首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotine, the causative agent of addiction to tobacco, can also be a neuroprotectant. Nicotine-induced neuroprotection against different toxins is imparted through pharmacologically distinct neuronal nicotinic acetylcholine receptors (nAChR) where protection against chronic N-methyl-d-aspartic acid (NMDA) exposure is through nAChRalpha7 but protection against the toxic peptide of amyloid precursor protein, Abeta25-35, is through nAChRalpha4beta2. The inflammatory cytokine tumor necrosis factor alpha (TNFalpha) is also neuroprotective, however, in the presence of nicotine, neuroprotection against NMDA is abolished. The specificity of nicotine-TNFalpha antagonism was further refined using a mouse transgenic dominant negative of nAChRalpha7 in which nicotine failed to induce neuroprotection against NMDA and antagonism of TNFalpha was absent. However, nicotine-mediated neuroprotection against Abeta25-35 was unaffected and, therefore, did not require the expression of functional nAChRalpha7s. The mechanism of TNFalpha-mediated neuroprotection and antagonism by nicotine was independent of caspase 8 activation or nuclear factor kappa B translocation in neurons but C6-ceramide addition to neuronal cultures subsequently exposed to NMDA mimicked the neuroprotective effect of TNFalpha and, like TNFalpha, it was antagonized by cotreatment with nicotine. Therefore, the neuroprotective effects of nicotine against differing toxic assaults requires distinct nAChR subtypes and proceeds through intracellular pathways that overlap with similarly different mechanisms initiated by pro-inflammatory cytokines. These results provide insight into how nicotine imparts neuroprotection and modulates inflammatory responses.  相似文献   

2.
Nicotine stimulation of α7 nicotinic acetylcholine receptor (α7 nAChR) powerfully inhibits pro-inflammatory cytokine production in lipopolysaccharide (LPS)-stimulated macrophages and in experimental models of endotoxemia. A signaling pathway downstream from the α7 nAChRs, which involves the collaboration of JAK2/STAT3 and NF-κB to interfere with signaling by Toll-like receptors (TLRs), has been implicated in this anti-inflammatory effect of nicotine. Here, we identifiy an alternative mechanism involving interleukin-1 receptor-associated kinase M (IRAK-M), a negative regulator of innate TLR-mediated immune responses. Our data show that nicotine up-regulates IRAK-M expression at the mRNA and protein level in human macrophages, and that this effect is secondary to α7 nAChR activation. By using selective inhibitors of different signaling molecules downstream from the receptor, we provide evidence that activation of STAT3, via either JAK2 and/or PI3K, through a single (JAK2/PI3K/STAT3) or two convergent cascades (JAK2/STAT3 and PI3K/STAT3), is necessary for nicotine-induced IRAK-M expression. Moreover, down-regulation of this expression by small interfering RNAs specific to the IRAK-M gene significantly reverses the anti-inflammatory effect of nicotine on LPS-induced TNF-α production. Interestingly, macrophages pre-exposed to nicotine exhibit higher IRAK-M levels and reduced TNF-α response to an additional LPS challenge, a behavior reminiscent of the ‘endotoxin tolerant’ phenotype identified in monocytes either pre-exposed to LPS or from immunocompromised septic patients. Since nicotine is a major component of tobacco smoke and increased IRAK-M expression has been considered one of the molecular determinants for the induction of the tolerant phenotype, our findings showing IRAK-M overexpression could partially explain the known influence of smoking on the onset and progression of inflammatory and infectious diseases.  相似文献   

3.

Background

Cigarette smoking adversely affects endochondral ossification during the course of skeletal growth. Among a plethora of cigarette chemicals, nicotine is one of the primary candidate compounds responsible for the cause of smoking-induced delayed skeletal growth. However, the possible mechanism of delayed skeletal growth caused by nicotine remains unclarified. In the last decade, localization of neuronal nicotinic acetylcholine receptor (nAChR), a specific receptor of nicotine, has been widely detected in non-excitable cells. Therefore, we hypothesized that nicotine affect growth plate chondrocytes directly and specifically through nAChR to delay skeletal growth.

Methodology/Principal Findings

We investigated the effect of nicotine on human growth plate chondrocytes, a major component of endochondral ossification. The chondrocytes were derived from extra human fingers. Nicotine inhibited matrix synthesis and hypertrophic differentiation in human growth plate chondrocytes in suspension culture in a concentration-dependent manner. Both human and murine growth plate chondrocytes expressed alpha7 nAChR, which constitutes functional homopentameric receptors. Methyllycaconitine (MLA), a specific antagonist of alpha7 nAChR, reversed the inhibition of matrix synthesis and functional calcium signal by nicotine in human growth plate chondrocytes in vitro. To study the effect of nicotine on growth plate in vivo, ovulation-controlled pregnant alpha7 nAChR +/− mice were given drinking water with or without nicotine during pregnancy, and skeletal growth of their fetuses was observed. Maternal nicotine exposure resulted in delayed skeletal growth of alpha7 nAChR +/+ fetuses but not in alpha7 nAChR −/− fetuses, implying that skeletal growth retardation by nicotine is specifically mediated via fetal alpha7 nAChR.

Conclusions/Significance

These results suggest that nicotine, from cigarette smoking, acts directly on growth plate chondrocytes to decrease matrix synthesis, suppress hypertrophic differentiation via alpha7 nAChR, leading to delayed skeletal growth.  相似文献   

4.
Galantamine is a plant alkaloid that is used in the treatment of Alzheimer's disease. We have studied the effects of galantamine on beta-amyloid-enhanced glutamate toxicity using primary rat cultured cortical neurons. Nicotine and galantamine alone, and in combination, protected neurons against this neurotoxicity. The protection was not blocked by alpha4beta2 nicotinic acetylcholine receptor (nAChR) antagonists, but was partially blocked by alpha7 nAChR antagonists. Galantamine induced phosphorylation of Akt, an effector of phosphatidylinositol 3-kinase (PI3K), while PI3K inhibitors blocked the protective effect and Akt phosphorylation. The antibody FK1, which selectively blocks the allosterically potentiating ligand site on nAChR, significantly reduced the galantamine-induced protection and Akt phosphorylation. Furthermore, suppression of alpha7 nAChR using an RNA interference technique reduced Akt phosphorylation induced by galantamine. Our data suggest that neuroprotection by galantamine is mediated, at least in part, by alpha7 nAChR-PI3K cascade.  相似文献   

5.
The activation of cholinergic pathways by nicotine elicits various physiological and pharmacological effects in mammals. For example, the stimulation of nicotinic acetylcholine receptors (nAChRs) leads to an antinociceptive effect. However, it remains to be elucidated which subtypes of nAChR are involved in the antinociceptive effect of nicotine on nerve injury-induced allodynia and the underlying cascades of the nAChR-mediated antiallodynic effect. In this study, we attempted to characterize the actions of nicotine at the spinal level against mechanical allodynia in an animal model of neuropathic pain, tibial nerve transection (TNT) in rats. It was found that the intrathecal injection of nicotine, RJR-2403, a selective alpha4beta2 nAChR agonist, and choline, a selective alpha7 nAChR agonist, produced an antinociceptive effect on the TNT-induced allodynia. The actions of nicotine were almost completely suppressed by pretreatment with mecamylamine, a non-selective nicotinic antagonist, or dihydro-beta-erythroidine, a selective alpha4beta2 nAChR antagonist, and partially reversed by pretreatment with methyllycaconitine, a selective alpha7 nAChR antagonist. Furthermore, pretreatment with strychnine, a glycine receptor antagonist, blocked the antinociception induced by nicotine, RJR-2403, and choline. On the other hand, the GABAA antagonist bicuculline did not reverse the antiallodynic effect of nicotine. Together, these results indicate that the alpha4beta2 and alpha7 nAChR system, by enhancing the activities of glycinergic neurons at the spinal level, exerts a suppressive effect on the nociceptive transduction in neuropathic pain.  相似文献   

6.
The neurotoxicity of amyloid-β (Aβ) involves caspase-dependent and -independent programmed cell death. The latter is mediated by the nuclear translocation of the mitochondrial flavoprotein apoptosis inducing factor (AIF). Nicotine has been shown to decrease Aβ neurotoxicity via inhibition of caspase-dependent apoptosis, but it is unknown if its neuroprotection is mediated through caspase-independent pathways. In the present study, pre-treatment with nicotine in rat cortical neuronal culture markedly reduced Aβ(1-42) induced neuronal death. This effect was accompanied by a significant reduction of mitochondrial AIF release and its subsequent nuclear translocation as well as significant inhibition of cytochrome c release and caspase 3 activation. Pre-treatment with selective α7nicotinic acetylcholine receptor(nAChR) antagonist (methyllycaconitine), but not the α4 nAChR antagonist (dihydro-β-erythroidine), could prevent the neuroprotective effect of nicotine on AIF release/translocation, suggesting that nicotine inhibits the caspase-independent death pathway in a α7 nAChR-dependent fashion. Furthermore, the neuroprotective action of nicotine on AIF release/translocation was suppressed by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Pre-treatment with nicotine significantly restored Akt phosphorylation, an effector of PI3K, in Aβ(1-42) -treated neurons. These findings indicate that the α7 nAChR activation and PI3K/Akt transduction signaling contribute to the neuroprotective effects of nicotine against Aβ-induced cell death by modulating caspase-independent death pathways.  相似文献   

7.
Nitrosamines as nicotinic receptor ligands   总被引:1,自引:0,他引:1  
Schuller HM 《Life sciences》2007,80(24-25):2274-2280
Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention.  相似文献   

8.
Kidney ischemia/reperfusion injury (I/R) is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the alpha7nAChR, as attested by the absence of protection in alpha7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-alpha and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic alpha7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.  相似文献   

9.
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, is a key contributor for endothelial dysfunction. Decrease in activity of dimethylarginine dimethylaminohydrolase (DDAH), a major hydrolase of ADMA, causes accumulation of ADMA under cardiovascular abnormalities. The study was to determine whether nicotine-induced endothelial dysfunction is related to modulating DDAH/ADMA/NOS pathway. Four-week oral nicotine treatment (5 mg/kg/day) significantly increased the plasma level of ADMA and decreased aortic DDAH expression as well as impaired endothelial function in Sprague-Dawley rats. Similarly, the medium levels of both ADMA and lactate dehydrogenase were markedly elevated in umbilical vein endothelial cells (HUVECs) treated with nicotine (10 microM) for 48 h. Nicotine-induced endothelial damages were markedly attenuated by L-arginine or overexpression of DDAH-II. Nicotine greatly downregulated both mRNA and protein levels of DDAH-II, and decreased DDAH activity in HUVECs. HUVECs express alpha7 nicotinic acetylcholine receptor (alpha7 nAChR), whose antagonists could block these effects of nicotine mentioned above. Intracellular Ca2+ chelator did not affect nicotine-induced decrease in DDAH-II mRNA level. In conclusion, nicotine modulates DDAH/ADMA/NOS pathway of endothelial cell via activation of alpha7 nAChR, which may be involved in endothelial dysfunction associated to smoking.  相似文献   

10.
The peripheral chemoreceptors of the trigeminal system in the nasal cavity are presumed to be free nerve endings arising from Adelta and C fibers. These fibers appear to be scattered throughout the nasal epithelium, and arise from the nasopalatine and ethmoid branches of the trigeminal nerve. In the present study, the effects of nicotinic acetylcholine receptor (nAChR) blockers on ethmoid nerve responses to nicotine and cyclohexanone were examined. Multiunit neural recordings were obtained from the ethmoid nerve of Sprague-Dawley rats. Vapor-phase nicotine (12.5 p.p.m.) and cyclohexanone (450 p.p. m.) were delivered to the rats' nares via an air-dilution olfactometer. The magnitude of the response to nicotine decreased after the administration of the nAChR blockers dihydro-beta-erythroidine hydrobromide (DHBE) and mecamylamine hydrochloride. DHBE is a competitive nicotinic receptor antagonist specific for the alpha4beta2 receptor subtype and mecamylamine is known to bind alpha3beta4 and alpha4beta2 receptors. The nAChR blockers had no effect on ethmoid nerve responses to cyclohexanone. These results suggest that the mechanism by which at least one irritant stimulates nasal trigeminal nerve endings involves the binding of irritant with a specific receptor.  相似文献   

11.
We have investigated mechanisms of nicotine-induced phosphorylation of extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and cAMP response element binding protein (CREB) in PC12h cells. Nicotine transiently induced ERK phosphorylation at more than 1 microM. The maximal level of nicotine-induced ERK phosphorylation was lower than that of the membrane depolarization induced and, to a great extent, the nerve growth factor (NGF)-induced ERK phosphorylation. Nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitors had no significant effect on nicotine-induced ERK phosphorylation. L-Type voltage-sensitive calcium channel antagonists inhibited nicotine-induced ERK phosphorylation. Calcium imaging experiments showed that alpha7-containing nAChR subtypes were functional at 1 microM of nicotine in the nicotine-induced calcium influx, and non-alpha7 nAChRs were prominent in the Ca(2+) influx at 50 microM of nicotine. An expression of dominant inhibitory Ras inhibited nicotine-induced ERK phosphorylation. A calmodulin antagonist, a CaM kinase inhibitor, a MAP kinase kinase inhibitor inhibited nicotine-induced ERK and CREB phosphorylation. The time course of the phosphorylation of CREB induced by nicotine was similar to that of ERK induced by nicotine. These results suggest that non-alpha7 nAChRs are involved in nicotine-induced ERK phosphorylation through CaM kinase and the Ras-MAP kinase cascade and most of the nicotine-induced CREB phosphorylation is mediated by the ERK phosphorylation in PC12h cells.  相似文献   

12.
Desensitization induced by chronic nicotine exposure has been hypothesized to trigger the up-regulation of the alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR) in the central nervous system. We studied the effect of acute and chronic nicotine exposure on the desensitization and up-regulation of different alpha4beta2 subunit ratios (1alpha:4beta, 2alpha:3beta, and 4alpha:1beta) expressed in Xenopus oocytes. The presence of alpha4 subunit in the oocyte plasmatic membrane increased linearly with the amount of alpha4 mRNA injected. nAChR function and expression were assessed during acute and after chronic nicotine exposure using a two-electrode voltage clamp and whole-mount immunofluorescence assay along with confocal imaging for the detection of the alpha4 subunit. The 2alpha4:3beta2 subunit ratio displayed the highest ACh sensitivity. Nicotine dose-response curves for the 1alpha4:4beta2 and 2alpha4:3beta2 subunit ratios displayed a biphasic behavior at concentrations ranging from 0.1 to 300 microm. A biphasic curve for 4alpha4:1beta2 was obtained at nicotine concentrations higher than 300 microm. The 1alpha4:4beta2 subunit ratio exhibited the lowest ACh- and nicotine-induced macroscopic current, whereas 4alpha4:1beta2 presented the largest currents at all agonist concentrations tested. Desensitization by acute nicotine exposure was more evident as the ratio of beta2:alpha4 subunits increased. All three alpha4beta2 subunit ratios displayed a reduced state of activation after chronic nicotine exposure. Chronic nicotine-induced up-regulation was obvious only for the 2alpha4: 3beta2 subunit ratio. Our data suggest that the subunit ratio of alpha4beta2 determines the functional state of activation, desensitization, and up-regulation of this neuronal nAChR. We propose that independent structural sites regulate alpha4beta2 receptor activation and desensitization.  相似文献   

13.
Fetal and neonatal nicotine exposure causes β-cell apoptosis and loss of β-cell mass, but the underlying mechanisms are unknown. The goal of this study was to determine whether maternally derived nicotine can act via the pancreatic nicotinic acetylcholine receptor (nAChR) during fetal and neonatal development to induce oxidative stress in the pancreas. Female Wistar rats were given saline or nicotine (1 mg/kg/day) via subcutaneous injection for 2 weeks prior to mating until weaning (postnatal day 21). In male offspring, nAChR subunit mRNA expression was characterized in the developing pancreas and various oxidative stress markers were measured at weaning following saline and nicotine exposure. The nAChR subunits 2-4, 6, 7, and β2–β4 were present in the pancreas during development. Fetal and neonatal exposure to nicotine significantly increased pancreatic GPx-1 and MnSOD protein expression, as well as islet ROS production. Furthermore, protein carbonyl formation was higher in nicotine-exposed offspring relative to controls, particularly within the mitochondrial fraction. There was also a nonsignificant trend toward higher serum 8-isoPG levels. These data suggest that β-cell apoptosis in the fetal and neonatal pancreas may be the result of a direct effect of nicotine via its receptor and that this effect may be mediated through increased oxidative stress.  相似文献   

14.
Physiological anti-inflammatory mechanisms can potentially be exploited for the treatment of inflammatory disorders. Here we report that the neurotransmitter acetylcholine inhibits HMGB1 release from human macrophages by signaling through a nicotinic acetylcholine receptor. Nicotine, a selective cholinergic agonist, is more efficient than acetylcholine and inhibits HMGB1 release induced by either endotoxin or tumor necrosis factor-alpha (TNF-alpha). Nicotinic stimulation prevents activation of the NF-kappaB pathway and inhibits HMGB1 secretion through a specific 'nicotinic anti-inflammatory pathway' that requires the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). In vivo, treatment with nicotine attenuates serum HMGB1 levels and improves survival in experimental models of sepsis, even when treatment is started after the onset of the disease. These results reveal acetylcholine as the first known physiological inhibitor of HMGB1 release from human macrophages and suggest that selective nicotinic agonists for the alpha7nAChR might have therapeutic potential for the treatment of sepsis.  相似文献   

15.
Age-related changes in the mammalian dorsal hippocampus are associated with diminished expression of neuronal nicotinic acetylcholine receptors (nAChR), which is particularly severe in pathologies such as those associated with dementias, including Alzheimer's disease. Because the mouse is a useful model for age-related decline in nAChR expression in the basal forebrain and limbic system, we used immunohistochemistry to examine the influence of long-term (12-month) oral administration of nicotine and/or the cyclooxygenase-2 (COX-2) preferring non-steroidal anti-inflammatory drug (NSAID) NS398 on nAChR alpha4, alpha5, alpha7, and beta4 expression in the C57BL/6 mouse. Inhibitory neurons of the dorsal hippocampus that express nAChRs also constitutively express COX-2 and the peroxisome proliferator-antagonist receptor subtype gamma-2 (PPAR gamma2) which is also a target of NS398. Administration of NS398 correlated with retention of nAChR alpha4 and to a lesser extent nAChR beta4, but not nAChR alpha5 or alpha7, but nicotine exhibited no similar effect. Nicotine and NS398 co-administration abolished the NS398-related effect on nAChR alpha4 retention. These results provide evidence that the interaction during aging between oral administration of nicotine and NSAIDs are not straightforward and could even be antagonistic when combined.  相似文献   

16.
Nicotine addiction, the primary cause of tobacco consumption, is mediated through nicotine binding to brain nicotinic acetylcholine receptor (nAChRs). Upon chronic exposure, nicotine elicits a cascade of events, starting with nAChR activation and desensitization, followed by a long term up-regulation that corresponds to an increase in the number of the high affinity nAChRs, a paradoxical process that occurs in the brain of smokers. Recent investigation of the maturation and trafficking of the major brain alpha4beta2 nAChR demonstrates that up-regulation is initiated in the endoplasmic reticulum soon after protein translation. The data thus far accumulated provide evidence that nicotine elicits up-regulation by promoting maturation of nAChR precursors that would otherwise be degraded. This "maturational enhancer" action of nicotine probably contributes to the long term effect of chronic nicotine, and suggests a novel mechanism of neuronal plasticity through an yet unknown endogenous substance which would modulate the receptor expression under physiological conditions.  相似文献   

17.
18.
Neuronal nicotinic acetylcholine receptors (nAChR) can regulate several neuronal processes through Ca2+-dependent mechanisms. The versatility of nAChR-mediated responses presumably reflects the spatial and temporal characteristics of local changes in intracellular Ca2+ arising from a variety of sources. The aim of this study was to analyse the components of nicotine-evoked Ca2+ signals in SH-SY5Y cells, by monitoring fluorescence changes in cells loaded with fluo-3 AM. Nicotine (30 microm) generated a rapid elevation in cytoplasmic Ca2+ that was partially and additively inhibited (40%) by alpha7 and alpha3beta2* nAChR subtype selective antagonists; alpha3beta4* nAChR probably account for the remaining response (60%). A substantial blockade (80%) by CdCl2 (100 microm) indicates that voltage-operated Ca2+ channels (VOCC) mediate most of the nicotine-evoked response, although the alpha7 selective antagonist alpha-bungarotoxin (40 nm) further decreased the CdCl2- resistant component. The elevation of intracellular Ca2+ levels provoked by nicotine was sustained for at least 10 min and required the persistent activation of nAChR throughout the response. Intracellular Ca2+ stores were implicated in both the initial and sustained nicotine-evoked Ca2+ responses, by the blockade observed after ryanodine (30 microm) and the inositoltriphosphate (IP3)-receptor antagonist, xestospongin-c (10 microm). Thus, nAChR subtypes are differentially coupled to specific sources of Ca2+: activation of nAChR induces a sustained elevation of intracellular Ca2+ levels which is highly dependent on the activation of VOCC, and also involves Ca2+ release from ryanodine and IP3-dependent intracellular stores. Moreover, the alpha7, but not alpha3beta2* nAChR, are responsible for a fraction of the VOCC-independent nicotine-evoked Ca2+ increase that appears to be functionally coupled to ryanodine sensitive Ca2+ stores.  相似文献   

19.
Alzheimer's disease pathology is characterized by the presence of neuritic plaques and the loss of cholinergic neurons in the brain. The underlying mechanisms leading to these events are unclear, but the 42-amino acid beta-amyloid peptide (Abeta(1-42)) is involved. Immunohistochemical studies on human sporadic Alzheimer's disease brains demonstrate that Abeta(1-42) and a neuronal pentameric cation channel, the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), are both present in neuritic plaques and co-localize in individual cortical neurons. Using human brain tissues and cells that overexpress either alpha7nAChR or amyloid precursor protein as the starting material, Abeta(1-42) and alpha7nAChR can be co-immunoprecipitated by the respective specific antibodies, suggesting that they are tightly associated. The formation of the alpha7nAChR.Abeta(1-42) complex can be efficiently suppressed by Abeta(12-28), implying that this Abeta sequence region contains the binding epitope. Receptor binding experiments show that Abeta(1-42) and alpha7nAChR bind with high affinity, and this interaction can be inhibited by alpha7nAChR ligands. Human neuroblastoma cells overexpressing alpha7nAChR are readily killed by Abeta(1-42), whereas alpha7nAChR agonists such as nicotine and epibatidine offered protection. Because Abeta(1-42) inhibits alpha7nAChR-dependent calcium activation and acetylcholine release, two processes critically involved in memory and cognitive functions, and the distribution of alpha7nAChR correlates with neuritic plaques in Alzheimer's disease brains, we propose that interaction of the alpha7nAChR and Abeta(1-42) is a pivotal mechanism involved in the pathophysiology of Alzheimer's disease.  相似文献   

20.
Excessive generation and accumulation of the β-amyloid (Aβ) peptide in selectively vulnerable brain regions is a key pathogenic event in the Alzheimer's disease (AD), while epigallocatechin gallate (EGCG) is a very promising chemical to suppress a variety of Aβ-induced neurodegenerative disorders. However, the precise molecular mechanism of EGCG responsible for protection against neurotoxicity still remains elusive. To validate and further investigate the possible mechanism involved, we explored whether EGCG neuroprotection against neurotoxicity of Aβ is mediated through the α7 nicotinic acetylcholine receptor (α7 nAChR) signaling cascade. It was shown in rat primary cortical neurons that short-term treatment with EGCG significantly attenuated the neurotoxicity of Aβ1–42, as demonstrated by increased cell viability, reduced number of apoptotic cells, decreased reactive oxygen species (ROS) generation, and downregulated caspase-3 levels after treatment with 25-μM Aβ1–42. In addition, EGCG markedly strengthened activation of α7nAChR as well as its downstream pathway signaling molecules phosphatidylinositol 3-kinase (PI3K) and Akt, subsequently leading to suppression of Bcl-2 downregulation in Aβ-treated neurons. Conversely, administration of α7nAChR antagonist methyllycaconitine (MLA; 20 μM) to neuronal cultures significantly attenuated the neuroprotection of EGCG against Aβ-induced neurototoxicity, thus presenting new evidence that the α7nAChR activity together with PI3K/Akt transduction signaling may contribute to the molecular mechanism underlying the neuroprotective effects of EGCG against Aβ-induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号