首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives were to compare embryo development rates after transfer into inseminated recipients, vitrified thawed oocytes collected from super-stimulated versus non-stimulated mares. In vivo matured oocytes were collected by transvaginal, ultrasound guided follicular aspiration from super-stimulated and non-stimulated mares 24-26 h after administration of hCG. Oocytes were cultured for 2-4 h prior to vitrification. Cryoprotectants were loaded in three steps before oocytes were placed onto a 0.5-0.7 mm diameter nylon cryoloop and plunged directly into liquid nitrogen. Oocytes were thawed and the cryoprotectant was removed in three steps. After thawing, oocytes were cultured 10-12 h before transfer into inseminated recipients. Non-vitrified oocytes, cultured 14-16 h before transfer, were used as controls. More oocytes were collected from 23 non-stimulated mares (20 of 29 follicles), than 10 super-stimulated mares (18 of 88 follicles; P < 0.001). Of the 20 oocytes collected from non-stimulated mares, 12 were vitrified and 8 were transferred as controls. After thawing, 10 of the 12 oocytes were morphologically intact and transferred into recipients resulting in one embryonic vesicle on Day 16 (1 of 12 = 8%). Fourteen oocytes from super-stimulated mares were vitrified, and 4 were transferred as controls. After thawing, 9 of the 14 oocytes were morphologically intact and transferred into recipients resulting in two embryonic vesicles on Day 16 (2 of 14 = 14%). In control transfers, 7 of 8 oocytes from non-stimulated mares and 3 of 4 oocytes from super-stimulated mares resulted in embryonic vesicles on Day 16. The two pregnancies from vitrified oocytes resulted in healthy foals.  相似文献   

2.
A pituitary extract was used to induce multiple ovulations in mares to determine whether day-7 embryos from multiple ovulators were viable as indicated by their ability to develop when transferred to recipients. There were more ovulations/donor for induced multiple-ovulating mares than for control single-ovulating mares (4.6 +/- 0.5 vs 1.0 +/- 0.0; n=14). The embryo collection rate per ovulation was similar for multiple ovulators (0.6 +/- 0.1 embryos/ovulation) and single ovulators (0.7 +/- 0.1). The embryo collection rate per donor, therefore, was higher (P<0.01) for the multiple ovulators (2.9 +/- 0.7 vs 0.7 +/- 0.1). The transfer success rate per embryo at day 21 was different (P<0.05) among recipients which received an embryo from control single-ovulating donors (7 8 ), multiple ovulators from which a single embryo was recovered (2 2 ), and multiple ovulators from which multiple embryos were recovered (9 19 ). The recipient pregnancy rate/donor at day 21 was 88% (7 8 ) for single-ovulating controls and 138% (11 8 ) for induced multiple ovulators. Results indicate that the survivability of day-7 embryos from multiple-ovulating donors was reduced. However, despite the reduced survival rate/embryo, the number of pregnant recipients/donor was increased by induction of multiple ovulations because of the increased number of embryos available for transfer.  相似文献   

3.
Synchronization of follicle growth between oocyte donor and recipient mares is difficult. To avoid this, recipient mares in a clinical program were used during a period of low follicular activity, and were treated with estrogen before transfer and progesterone after transfer. Five pregnancies were established after oocyte transfer to nonovulating, hormone-treated recipient mares. One pregnancy was lost before 30 d gestation, and the other 4 foals were carried to term. One foal died at birth. Establishment and maintenance of pregnancy in these mares indicates that nonovulating, hormone-treated mares may offer an alternative to cyclic recipients in oocyte transfer programs.  相似文献   

4.
Viable Transgenic Goats Derived from Skin Cells   总被引:3,自引:0,他引:3  
The current study was undertaken to evaluate the possibility of expanding transgenic goat herds by means of somatic cell nuclear transfer (NT) using transgenic goat cells as nucleus donors. Skin cells from adult, transgenic goats were first synchronized at quiescent stage (G0) by serum starvation and then induced to exit G0 and proceed into G1. Oocytes collected from superovulated donors were enucleated, karyoplast-cytoplast couplets were constructed, and then fused and activated simultaneously by a single electrical pulse. Fused couplets were either co-cultured with oviductal cells in TCM-199 medium (in vitro culture) or transferred to intermediate recipient goat oviducts (in vivo culture) until final transfer. The resulting morulae and blastocysts were transferred to the final recipients. Pregnancies were confirmed by ultrasonography 25-30 days after embryo transfer. In vitro cultured NT embryos developed to morulae and blastocyst stages but did not produce any pregnancies while 30% (6/20) of the in vivo derived morulae and blastocysts produced pregnancies. Two of these pregnancies were resorbed early in gestation. Of the four recipients that maintained pregnancies to term, two delivered dead fetuses 2-3 days after their due dates, and two recipients gave birth to healthy kids at term. Fluorescence in situ hybridization (FISH) analysis confirmed that both kids were transgenic and had integration sites consistent with those observed in the adult cell line.  相似文献   

5.
Insemination of recipients for oocyte transfer and gamete intrafallopian transfer (GIFT) in five experiments were reviewed, and factors that affected pregnancy rates were ascertained. Oocytes were transferred into recipients that were (1) cyclic and ovulated at the approximate time of oocyte transfer, (2) cyclic with aspiration of the preovulatory follicle, and (3) noncyclic and treated with hormones. Recipients were inseminated before, after, or before and after transfer. Intrauterine and intraoviductal inseminations were done.Pregnancy rates were not different between cyclic and noncyclic recipients (8/15, 53% and 37/93, 39%). The highest numerical pregnancy rates resulted when recipients were inseminated with fresh semen from fertile stallions before oocyte transfer or inseminated with cooled transported semen before and after oocyte transfer. Oxytocin was administered to recipients before oocyte transfer when fluid was imaged within the uterus. Administration of oxytocin to recipients at the time of oocyte transfer resulted in significantly higher pregnancy rates than when oxytocin was not administered (17/26, 65% and 28/86, 33%). Intraoviductal and intrauterine inseminations of recipients during oocyte transfer resulted in similar embryo development rates when fresh semen was used (12/22, 55% and 14/26, 55%). However, embryo development rates significantly reduced when frozen (1/21, 5%) versus fresh sperm were inseminated into the oviduct.Results suggest that insemination of a recipient before and after transfer could be beneficial when semen quality is not optimal; however, a single insemination before transfer was adequate when fresh semen from fertile stallions was used. Absence of a preovulatory follicle did not appear to affect pregnancy rates in the present experiments. The transfer of sperm and oocytes (GIFT) into the oviduct was successful and repeatable as an assisted reproductive technique in the equine.  相似文献   

6.
Objectives of the present study were to use oocyte transfer: 1) to compare the developmental ability of oocytes collected from ovaries of live mares with those collected from slaughterhouse ovaries; and 2) to compare the viability of oocytes matured in vivo, in vitro, or within the oviduct. Oocytes were collected by transvaginal, ultrasound-guided follicular aspiration (TVA) from live mares or from slicing slaughterhouse ovaries. Four groups of oocytes were transferred into the oviducts of recipients that were inseminated: 1) oocytes matured in vivo and collected by TVA from preovulatory follicles of estrous mares 32 to 36 h after administration of hCG; 2) immature oocytes collected from diestrous mares between 5 and 10 d after aspiration/ovulation by TVA and matured in vitro for 36 to 38 h; 3) immature oocytes collected from diestrous mares between 5 and 10 d after aspiration/ovulation by TVA and transferred into a recipient's oviduct <1 h after collection; and 4) im mature oocytes collected from slaughterhouse ovaries containing a corpus luteum and matured in vitro for 36 to 38 hours. Embryo development rates were higher (P < 0.001) for oocytes matured in vivo (82%) than for oocytes matured in vitro (9%) or within the oviduct (0%). However, neither the method of maturation nor the source of oocytes affected (P > 0.1) embryo development rates after the transfer of immature oocytes.  相似文献   

7.
The hypothesis that equine embryos initiate oviductal transport in mares was tested by placing day 6 uterine embryos in the oviducts of day 2 (n = 10) or day 5 (n = 10) recipient mares and attempting to collect the embryos from the uterus 48 h later. To determine whether the surgical transfer procedure initiated oviductal transport, medium alone was placed in the oviducts of day 2 (n = 10) inseminated mares (sham transfer), and uterine embryo collections were attempted 48 h later. Embryos were transported through the oviduct of day 2 recipients by day 4 (instead of day 5 to 6) in six of ten mares, which was not significantly less (P greater than 0.1) than in day 5 recipients (9 of 10). Oviductal transport was not primarily initiated by the surgical transfer procedure, since oviductal transport occurred in only one sham transfer. There was no significant difference (P greater than 0.1) in the diameter of embryos placed in the oviducts of day 2 and day 5 recipient mares (180 +/- 13.8 versus 187 +/- 11.3 microns, respectively). However, embryos collected from the uterus were significantly smaller (P less than 0.05) in day 2 than in day 5 recipients (375 +/- 85.4 versus 659 +/- 43.6 microns, respectively). One uterine embryo had shed its zona pellucida before being placed in, and transported through, the oviduct of the recipient mare.  相似文献   

8.
One year old fillies are able to conceive but, usually, not to give birth to a living foal. Although embryo transfer allows the production of foals from mature mares with repeated pregnancy losses, no reports are available on the use of one year old fillies as embryo donors. To evaluate this possibility, eleven 12-16 months old Haflinger mares were inseminated with fresh semen and subjected to embryo recovery. Some of the recovered embryos were non-surgically transferred into synchronized mature recipients. Pregnancies were terminated using PGF2alpha at day 25. Fillies' embryo recovery rate and their recipients' pregnancy rate at day 25 were compared with those achieved in two years old and mature mares of the same breed, subjected to the same management. Embryo recovery rate was 21/44 (47.7%), 12/16 (75%) and 22/26 (84.6%) (P>0.01) for one year old, two years old and mature mares, respectively. Five/7 (71.4%) one year old donors' embryos resulted in a pregnancy after transfer and 4/7 (57.1%) developed until day 25. Significant differences in pregnancy rates after transfer between donors' age groups were not observed; no short term side effects resulted from the use of fillies as embryo donors. This study showed that one year old mares employed as embryo donors produce embryos both morphologically normal and able to develop in recipient mares at least up to day 25 of pregnancy.  相似文献   

9.
A completely randomized experimental design was used to investigate the effect of supplemental progesterone on pregnancy rates of recipient mares. Every other recipient mare received daily 200 mg progesterone in oil beginning the day of surgical embryo transfer and lasting until either Day 120 of pregnancy or until pregnancy failure was confirmed by ultrasound. Progesterone supplementation did not affect pregnancy rate (P > 0.05). Overall, embryos that did not result in pregnancy were of greater mean diameter than embryos that resulted in pregnancy (P < 0.05). Pregnancy rates tended (P < 0.1) to be greater in recipients that were detected to be ovulating the same day or prior to that of the donor and that had been supplemented with progesterone (75 %) as opposed to untreated control mares of the same synchrony group (40 %). Progesterone supplementation did not affect the incidence of embryonic loss; however, there was a slightly higher loss of pregnancies between Day 15 and 30 in treated versus untreated recipients. There was no effect (P > 0.05) of treatment on pregnancy rate for embryos recovered from fertile versus subfertile donor mares. However, overall, there tended (P < 0.1) to be fewer pregnancies with embryos recovered from subfertile (50 %) as compared to fertile donors (75 %). It was concluded that supplemental progesterone at the dosage and frequency described was not beneficial in improving pregnancy rates in cyclic recipient mares after surgical embryo transfer.  相似文献   

10.
Blastocysts were collected non-surgically from 2 Przewalski's horse and 2 Grant's zebra mares and transferred extra-specifically to domestic horse and donkey recipients. Nine Przewalski's horse embryos were transferred surgically, and 2 non-surgically, to domestic Welsh-type pony mares. After surgical transfer, 7 (77.8%) pregnancies were established and 4 foals were born. Twelve Grant's zebra embryos were transferred surgically to 5 pony and 7 domestic donkey recipients respectively and 1 non-surgically to a donkey; 3 (60%) zebra-in-horse pregnancies were established and 2 went to term. Only 2 (28.6%) zebra-in-donkey pregnancies were established but neither went to term, although one zebra foal was aborted alive at Day 292 but failed to survive. No pregnancies resulted from the non-surgical transfers. Measurement of chorionic gonadotrophin concentrations and parental-specific lymphocytotoxic antibodies in the serum of the recipient animals indicated a pronounced maternal immunological response to the extra-specific embryo, but this could not be correlated with success or failure of pregnancy. The results indicate that extra-specific embryo transfer may be a useful aid to breeding exotic equids in captivity.  相似文献   

11.
The blastomeres of 192- to 8-cell embryos recovered surgically 1-3 days after ovulation from 23 Pony mares were mechanically separated and inserted, in various combinations, into evacuated pig zonae pellucidae to make 27 'half' and 17 'quarter' micromanipulated embryos. These were embedded in agar and cultured in vivo in the ligated oviducts of ewes for 3.5-5 days to allow development to the late morula/early blastocyst stage. Subsequent surgical or non-surgical transfer of 13 'half' and 17 'quarter' embryos to mares resulted in 10 established pregnancies, including 2 monozygotic pairs. Surgical transfer to mares that had not been recently used as donors of embryos was more successful (10/20) than surgical or non-surgical transfer to recently operated mares (0/10).  相似文献   

12.
The objective was to evaluate the potential risks associated with embryo transfer from mares bred with equine arteritis virus (EAV) infective semen. Twenty-six mares were embryo donors, whereas 18 unvaccinated and EAV antibody seronegative mares were embryo recipients. Of the 26 donor mares, 15 were unvaccinated and seronegative for antibodies to EAV and 11 were vaccinated for the first time with a commercially available modified live virus vaccine against EVA before breeding and subsequent embryo transfer. All donor mares were bred with EAV-infective semen from a stallion persistently infected with the virus. Twenty-four embryos were recovered 7 d post-ovulation; all were subjected in sequential order to five washes in embryo flush medium, two trypsin treatments, and five additional washes in embryo flush medium (prior to transfer). Twelve and seven embryos (Grades 1 or 2) were transferred from the non-vaccinated and vaccinated donors, respectively, and pregnancy was established in 3 of 12 and 2 of 7. Perhaps trypsin reduced embryo viability and pregnancy rate. The uterine flush fluid of 11 mares (9 of 15 and 2 of 11 from non-vaccinated and vaccinated donor groups, respectively) was positive for EAV by VI (confirmed by real-time RT-PCR); the wash fluid from the embryos of nine of these mares was negative following 10 washes and two trypsin treatments. However, the embryo wash fluid from two mares was still positive for EAV after all 10 washes and the two trypsin treatments, and one embryo was positive for EAV. Two of 18 recipient mares had seroconverted to EAV 28 d after embryo transfer. Virus was not detected in any fetal tissues or fluids harvested after pregnancies were terminated (60 d). In conclusion, we inferred that the washing protocol of 10 washes and two trypsin treatments did not eliminate EAV from all embryos; due to limitations in experimental design, this requires confirmation. Furthermore, there may be a risk of EAV transmission associated with in vivo embryo transfer from a donor mare inseminated with EAV infective semen.  相似文献   

13.
The objectives of the present study were to determine if follicular activity was less in old than in young mares during the spring transition and if green pasture would hasten onset of the ovulatory season. Experiments were conducted over 2 sequential years using young mares (3 to 7 yr) and old mares (> or =14 yr). In Experiment 1, growth of the largest and second-largest follicles were compared for young mares (5 to 7 yr) and old mares (> or =14 yr) for 21 d prior to the first ovulation of the year. More follicular activity was noted in young than in old mares. Main effect of age was significant for diameter of the largest follicle, and interaction of day-by-age was significant for diameter of the second-largest follicle. Prior to the beginning of the breeding season, the mares were randomly divided into dry-lot and pasture groups. The interval from May 2 to ovulation was shorter (P < 0.005) for mares put on pasture on May 2 than for mares kept in dry lot (means +/- SEM, 14.5 +/- 2.7 and 21.3 +/- 3.2 d, respectively). In Experiment 2, follicular activity was compared among 3 age groups (3 to 7, 17 to 19, and > or =20 yr). The total number of follicles > or =10 mm was higher (P < 0.05) for young mares and lower (P < 0.05) for old mares than for mares of an intermediate age. Main effect of age and interaction of day-by-age were significant for diameter of largest and second-largest follicles, being smaller for mares > or =20 yr than for younger mares. The interval from development of a follicle > or =30 mm to ovulation was shorter (P < 0.05) for mares placed on pasture when a > or =30 mm follicle developed than the interval for mares kept in dry lot (5.7 +/- 0.7 and 8.2 +/- 0.9 d, respectively). In summary, less follicular activity occurred in old than in young mares during the transitional period, and mares pastured on green grass ovulated sooner in the spring than mares housed on dry lot and fed hay.  相似文献   

14.
Chemically assisted handmade enucleation of porcine oocytes   总被引:1,自引:0,他引:1  
The purpose of our work was to find an efficient and reliable chemically assisted procedure for enucleation of porcine oocytes connected to the handmade cloning (HMC) technique without the potentially harmful chromatin staining and ultraviolet (UV) irradiation for cytoplast selection. After 41-42 h in vitro maturation, porcine oocytes were incubated with 0.4 microg/mL demecolcine for 45 min. Subsequently, the cumulus cells were removed and zonae pellucidae were partially digested. Oocytes with extrusion cones or oocytes only with polar body (PB) were subjected to oriented bisection. Less than half of the cytoplasm with the extrusion cone or adjacent to the PB was removed with a microblade. The remaining putative cytoplasts, containing the major part of the cytoplasm, were used as recipients for reconstruction with porcine fetal fibroblasts as nuclear donors. The overall efficiency achieved with chemically assisted enucleation was higher compared to oriented bisection without demecolcine incubation (90 +/- 3% vs. 81 +/- 4%, respectively; mean +/- absolute deviation [AD]). Reconstructed and activated embryos were cultured in vitro for 7 days. Fusion, cleavage and blastocyst rates were 87 +/- 7%, 97 +/- 6%, and 28 +/- 9%, respectively. These rates are at least as good as those achieved with normal HMC (81 +/- 4%, 87 +/- 8%, and 21 +/- 9%, respectively). For traditional, micromanipulator-based cloning, fusion and blastocyst rates were similar (81 +/- 10% and 21 +/- 6%, respectively), but the cleavage rate was lower (69 +/- 9%). In conclusion, chemically assisted handmade enucleation seems to be a simpler and potentially superior alternative to more conventional methods used for somatic cell nuclear transfer in pigs.  相似文献   

15.
Viability of equine embryos produced by oocyte maturation, intracytoplasmic sperm injection and embryo culture to the blastocyst stage in vitro was evaluated after transfer of embryos to recipient mares. No pregnancies were produced after transfer of five blastocysts that had been cultured in G media. Transfer of 10 blastocysts cultured in modified DMEM/F-12 medium produced five pregnancies and three live foals; the two lost pregnancies developed only trophoblast (based on transrectal ultrasonography). To evaluate the status of the inner cell mass, equine blastocysts produced in vivo and in vitro were assessed after differential staining. A discrete inner cell mass could not be appreciated in blastocysts of either source after staining; this was attributed to the presence of a network of cells within the trophoblastic vesicle. Because increased medium calcium concentrations have been reported to decrease the incidence of trophoblast-only pregnancy after transfer of equine nuclear transfer embryos, we investigated the effect of increased calcium concentrations during oocyte maturation or during embryo culture. Increasing calcium concentration of culture medium from 2 to 5.6mM during in vitro oocyte maturation did not affect maturation rate (75 and 68%, respectively) or blastocyst development after fertilization (23 and 27%). However, increasing calcium concentration (from 1.3 to 4.9 mM) of medium used for embryo culture significantly decreased blastocyst development (27% versus 13%, respectively) and adversely affected embryo morphology. More work is needed to optimize culture systems for in vitro production of equine embryos.  相似文献   

16.
Thirty-two Border Leicester x Scottish Blackface ewes that lambed in March were individually penned with their lambs from April 16th and given daily an oral dose of 3 mg melatonin at 1500 h (Group M). A further 32 acted as controls (Group C). Within each group half were used as embryo donors (Group D) following superovulation and half received embryos (Group R) following an induced estrus. Prior to weaning on 21 May ewes received ad libitum a complete diet providing 9 megajoules (MJ) of metabolizable energy and 125 g/kg crude protein. Thereafter each received 1.6 kg of the diet daily. In early June each ewe received an intravaginal device (300 mg progesterone) inserted for 12 d. Donors were superovulated with 4 i.m. injections of porcine FSH 12 h apart, commencing 24 h before progesterone withdrawal. Ovulation in recipients was induced with 800 IU PMSG injected i.m. at progesterone removal. Donor ewes were inseminated 52 h after progesterone withdrawal. Embryos were collected 4 d later and transferred to recipients. Melatonin suppressed plasma prolactin (P < 0.001) and advanced estrus (P < 0.05) and timing of the LH peak (P < 0.05). These events also occurred earlier in donors than in recipients (P < 0.01). Mean (+/- SEM) ovulation rates for melatonin-treated and control donors were 5.5 +/- 0.71 and 4.7 +/- 0.66, respectively (NS). Corresponding recipient values were 3.3 +/- 0.40 and 3.4 +/- 0.39 (NS). Mean (+/- SEM) embryo yields were 2.9 +/- 0.64 and 2.6 +/- 0.73 for melatonin-treated (n = 15) and control (n = 16) donors, respectively, and for the 12 ewes per treatment that supplied embryos, corresponding numbers classified as viable were 2.7 +/- 0.47 and 2.3 +/- 0.61 (NS). Following transfer, 57% of embryos developed to lambs when both donor and recipient received melatonin, 86% when only the donor received melatonin, 91% when only the recipient received melatonin, and 67% when neither received melatonin (NS). Thus, embryo survival following transfer was not improved by treating recipients with melatonin. Gestation length and lamb birthweights were unaffected by melatonin. Unlike nonpregnant control ewes, melatonin-treated recipients that failed to remain pregnant sustained estrous cyclicity following embryo transfer.  相似文献   

17.
In vitro culture and mtDNA fate of ibex-rabbit nuclear transfer embryos   总被引:4,自引:0,他引:4  
Rabbit oocyte can be used as the recipient in interspecies somatic cell nuclear transfer (iSCNT). This work was undertaken in order to study the developmental competence of Capra ibex somatic cells reprogrammed by rabbit oocytes and the fate of mitochondria in iSCNT embryos. Metaphase II (MII) oocytes from superovulated rabbit were used as nuclear recipients. The nuclear donors were Capra ibex somatic cells with different proliferative status: population doubling time (PDL) = 15 +/- 2 (group 1), 35 +/- 2 (group 2), 55 +/- 2 (group 3) and 70 +/- 2 (group 4). Oocytes reconstructed with electrical pulses (2.1kV/cm, 10 micros, 2 times) were activated (1.4kV, 20 micros, 2 times) and then cultured in Medium199 containing 10% fetal bovine serum at 38.5 degrees C, 5% CO2 in air. In groups 1, 2, 3 and 4, the fusion rates were 35.83%, 66.03%, 65.40% and 35.35%, respectively. Similar cleavage rates were observed among the four groups. However, the developmental potential to morula/blastocyst from early nuclear donor embryos (16.42%/10.45%) was significantly higher (p < 0.05) than in terminal donor embryos (9.52%/3.81%). Polymerase chain reaction analysis of the mitochondrial (mt) DNA cytb gene demonstrated that mtDNAs from ibex and rabbit could be detected at various developmental stages before implantation. In conclusion, our results provide some original information about rescuing Capra ibex using the iSCNT technique. These results indicate that: (1) enucleated rabbit oocytes make Capra ibex fibroblast nuclei reprogramme; (2) the proliferative status of donor cells affects the efficiency of iSCNT; and (3) rabbit ooplasm rescues the donor-derived mtDNAs, resulting in mtDNA heteroplasmy before implantation.  相似文献   

18.
In this study, nuclear transfer (NT) embryos were produced by using C57Bl/6 mouse morula blastomeres and Kunming mouse metaphase II (MII) oocytes as donors and recipients, respectively, to investigate the effects of sucrose treatment of MII oocytes with different concentrations on the manipulation time of NT, electrofusion and the in vitro and in vivo development of reconstructed embryos. The results demonstrated that: (i) when the oocytes were enucleated with 1, 2 and 3% sucrose treatment, respectively, the enucleating rates were not affected by the different sucrose concentrations, but the manipulation time had significant difference and the mean nuclear transfer manipulation times of every oocyte were 180+/-10 s, 130+/-10 s and 120+/-10 s, respectively; (ii) different sucrose concentrations had no significant effects on the fusion rate and the in vitro developmental potential of the NT embryos (p>0.05). Furthermore, 59 embryos were transplanted into the oviducts of two recipients. In the end, three dead full-term developed fetuses were obtained on 21 days post coitus (dpc). These results suggested that the mouse MII oocytes enucleated via sucrose treatment might be an alternative source for mouse cloning and could support the embryonic NT embryos developed to term in vivo.  相似文献   

19.
Superovulation treatments and embryo transfer in Angora goats   总被引:17,自引:0,他引:17  
A high incidence of early luteal regression after PMSG superovulation was associated with low recovery of embryos from reproductive tracts of Angora goats flushed later than Day 5 after onset of oestrus. Embryos were successfully recovered (mean 7.9/female) by flushing on Days 2-5. Mean ovulation rate after an FSH regimen (16.1 +/- 0.8) was significantly higher than that after a single injection of PMSG (10.8 +/- 1.2). Fertilization rate and survival of embryos following transfer to naturally synchronized recipient feral goats did not differ between the two gonadotrophin regimens: the mean number of kids born to 47 donors treated with FSH (7.5 +/- 0.6) was significantly greater than that to 28 donors treated with PMSG (4.8 +/- 0.6). Irrespective of hormonal treatment, the numbers of embryos recovered and of kids born were correlated with ovulation rate (r = 0.82, P less than 0.001 for both). Embryo survival was influenced by ovulation rate in recipients, with 52%, 63% and 75% of transferred embryos being carried to term by recipients with 1,2 and 3 CL, respectively (P less than 0.01). More embryos survived (65%) when 2 embryos were transferred to each recipient than when 1 (51%) or 3 (48%) were transferred. In recipients receiving 2 embryos, survival was significantly improved by transfer of both embryos to the same oviduct (70%) than when one was transferred to each oviduct (62%). The percentage survival of embryos was optimal when oestrus of recipients was synchronized within +/- 1 day of oestrus in donors.  相似文献   

20.
The aim of this study was to determine the effect of individual oocyte donors on cloned embryo development in vitro. Five Holstein heifers of varied genetic origins were subject to ovum pick up (OPU) once weekly. In total, 913 oocytes were recovered from 1304 follicles. A mean of 7.7+/-0.4 oocytes was recovered per session per animal. Individual mean oocyte production varied significantly in quantity but not in quality (morphological categories) among heifers. Oocytes from individual heifers were used as recipient cytoplasm for somatic cell nuclear transfer (SCNT). Cumulus cells, collected from a single Holstein cow genetically unrelated to the oocyte donor, were used as donor cells. Although the percentage of reconstructed embryos that started to cleave was nearly constant, the percentage of cleaved embryos that developed into blastocysts showed clear individual heifer variation (61%, 51%, 31%, 28% and 24%, respectively), with a mean of 38% showing blastocyst formation. In vitro fertilization (IVF) was also conducted with oocyte from the same heifers used in SCNT. A variation of blastocyst production among individual heifers was also shown in the IVF experiment, but the rank of oocyte donor based on the blastocyst rate was changed. In conclusion, individual oocyte donor may have an effect on cloned embryo development in vitro, which differed from the effect on IVF embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号