol bisphosphate was evident within 15 s after PAF stimulation, peaked at 1 min, and then gradually decayed. The increase in [3H]inositol monophosphate level was observed at 30 s, plateaued in 5 min, and was sustained up to 10 min in the presence of 10 mM LiCl. On the other hand, the rise of [Ca2+]i evoked by PAF reached a peak within 8-12 s and returned to basal levels within 1 min as measured in fura 2-loaded cells. When cells were suspended in Ca(2+)-depleted medium, the PAF-induced [Ca2+]i rise was reduced by 80%, indicating that the increase of [Ca2+]i was predominantly due to the Ca2+ influx from an extracellular source. Both PAF-induced accumulation of 3H-labeled inositol phosphates and [Ca2+]i elevation were concentration dependent with EC50 values of approximately 1 x 10(-10) and 5 x 10(-8) M, respectively. The PAF analogs 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine and 1-O-hexadecyl-2-O-methyl-rac-glycerol-3-phosphocholine were much poorer agonists at eliciting the same responses in these cells. Pretreatment of cells with pertussis toxin caused a substantial inhibition of PAF-induced accumulation of 3H-inositol phosphates. In contrast, the rise in [Ca2+]i was not significantly affected by toxin treatment at the same concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The Ca2+ dependency of NK cell-mediated and cytolysin-mediated cytolysis may be related to increases in target cell intracellular Ca2+. In a previous study we hypothesized that the Na+/Ca2+ exchanger can act as a counter-lytic mechanism by regulating the damaging increases in intracellular free calcium ([Ca2+]i) produced by cytolysin. We found that conditions said to inhibit Ca2+ extrusion by Na+/Ca2+ exchange, namely low extracellular Na+ or the presence of certain amiloride analogs which block Na+/Ca2+ exchange, enhanced the cytolysin-mediated cytolysis of YAC-1 lymphoma cells. In the present work we have confirmed the above hypothesis by measuring the [Ca2+]i of fura-2- or aequorin-labeled YAC-1 cells treated with cytolysin and low Na+ medium or amiloride analogs. YAC-1 cells appear to have a Na+/Ca2+ exchange system: low Na+ medium caused gradual increases in [Ca2+]i, and this effect was reversed in Na(+)-replete medium. Cytolysin purified from NK cell granules caused rapid dose-dependent increases in [Ca2+]i, and low Na+ medium enhanced these cytolysin-mediated increases. The Na+/Ca2+ exchange system appeared to be more active in cytolysin-challenged cells: amiloride analogs, which inhibit Na+/Ca2+ exchange in other systems, acted synergistically with cytolysin to cause large increases in [Ca2+]i, but had little effect, if any, on their own. 5-(N-4-Chlorobenzyl)-2',4'-dimethylbenzamil, the amiloride analog which has the greatest specificity for the Na+/Ca2+ exchanger and which previously was found to be the most potent enhancer of cytolysin-mediated cytolysis, was the most potent enhancer of cytolysin-mediated increases in [Ca2+]i. The above results suggest that Na+/Ca2+ exchange may be one of the target cell mechanisms of resistance to cytolysin and NK cell-mediated cytolysis.  相似文献   

14.
The requirements of purified rat Leydig cells for intra- and extra-cellular Ca2+ during steroidogenesis stimulated by LH (lutropin), cyclic AMP analogues and LHRH (luliberin) agonist were investigated. The intracellular Ca2+ concentrations ([Ca2+]i) were measured by using the fluorescent Ca2+ chelator quin-2. The basal [Ca2+]i was found to be 89.4 +/- 16.6 nM (mean +/- S.D., n = 25). LH, 8-bromo cyclic AMP and dibutyryl cyclic AMP increased [Ca2+]i, by 300-500 nM at the highest concentrations of each stimulator, whereas LHRH agonist only increased [Ca2+]i by a maximum of approx. 60 nM. Low concentrations of LH (less than 1 pg/ml) and all concentrations of LHRH agonist increased testosterone without detectable changes in cyclic AMP. With amounts of LH greater than 1 pg/ml, parallel increases in cyclic AMP and [Ca2+]i occurred. The steroidogenic effect of the LHRH agonist was highly dependent on extracellular Ca2+ concentration ([Ca2+]e), whereas LH effects were only decreased by 35% when [Ca2+]e was lowered from 2.5 nM to 1.1 microM. No increase in [Ca2+]i occurred with the LHRH agonist in the low-[Ca2+]e medium, whereas LH (100 ng/ml) gave an increase of 52 nM. It is concluded that [Ca2+]i can be modulated in rat Leydig cells by LH via mechanisms that are both independent of and dependent on cyclic AMP, whereas LHRH-agonist action on [Ca2+]i is independent of cyclic AMP. The evidence obtained suggests that, at sub-maximal rates of testosterone production, Ca2+, rather than cyclic AMP, is the second messenger, whereas for maximum steroidogenesis both Ca2+- and cyclic-AMP-dependent pathways may be involved.  相似文献   

15.
Tyrocidine A (TA) is an antibiotic cyclic decapeptide with the sequence of cyclo (-L-Val1-L-Orn2-L-Leu3-D-Phe4-L-Pro5-L-Phe6-D-Phe7-L-Asn8-L-Gln9-L-Tyr10-). Gramicidin S (GS) regarded as a homolog of TA is also a cyclic decapeptide with the sequence of cyclo (-L-Val1-L-Orn2-L-Leu3-D-Phe4-L-Pro5-L-Val5-L-Orn7-L-Leu8-D-Phe9-L-Pro10-). GS shows higher antibacterial activity, whereas TA exhibits inhibitory activity on the biosynthesis of RNA. Two analogs of TA, [L-Val6]-TA (12a) and [L-Orn7]-TA (12b), were synthesized by the conventional method in order to study the interrelationships between the two related antibiotics TA and GS. Antibacterial activities of 12a and TA are nearly the same, but the activity of 12b is significantly lower. The optical rotatory dispersion spectra of 12a, 12b, and TA showed a trough at 233 nm region; the troughs of 12a and TA are nearly the same in depth, but the trough of 12b is shallower. Relationships between structure and activity of 12a and 12b compared with TA and GS were discussed.  相似文献   

16.
The octadecaneuropeptide ODN (QATVGDVNTDRPGLLDLK), a biologically active fragment of diazepam-binding inhibitor, exerts a number of behavioral and neurophysiological activities. The presence of a proline residue in the sequence of ODN led us to investigate the role of proline endopeptidase (PEP) in the catabolism of this neuropeptide. The effect of PEP on the breakdown of ODN and related analogs was studied by combining RP-HPLC analysis and MALDI-TOF MS characterization. Incubation of ODN with PEP generated two products, i.e. ODN3-18 and ODN5-18 which resulted from cleavage of the Ala-Thr and Val-Gly peptide bonds. S 17092, a specific PEP inhibitor, significantly reduced the PEP-induced cleavages of ODN. Similarly, [Ala2]OP showed S 17092-sensitive post-alanine cleavage, while [pGlu1]ODN and OP (ODN11-18) were not catabolized by the enzyme. For all these peptides, cleavage of the Pro-Gly peptide bond by PEP was never observed, even after prolonged incubation times. In contrast, PEP hydrolyzed human urotensin II at the canonical post-proline site. Collectively, these data suggest that the Ala2 residue is the preferential cleavage site of ODN and that the Pro-Gly bond of ODN is not hydrolyzed by PEP. In addition, this study reveals for the first time that the endoproteolytic activity of PEP can specifically take place after a valine moiety.  相似文献   

17.
IL-8 and its structural analogs derived from blood platelets have been proposed as stimuli of IgE-independent basophil activation. In order to clarify the mechanism of action of these peptides, we examined the effects of pure IL-8, connective tissue-activating peptide III (CTAP-III), neutrophil-activating peptide 2 (NAP-2), and platelet factor 4 (PF-4) on blood basophils with and without pretreatment by IL-3, which modulates mediator release. After pretreatment with IL-3, significant histamine release was observed with 10(-8) M and 10(-7) M IL-8 and 10(-7) M NAP-2, but not with the other peptides. At higher concentrations (10(-6) M), however, all IL-8 analogs, as well as the unrelated cationic peptides poly-D-lysine, histone VS, and lysozyme, induced histamine release to variable degrees. Binding and competition studies with [125I]IL-8 revealed specific IL-8R on basophils from a patient with chronic myelogenous leukemia and normal individuals. From 3500 to 9600 receptors with a mean Kd value of 0.15 nM were found on average per chronic myelogenous leukemia and normal basophil, respectively. NAP-2 weakly competed for IL-8 binding. IL-8 and, to a lesser extent, NAP-2 led to a transient rise of cytosolic free calcium concentration ([Ca2+]i), which was independent of a preexposure to IL-3. IL-8 prevented the [Ca2+]i rise induced by NAP-2, but did not influence [Ca2+]i responses to other agonists, e.g. C5a, C3a, or platelet-activating factor. IL-8 induced [Ca2+]i changes and histamine release in IL-3-primed basophils were pertussis toxin sensitive. CTAP-III or PF-4 did not compete for IL-8 binding, did not induce [Ca2+]i changes, and did not influence the [Ca2+]i response to IL-8 and NAP-2. This study shows that IL-8 and NAP-2 activate human basophils by a receptor-mediated mechanism similar to that operating in neutrophils. At high concentrations histamine release can also be induced by cationic peptides by a mechanism that does not involve the IL-8R, and probably depends on cationic interactions.  相似文献   

18.
19.
Indolizidin-2-one amino acids (I2aas, 6S- and 6R-1) possessing 6S- and 6R-ring-fusion stereochemistry were introduced into the antimicrobial peptide gramicidin S (GS) to explore the relationships between configuration, peptide conformation and biological activity. Solution-phase and solid-phase techniques were used to synthesize three analogs with I2aa residues in place of the d-Phe-Pro residues at the turn regions of GS: [(6S)-I2aa4-5,4'-5']GS (2), [Lys2,2',(6S)-I2aa4-5,4'-5']GS (3) and [(6R)-I2aa4-5,4'-5']GS (4). Although conformational analysis of [I2aa4-5,4'-5']GS analogs 2-4 indicated that both ring-fusion stereoisomers of I2aa gave peptides with CD and NMR spectral data characteristic of GS, the (6S)-I2aa analogs 2 and 3 exhibited more intense CD curve shapes, as well as greater numbers of nonsequential NOE between opposing Val and Leu residues, relative to the (6R)-I2aa analog 4, suggesting a greater propensity for the (6S)-diastereomer to adopt the beta-turn/antiparallel beta-pleated sheet conformation. In measurements of antibacterial and antifungal activity, the (6S)-I2aa analog 2 exhibited significantly better potency than the (6R)-I2aa diastereomer 4. Relative to GS, [(6S)-I2aa4-5,4'-5']GS (2) exhibited usually 1/2 to 1/4 antimicrobial activity as well as 1/4 hemolytic activity. In certain cases, antimicrobial and hemolytic activities of GS were shown to be dissociated through modification at the peptide turn regions with the (6S)-I2aa diastereomer. The synthesis and evaluation of GS analogs 2-4 has furnished new insight into the importance of ring-fusion stereochemistry for turn mimicry by indolizidin-2-one amino acids as well as novel antimicrobial peptides.  相似文献   

20.
The intrasynaptosomal free calcium concentration ([Ca2+]i) was measured in quin2-loaded synaptosomes prepared from rat cerebral cortex. Membrane-permeant cyclic adenosine-3',5'-monophosphate (cAMP) analogues [8-bromo-cyclic adenosine-3',5'-monophosphate (8-Br-cAMP) and dibutyryl-cyclic adenosine-3',5'-monophosphate (db-cAMP)] increased [Ca2+]i in a dose-dependent manner; The maximal increases were approximately 50% for 8-Br-cAMP and 35% for db-cAMP and occurred at approximately 10 microM with both analogues. Clonidine (1 microM) alone reduced [Ca2+]i by 26.5%; db-cAMP and 8-Br-cAMP attenuated this reduction to 14.2 and 8.2%, respectively. In contrast, the reduction (19.9%) in [Ca2+]i induced by the preferential kappa-opiate agonist dynorphin A(1-13) was not attenuated by the cAMP analogues; in fact, db-cAMP and 8-Br-cAMP potentiated the effect of dynorphin A(1-13) (1 microM), producing decreases in [Ca2+]i of 33.6 and 29.6%, respectively. We conclude that although alpha 2-adrenergic and kappa-opiate receptors both reduce [Ca2+]i, the alpha 2-adrenoceptor-mediated response and the kappa-opiate receptor-mediated response involve different effector mechanisms. It appears that presynaptic alpha 2-adrenoceptor agonist effects are linked to reductions in adenylate cyclase activity and cAMP production and a resultant increase in Ca2+ sequestration, Ca2+-channel blockade, or both. On the other hand, the kappa-opiate-mediated effects possibly involve an increase in cAMP production and a blockade of Ca2+ entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号