共查询到20条相似文献,搜索用时 0 毫秒
1.
Two main groups of mouse major urinary protein genes, both largely located on chromosome 4. 总被引:19,自引:3,他引:19 下载免费PDF全文
Fourteen different major urinary protein (MUP) genomic clones from BALB/c mice were isolated. By restriction site mapping, six of these form two sets of three overlapping clones. By the criterion of cross-hybridization, the 10 different genes fall into two groups of four (Group 1) and three (Group 2) genes, while three genes fall into neither group. Southern blot analysis of genomic DNA with Group 1 and Group 2 plasmid subclones shows that the haploid mouse (BALB/c) genome contains approximately 15 Group 1 genes, 12 Group 2 genes and at least seven MUP genes that belong to neither group. An analysis of mouse-Chinese hamster hybrid cell lines shows that most, if not all, Group 1 and Group 2 genes are located on mouse chromosome 4. 相似文献
2.
Timm DE Baker LJ Mueller H Zidek L Novotny MV 《Protein science : a publication of the Protein Society》2001,10(5):997-1004
The mouse major urinary proteins are pheromone-binding proteins that function as carriers of volatile effectors of mouse physiology and behavior. Crystal structures of recombinant mouse major urinary protein-I (MUP-I) complexed with the synthetic pheromones, 2-sec-butyl-4,5-dihydrothiazole and 6-hydroxy-6-methyl-3-heptanone, have been determined at high resolution. The purification of MUP-I from mouse liver and a high-resolution structure of the natural isolate are also reported. These results show the binding of 6-hydroxy-6-methyl-3-heptanone to MUP-I, unambiguously define ligand orientations for two pheromones within the MUP-I binding site, and suggest how different chemical classes of pheromones can be accommodated within the MUP-I beta-barrel. 相似文献
3.
Variation between mouse major urinary protein genes isolated from a single inbred line 总被引:13,自引:0,他引:13
We describe ten Charon 4A genomic DNA clones from BALB/c mice which include at least seven different major urinary protein (MUP) genes. We have established the orientation of all seven sequences, and have placed six of them in precise register by means of restriction site maps and Southern blot hybridization with cloned cDNA sequences. Four of the seven genomic sequences (family I sequences) form hybrids with six independent cDNA clones that have a high thermal stability and hybridize more strongly with mRNA from three inbred mouse lines. Hybrids between the remaining three genomic sequences and the cDNA clones have a lower thermal stability and hybridize less strongly with mRNA from the three inbred lines. Homologies between different cloned sequences extend over as much as 15 kb. No clone contains parts of two MUP genes, and no homology has been detected between the 3' flanking region of one MUP gene and the 5' flanking region of another. 相似文献
4.
Structure of mouse major urinary protein genes: different splicing configurations in the 3'-non-coding region. 下载免费PDF全文
The multigene family which codes for the mouse major urinary proteins (MUPs) consists of approximately 35 genes. Most of these are members of two different groups, Group 1 and Group 2, which can be distinguished by nucleic acid hybridisation. Here we describe the structure of a Group 1 gene and show that two size classes of MUP mRNA which are found in mouse liver result from different splicing events in the 3''-non-coding region and contain different polyadenylation sites. Short mRNA is approximately 750 nucleotides long, contains six exons, and is the main product of the Group 2 genes. Long mRNA is approximately 880 nucleotides long, contains seven exons and is the main product of the Group 1 genes. Five exons and part of the sixth are common to long and short mRNA and contain the coding region. This codes for an acidic protein of 180 amino acids containing an 18 residue signal peptide. A comparison of the mouse sequence with a homologous rat alpha 2u-globulin sequence shows that the rate of evolutionary divergence of the two proteins has been high. Silent sites have diverged four times more rapidly than replacement sites, showing that there has been selection against change in the protein sequence. 相似文献
5.
Franz Petry Peter J. McClive Marina Botto Bernard J. Morley Grant Morahan M. Loos 《Immunogenetics》1996,43(6):370-376
Mouse complement component C1q is a serum glycoprotein which consists of six A chains, six B chains and six C chains. The three polypeptides are 223, 228, and 217 residues long, respectively, and are encoded by three genes. DNA probes for mouse C1q A, B, and C chains were hybridized to Southern blots of DNA obtained from various inbred mouse strains. On the basis of fragment length polymorphisms, two different alleles of each of the genes could be identified. The distribution of these alleles was determined in the BXD and LXPL recombinant inbred strain series. Comparison with previously reported strain distribution patterns shows that the genes encoding mouseClq map to the same locus on distal chromosome 4. Overlapping clones spanning the entire gene cluster ofClq were isolated from genomic libraries using specific cDNA probes. The three genesClqA, ClqB, andClqC are closely arranged on a 19 kilobase stretch of DNA in the 5 to 3 orientation A-C-B. Each gene consists of two exons separated by one intron. Sequence comparison of Clq from three different species have shown that the B chains have the strongest similarity. Southern blot analysis of chromosomal DNA from 14 vertebrate species demonstrated highest similarity between theClqB genes, followed byClqC and finallyClqA.The nucleotide sequence data reported in this paper have been submitted to the EMBL, GenBank, and DDBJ nucleotide sequence databases and have been assigned the accession numbers X92958 (ClqA), X92959 (ClqB), and X92960 (ClqC) 相似文献
6.
Multiple genes coding for the androgen-regulated major urinary proteins of the mouse. 总被引:30,自引:0,他引:30
We have purified a cDNA fragment complementary to the mRNA coding for one of the major urinary proteins (MUPs) synthesized in the mouse liver. Using this cDNA as a hybridization probe, we have shown that the level of MUP mRNA is lower in the livers of females and castrated males than in those of males. The addition of testosterone to females and castrated males results in an increase in the concentration of the mRNA to levels found in males. There are approximately 15 gene per haploid genome coding for the MUPs; this allows a possible new interpretation of some of the genetic data concerning the regulation of levels of the different MUPs in the urine (Szoka and Paigen, 1978). Finally, we have shown that mouse MUP and rat alpha 2u-globulin mRNA share common sequences, but that there are surprising differences in gene number and regulation of the genes in these two closely related animals. 相似文献
7.
Identification and characterization of functional genes encoding the mouse major urinary proteins. 总被引:2,自引:5,他引:2 下载免费PDF全文
W A Held J F Gallagher C M Hohman N J Kuhn B M Sampsell R G Hughes Jr 《Molecular and cellular biology》1987,7(10):3705-3712
Mouse Ltk- cells were stably transfected with cloned genes encoding the mouse major urinary proteins (MUPs). C57BL/6J MUP genomic clones encoding MUP 2 (BL6-25 and BL6-51), MUP 3 (BL6-11 and BL6-3), and MUP 4 (BL6-42) have been identified. In C57BL/6J mice, MUP 2 and MUP 4 are known to be synthesized in male, but not female, liver, and MUP 3 is known to be synthesized in both male and female liver and mammary gland. A BALB/c genomic clone (BJ-31) was shown to encode a MUP that is slightly more basic than MUP 2 and was previously shown to be synthesized in both male and female liver of BALB/c but not C57BL/6 mice. Comigration on two-dimensional polyacrylamide gels of the MUPs encoded by the transfecting gene provides a basis for tentative identification of the tissue specificity and mode of regulation of each gene. DNA sequence analysis of the 5' flanking region indicates that the different MUP genes are highly homologous (0.20 to 2.40% divergence) within the 879 base pairs analyzed. The most prominent differences in sequence occur within an A-rich region just 5' of the TATA box. This region (from -47 to -93) contains primarily A or C(A)N nucleotides and varies from 15 to 46 nucleotides in length in the different clones. 相似文献
8.
C Lücke L Franzoni F Abbate F L?hr E Ferrari R T Sorbi H Rüterjans A Spisni 《European journal of biochemistry》1999,266(3):1210-1218
Major urinary proteins (MUPs) form an ensemble of protein isoforms which are expressed and secreted by sexually mature male mice only. They belong to the lipocalin superfamily and share with other members of this family the capacity to bind hydrophobic molecules, some of which are odorants. MUPs, either associated with or free of their natural ligands, play an important role in the reproductive cycle of these rodents by acting as pheromones. In fact, they are able to interact with receptors in the vomeronasal organ of the female mice, inducing hormonal and physiological responses by an as yet unknown mechanism. In order to investigate the structural and dynamical features of these proteins in solution, one of the various wild-type isoforms (rMUP: 162 residues) was cloned and subsequently isotopically labeled. The complete 1H, 13C and 15N resonance assignment of that isoform, achieved by using a variety of multidimensional heteronuclear NMR experiments, has been reported recently. Here, we describe the refined high-resolution three-dimensional solution structure of rMUP in the native state, obtained by a combination of distance geometry and energy minimization calculations based on 2362 NOE-derived distance restraints. A comparison with the crystal structure of the wild-type MUPs reveals, aside from minor differences, a close resemblance in both secondary structure and overall topology. The secondary structure of the protein consists of eight antiparallel beta-strands forming a single beta-sheet and an alpha-helix in the C-terminal region. In addition, there are several helical and hairpin turns distributed throughout the protein sequence, mostly connecting the beta-strands. The tertiary fold of the beta-sheet creates a beta-barrel, common to all members of the lipocalin superfamily. The shape of the beta-barrel resembles a calyx, lined inside by mostly hydrophobic residues that are instrumental for the binding and transport of small nonpolar ligand molecules. 相似文献
9.
10.
11.
Variation in mouse major urinary protein (MUP) genes and the MUP gene products within and between inbred lines 总被引:7,自引:0,他引:7
The mouse major urinary proteins (MUPs) and the unprocessed in vitro translation products of MUP mRNA were each resolved by isoelectric focusing (IEF). The urinary MUPs showed about 15 distinct components, and the unprocessed MUPs about 20. In each case wide variation was observed in the relative intensities of individual bands. A comparison of three inbred lines (C57BL, BALB/c and JU) showed inter-line variation in the patterns both of the urinary MUPs and of the unprocessed MUPs. A series of experiments was carried out with a cloned MUP cDNA probe. All three inbred lines contain the same number (about 20) of MUP genes per haploid genome. In Southern blot analysis of genomic DNA the MUP genes displayed complex patterns which we interpret as showing variation on a common basic MUP gene sequence. For each combination of restriction enzymes tested, one size of fragment carried more than half of the total label, and this fragment was always the same in the three inbred lines. Inter-line differences were observed in the patterns of some of the less reactive fragments. MUP mRNA consists of at least two distinct species with sizes of 1 and 1.2 kb, which reacted with the probe in a label ratio of about 0.5 to 1. In the three inbred lines this ratio was essentially the same. 相似文献
12.
The SWXL-4 recombinant inbred mouse strain is unusually sensitive to recurrent tonic-clonic seizures upon routine handling and to seizures induced by chemoconvulsants. In a conventional intercross with the ABP/Le strain, we previously mapped a SWXL-4-derived quantitative trait locus called Szf1 (seizure frequency 1) to Chromosome 7. In the present study, we confirm the existence of Szf1 in both an independent cross and a congenic strain. However, derivative congenic recombinant strains show that an interaction between at least two genes on Chromosome 7-each of which has a very small effect on its own-account for Szf1. 相似文献
13.
14.
We have used long-range physical mapping and restriction fragment length polymorphisms between two mouse species to determine the chromosomal organization and location of the genes encoding three distinct isoforms of the alpha-subunit of the brain sodium channel. Physical mapping by pulsed-field gel electrophoresis has established that Scn2a and Scn3a (genes encoding type II and type III sodium channel alpha-subunit isoforms) are physically linked and are separated by a maximum distance of 600 kb. The segregation of restriction fragment length variations in backcross progeny of a Mus musculus and Mus spretus mating indicates that Scn 1 a (gene encoding the type I sodium channel alpha subunit) and Scn2a are tightly linked and are separated by a distance of 0.7 cM. Linkage analysis in backcross and recombinant inbred (BXD and AKXD) strains of mice localized the three sodium channel genes to the proximal segment of mouse chromosome 2 and suggested the probable gene order centromere-Hc-Neb-Pmv7-Scn2a/Scn3a-Scn1a-Mpmv 14. These results indicate that the three isoforms of the brain sodium channel alpha-subunit are encoded by three distinct genes that share a common ancestral origin. 相似文献
15.
A minor component of the major urinary protein complex of the house mouse was chromatographically isolated and ascertained to be a previously suspected glycoprotein. Using highly sensitive mass-spectrometric techniques for sequencing and linkage analysis, the N-linked oligosaccharides of this glycoprotein were characterized. They were determined to be of the complex type with a wide heterogeneity. The heterogeneity was due to both the degree of sialylation and the presence of galactose residues in either beta(1-3) or beta(1-4) linkages. The biantennary structures were the most pronounced glycans, while tri- and tetraantennary entities were minor. 相似文献
16.
17.
18.
Silveira PA Baxter AG Cain WE van Driel IR 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(9):5106-5111
Although much is known about the pathology of human chronic atrophic (type A, autoimmune) gastritis, its cause is poorly understood. Mouse experimental autoimmune gastritis (EAG) is a CD4+ T cell-mediated organ-specific autoimmune disease of the stomach that is induced by neonatal thymectomy of BALB/c mice. It has many features similar to human autoimmune gastritis. To obtain a greater understanding of the genetic components predisposing to autoimmune gastritis, a linkage analysis study was performed on (BALB/cCrSlc x C57BL/6)F2 intercross mice using 126 microsatellite markers covering 95% of the autosomal genome. Two regions with linkage to EAG were identified on distal chromosome 4 and were designated Gasa1 and Gasa2. The Gasa1 gene maps within the same chromosomal segment as the type 1 diabetes and systemic lupus erythematosus susceptibility genes Idd11 and Nba1, respectively. Gasa2 is the more telomeric of the two genes and was mapped within the same chromosomal segment as the type 1 diabetes susceptibility gene Idd9. In addition, there was evidence of quantitative trait locus controlling autoantibody titer within the telomeric segment of chromosome 4. The clustering of genes conferring susceptibility to EAG with those conferring susceptibility to type 1 diabetes is consistent with the coinheritance of gastritis and diabetes within human families. This is the first linkage analysis study of autoimmune gastritis in any organism and as such makes an important and novel contribution to our understanding of the etiology of this disease. 相似文献
19.
20.