首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant systems utilize a diverse array of cytochrome P450 monooxygenases (P450s) in their biosynthetic and detoxification pathways. The classic forms of these enzymes are heme-dependent mixed function oxidases that utilize NADPH or NADH and molecular oxygen to produce functionalized organic products. The nonclassical forms are monooxygenases that either do not utilize flavoproteins for dioxygen activation or fail to incorporate molecular oxygen into their final product. Biosynthetic P450s play paramount roles in the synthesis of lignin intermediates, sterols, terpenes, flavonoids, isoflavonoids, furanocoumarins, and a variety of other secondary plant products. Other catabolic P450s metabolize toxic herbicides and insecticides into nontoxic products or, conversely, activate nontoxic substances into toxic products. Biochemical and molecular characterizations on a number of plant P450s have indicated that the relationships between these heme proteins and their substrates are at least as complex as those that exist in mammalian systems. Examples now exist of plant P450s that metabolize: a narrow range of substrates to yield different products, a single substrate to yield different products, multiple substrates to yield the same product, or a single substrate sequentially to yield discrete intermediates in the biosynthesis of a single product. Extensive divergence of catalytic site as well as noncatalytic site residues accounts for the high degree of primary structure variation in the P450 gene superfamily and the diverse array of substrates synthesized and/or detoxified by these proteins. Classic P450s still retain a highly conserved F-G-R-C-G motif in their catalytic site and conserved amino acids in their oxygen binding pocket; nonclassical P450s diverge at several of these positions. A broad range of cloning and transient expression strategies are suitable for plant P450 studies and these have allowed for the isolation and characterization of a number of P450 cDNAs and genes. Because many of these sequences have been cloned only recently, much remains to be learned about the substrate specificities of P450 reactions in plants and the mechanisms by which their genes are regulated.  相似文献   

2.
A unique feature of P450 enzymes is in the presence of a thiolate ligand heme but its exact function in catalysis is a matter of debate. For P450 dependent monooxygenases the "active oxygen" complex seems to exist only as a transition state in which the thiolate ligand provides electron density in order to prevent pi-backbonding of the oxygen to the iron (-S-Fe-O(z.rad;)). The corresponding ground state (Compound I) would be a ferryl species (Fe(IV)z.dbnd6;O) with an electron hole either at the porphyrin or at the sulfur. Apart from this role we postulate that a second function is related to the electronic structure of Compound II as an electron acceptor and this property is shared among monooxygenases, thromboxane synthase, prostacyclin synthase, allene oxide synthase, P450(NOR(-)) and chloroperoxidase. As a common step in all P450 enzymes an extremely rapid electron uptake by Compound II allows that the primary substrate radicals are oxidized to cations which immediately combine with a neighbouring nucleophile. Thus "electron transfer" may substitute for "oxygen rebound" as the final step leading to product formation. The same principle also applies methane monooxygenases in which the role of the thiyl sulfur is replaced by a ferryl-oxyl entity.  相似文献   

3.
Heme iron is often used in biology for activation of oxygen. The mechanisms of oxygen activation by heme-containing monooxygenases (the cytochrome P450s) are well known, and involve formation of a Compound I species, but information on the heme-containing dioxygenase enzymes involved in tryptophan oxidation lags far behind. In this review, we gather together information emerging recently from structural, mechanistic, spectroscopic, and computational approaches on the heme dioxygenase enzymes involved in tryptophan oxidation. We explore the subtleties that differentiate various heme enzymes from each other, and use this to piece together a developing picture for oxygen activation in this particular class of heme-containing dioxygenases.  相似文献   

4.
The synthetic and mechanistic aspects of the use of heme peroxidases as functional mimics of the cytochrome P450 monooxygenases in oxygen-transfer reactions have been described. The chloroperoxidase from Caldariomyces fumago (CPO) is the catalyst of choice in sulfoxidation, hydroxylation and epoxidation on account of its high activity and enantioselectivity. Other heme peroxidases were less active by orders of magnitude; protein engineering has resulted in impressive improvements but even the most active mutant was still at least an order of magnitude less active than CPO. The 'oxygen-rebound' mechanisms of oxygen transfer mediated by heme enzymes - as originally conceived - have proved to be untenable. Dual pathway mechanisms, via oxoferryl species that insert oxygen as well as iron hydroperoxide species that insert OH(+), have been proposed that accommodate all of the known experimental data.  相似文献   

5.
Isolated P450 monooxygenases have for long been neglected catalysts in enzyme technology. This is surprising as they display a remarkable substrate specificity catalyzing reactions, which represent a challenge for classic organic chemistry. On the other hand, many P450 monooxygenases are membrane bound, depend on rather complicated electron transfer systems and require expensive cofactors such as NAD(P)H. Their activities are low, and stability leaves much to be desired. The use of bacterial P450 monooxygenases from CYP102 family allows overcoming some of these handicaps. They are soluble and their turnovers are high, presumably because their N-terminal heme monooxygenase and their C-terminal diflavin reductase domain are covalently linked. In recent years, protein engineering approaches have been successfully used to turn CYP102 monooxgenases into powerful biocatalysts.  相似文献   

6.
7.
Intracellular histamine (HA) and cytochrome P450 monooxygenases (P450) each have been proposed as mediators of cell function, growth, and proliferation. The P450 family of heme enzymes is found in virtually all cells and generates, transforms, or inactivates steroids and other lipids that participate in cell regulation. We previously demonstrated a second messenger role for HA in blood platelets and the formation of a HA-P450 heme complex when exogenous HA was added to microsomes isolated from rat liver cells or to purified human P450 isozymes. Employing a radioimmunoassay, we now demonstrate that rat liver slices, microsomes derived from the livers of adult male rats and mast cell-deficient mice, and hepatoma cells, all contain endogenous HA. HA release from microsomes into the incubation medium, as determined by radioimmunoassay, is enhanced in the presence of carbon monoxide, steroids, and certain drugs, all agents that unite either directly with the iron atom or bind elsewhere within the heme cavity. Rat liver slices preincubated with (3)H-HA release labeled amine into the medium in the presence of those same ligands. These findings provide evidence of an in situ HA-P450 complex and offer further support that the imidazole, HA, is a physiological, intracellular modulator of cytochromes P450 in liver cells, and perhaps of these and other heme proteins in tissues in general.  相似文献   

8.
NADPH-cytochrome P450 reductase (CPR) is an essential component for the function of many enzymes, including microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. In liver-Cpr-null (with liver-specific Cpr deletion) and Cpr-low (with reduced CPR expression in all organs examined) mouse models, a reduced serum cholesterol level and an induction of hepatic P450s were observed, whereas hepatomegaly and fatty liver were only observed in the liver-Cpr-null model. Our goal was to identify hepatic gene expression changes related to these phenotypes. Cpr-lox mice (with a floxed Cpr gene and normal CPR expression) were used as the control. Through microarray analysis, we identified many genes that were differentially expressed among the three groups of mice. We also recognized the 12 gene ontology terms that contained the most significantly changed gene expression in at least one of the two mouse models. We further uncovered potential mechanisms, such as an increased activation of constitutive androstane receptor and a decreased activation of peroxisomal proliferator-activated receptor-alpha by precursors of cholesterol biosynthesis, that underlie common changes (e.g. induction of multiple P450s and suppression of genes for fatty acid metabolism) in response to CPR loss in the two mouse models. Additionally, we observed model-specific gene expression changes, such as the induction of a fatty-acid translocase (Cd36 antigen) and the suppression of carnitine O-palmitoyltransferase 1 (Cpt1a) and acyl-CoA synthetase long chain family member 1 (Acsl1), that are potentially responsible for the severe hepatic lipidosis and an altered fatty acid profile observed in liver-Cpr-null mice.  相似文献   

9.
The hydroperoxo-ferric complex, or Compound 0 (Cpd 0), is an unstable transient intermediate common for oxygen activating heme enzymes such as the cytochromes P450, nitric oxide synthases, and heme oxygenases, as well as the peroxidases and catalases which utilize hydrogen peroxide as a source of oxygen and reducing equivalents. Detailed understanding of the mechanism of oxygen activation and formation of the higher valent catalytically active intermediates in heme enzyme catalysis requires the structural and spectroscopic characterization of this immediate precursor, Cpd 0. Using the method of cryoradiolytic reduction of the oxy-ferrous heme complex, we have prepared and characterized hydroperoxo-ferric complex in chloroperoxidase (CPO) and compared this to the same intermediate generated in cytochrome P450 CYP101. Optical absorption spectrum of Cpd 0 in CPO has a Soret band at 449 nm and poorly resolved α, β bands at 576 and 546 nm.  相似文献   

10.
This review describes the use of cryoreduction/annealing EPR/ENDOR techniques for determining the active oxidizing species in reactions catalyzed by heme monooxygenases. The three candidate heme states are: ferric peroxo, ferric hydroperoxo and compound I intermediates. The enzymes discussed include cytochromes P450, nitric oxide synthase and heme oxygenase.  相似文献   

11.
Liver cytochrome P450 monooxygenases (P450), a group of isozymes that catalyze the reductive cleavage of molecular oxygen, dominate hepatic metabolism of xenobiotic lipophilic substances. These P450 enzymes exhibit broad and overlapping substrate specificities, in contrast to the P450 isozymes of the steroid biosynthetic pathways, which are highly substrate specific. Hepatic heme pigments, N-alkylated porphyrins, accumulate following the self-catalyzed destruction of P450 by the metabolic activation of 17 alpha-ethynyl steroids. Acetylenic substituted steroidal aromatase inactivators, norethisterone (NET), and 10-(2-propynyl)estr-4-ene-3,17-dione (MDL 18,962) were administered to rats to determine if the acetylenic substituent was activated by hepatic P450 mixed-function oxidases. This metabolism could result in the formation of a reactive species that would alkylate a pyrrole nitrogen atom of heme. Male Sprague-Dawley rats were treated with 0, 10, 30, or 100 mg/kg NET or MDL 18,962 intraperitoneally. Four hours later, these animals received 40 mg/kg sodium pentobarbital and their sleeping times were recorded. On arousal, the rats were killed and their livers were taken for determination of P450 content and formation of N-alkylated porphyrins (green pigments). Norethisterone inhibited hepatic P450 isozymes, resulting in a dose-related increased sleeping time (89.2 +/- 3.5 to 156.3 +/- 7.6 minutes) and decreased P450 levels (maximum 25% decrease at 100 mg/kg), and the amount of green pigments increased with doses of 10 to 100 mg/kg. In contrast, MDL 18,962 treatment did not increase sleeping time and caused only a 15% decrease in hepatic P450 content at 100 mg/kg, with no detectable green pigments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Li Z  Rupasinghe SG  Schuler MA  Nair SK 《Proteins》2011,79(6):1728-1738
The lipoglycopeptide antibiotic teicoplanin has proven efficacy against gram‐positive pathogens. Teicoplanin is distinguished from the vancomycin‐type glycopeptide antibiotics, by the presence of an additional cross‐link between the aromatic amino acids 1 and 3 that is catalyzed by the cytochrome P450 monooxygenase Orf6* (CYP165D3). As a goal towards understanding the mechanism of this phenol‐coupling reaction, we have characterized recombinant Orf6* and determined its crystal structure to 2.2‐Å resolution. Although the structure of Orf6* reveals the core fold common to other P450 monooxygenases, there are subtle differences in the disposition of secondary structure elements near the active site cavity necessary to accommodate its complex heptapeptide substrate. Specifically, the orientation of the F and G helices in Orf6* results in a more closed active site than found in the vancomycin oxidative enzymes OxyB and OxyC. In addition, Met226 in the I helix replaces the more typical Gly/Ala residue that is positioned above the heme porphyrin ring, where it forms a hydrogen bond with a heme iron‐bound water molecule. Sequence comparisons with other phenol‐coupling P450 monooxygenases suggest that Met226 plays a role in determining the substrate regiospecificity of Orf6*. These features provide further insights into the mechanism of the cross‐linking mechanisms that occur during glycopeptide antibiotics biosynthesis. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

13.
Microbial P450 enzymes in biotechnology   总被引:9,自引:0,他引:9  
Oxidations are key reactions in chemical syntheses. Biooxidations using fermentation processes have already conquered some niches in industrial oxidation processes since they allow the introduction of oxygen into non-activated carbon atoms in a sterically and optically selective manner that is difficult or impossible to achieve by synthetic organic chemistry. Biooxidation using isolated enzymes is limited to oxidases and dehydrogenases. Surprisingly, cytochrome P450 monooxygenases have scarcely been studied for use in biooxidations, although they are one of the largest known superfamilies of enzyme proteins. Their gene sequences have been identified in various organisms such as humans, bacteria, algae, fungi, and plants. The reactions catalyzed by P450s are quite diverse and range from biosynthetic pathways (e.g. those of animal hormones and secondary plant metabolites) to the activation or biodegradation of hydrophobic xenobiotic compounds (e.g. those of various drugs in the liver of higher animals). From a practical point of view, the great potential of P450s is limited by their functional complexity, low activity, and limited stability. In addition, P450-catalyzed reactions require a constant supply of NAD(P)H which makes continuous cell-free processes very expensive. Quite recently, several groups have started to investigate cost-efficient ways that could allow the continuous supply of electrons to the heme iron. These include, for example, the use of electron mediators, direct electron supply from electrodes, and enzymatic approaches. In addition, methods of protein design and directed evolution have been applied in an attempt to enhance the activity of the enzymes and improve their selectivity. The promising application of bacterial P450s as catalyzing agents in biocatalytic reactions and recent progress made in this field are both covered in this review.  相似文献   

14.
This review describes the recent advances utilizing photosensitizers and visible light to harness the synthetic potential of P450 enzymes. The structures of the photosensitizers investigated to date are first presented along with their photophysical and redox properties. Functional photosensitizers range from organic and inorganic complexes to nanomaterials as well as the biological photosystem I complex. The focus is then on the three distinct approaches that have emerged for the activation of P450 enzymes. The first approach utilizes the in situ generation of reactive oxygen species entering the P450 mechanism via the peroxide shunt pathway. The other two approaches are sustained by electron injections into catalytically competent heme domains either facilitated by redox partners or through direct heme domain reduction. Achievements as well as pitfalls of each approach are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.  相似文献   

15.
Circular dichroism (CD) spectroscopy has been used to probe the active site of bacterial ferric cytochrome P-450CAM. The endogenous sixth ligand to the heme iron has been displaced by an extensive series of exogenous oxygen, nitrogen, sulfur and other neutral and anionic donor ligands in an attempt to examine systematically the steric and electronic factors that influence the coupling of the heme chromophore to its protein environment. General trends for each ligand class are reported and discussed. Both the wavelengths and the intensities of the CD bands vary with ligand type and structure. All but one of the complexes exhibit negative CD maxima in their delta and Soret bands. Comparison to ferric myoglobin-thiolate complexes indicates that the negative sign observed for the cytochrome P-450 spectra is not a property of the thiolate fifth ligand, but rather arises from a different interaction of the cytochrome P-450 heme with its protein environment. Complexes with neutral oxygen donors display CD spectra that most closely resemble the spectrum of the native low-spin enzyme. Hyperporphyrin (split Soret) cytochrome P-450 complexes with thiolates, phosphines and cyanide trans to cysteinate have complex CD spectra, reflecting the intrinsic non-degeneracy of the Soret pi pi transitions. The extensive work presented herein provides an empirical foundation for use in analyzing the interaction of heme chromophores with their protein surroundings, not only for the cytochrome P-450 monooxygenases but also for heme proteins in general.  相似文献   

16.
Cytochromes P450: a success story   总被引:7,自引:0,他引:7  
Werck-Reichhart D  Feyereisen R 《Genome biology》2000,1(6):reviews3003.1-reviews30039
Cytochrome P450 proteins, named for the absorption band at 450 nm of their carbon-monoxide-bound form, are one of the largest superfamilies of enzyme proteins. The P450 genes (also called CYP) are found in the genomes of virtually all organisms, but their number has exploded in plants. Their amino-acid sequences are extremely diverse, with levels of identity as low as 16% in some cases, but their structural fold has remained the same throughout evolution. P450s are heme-thiolate proteins; their most conserved structural features are related to heme binding and common catalytic properties, the major feature being a completely conserved cysteine serving as fifth (axial) ligand to the heme iron. Canonical P450s use electrons from NAD(P)H to catalyze activation of molecular oxygen, leading to regiospecific and stereospecific oxidative attack of a plethora of substrates. The reactions carried out by P450s, though often hydroxylation, can be extremely diverse and sometimes surprising. They contribute to vital processes such as carbon source assimilation, biosynthesis of hormones and of structural components of living organisms, and also carcinogenesis and degradation of xenobiotics. In plants, chemical defense seems to be a major reason for P450 diversification. In prokaryotes, P450s are soluble proteins. In eukaryotes, they are usually bound to the endoplasmic reticulum or inner mitochondrial membranes. The electron carrier proteins used for conveying reducing equivalents from NAD(P)H differ with subcellular localization. P450 enzymes catalyze many reactions that are important in drug metabolism or that have practical applications in industry; their economic impact is therefore considerable.  相似文献   

17.
Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.  相似文献   

18.
The cholesterol side-chain cleavage reaction catalyzed by cytochrome P450scc comprises three consecutive monooxygenase reactions (22R-hydroxylation, 20S-hydroxylation, and C(20)-C(22) bond scission) that produces pregnenolone. The electron equivalents necessary for the oxygen activation are supplied from a 2Fe-2S type ferredoxin, adrenodoxin. We found that 1:1 stoichiometric binding of oxidized adrenodoxin to oxidized cytochrome P450scc complexed with cholesterol or 25-hydroxycholesterol caused shifts of the high-spin EPR signals of the heme moiety at 5 K. Such shifts were not observed for the low-spin EPR signals. Ligation of CO or NO to the reduced heme of cytochrome P450scc complexed with reduced adrenodoxin and various steroid substrates did not cause any change in the axial EPR spectrum of the reduced iron-sulfur center at 77 K. These results are in remarkable contrast to those obtained for the cytochrome P450cam-d-camphor-putidaredoxin ternary complex, suggesting that the mode of cross talk between adrenodoxin and cytochrome P450scc is very different from that in the Pseudomonas system. The difference may be primarily due to the location of the charged amino acid residues of the ferredoxins important for the interaction with the partner cytochrome P450.  相似文献   

19.
Epidermal microsomal cytochrome P-450 was rapidly degraded when microsomes were aerobically exposed to ultraviolet light in the presence of hematoporphyrin derivative (HPD). Destruction of microsomal cytochrome P-450 was accompanied by loss of heme content, and inhibition of catalytic activity of the monooxygenases, including aryl hydrocarbon hydroxylase and 7-ethoxycoumarin-O-deethylase. Destruction of cytochrome P-450 by photosensitized HPD was oxygen dependent. Quenchers of singlet oxygen, including 2,5 dimethylfuran, histidine, and B-carotene, largely pre- vented photodestruction of cytochrome P-450. Inhibitors of hydroxyl radical including benzoate and mannitol, protected microsomal cytochrome P-450 from destruction. Superoxide dismutase and catalase, scavengers of superoxide anion and hydrogen peroxide, respectively, had no protective effect. These results indicate that generation of singlet oxygen and hydroxyl radicals during hematoporphyrin photosensitization is associated with rapid degradation of cytochrome P-450 and heme in epidermal microsomes, and suggest a novel target for this type of tissue damage in the skin.  相似文献   

20.
Cytochrome P450s are a superfamily of heme containing enzymes that use molecular oxygen and electrons from reduced nicotinamide cofactors to monooxygenate organic substrates. The fatty acid hydroxylase P450BM-3 has been particularly widely studied due to its stability, high activity, similarity to mammalian P450s, and presence of a cytochrome P450 reductase domain that allows the enzyme to directly receive electrons from NADPH without a requirement for additional redox proteins. We previously characterized the substrate N-palmitoylglycine, which found extensive use in studies of P450BM-3 due to its high affinity, high turnover number, and increased solubility as compared to fatty acid substrates. Here, we report that even higher affinity substrates can be designed by acylation of other amino acids, resulting in P450BM-3 substrates with dissociation constants below 100 nM. N-Palmitoyl-l-leucine and N-palmitoyl-l-methionine were found to have the highest affinity, with dissociation constants of less than 8 nM and turnover numbers similar to palmitic acid and N-palmitoylglycine. The interactions of the amino acid side chains with a hydrophobic pocket near R47, as revealed by our crystal structure determination of N-palmitoyl-l-methionine bound to the heme domain of P450BM-3, appears to be responsible for increasing the affinity of substrates. The side chain of R47, previously shown to be important in interactions with negatively charged substrates, does not interact strongly with N-palmitoyl-l-methionine and is found positioned at the enzyme-solvent interface. These are the tightest binding substrates for P450BM-3 reported to date, and the affinity likely approaches the maximum attainable affinity for the binding of substrates of this size to P450BM-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号