首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of nicotine on 5-hydroxytryptamine (5-HT) release from serotonergic nerve endings in rat dorsal hippocampal slices were studied. Nicotine (50-500 microM:) caused a concentration-dependent increase in 5-HT release. This effect was antagonised by mecamylamine (0.5 microM:), indicating an action at nicotinic receptors. Nicotine-evoked 5-HT release was not affected by tetrodotoxin (3 microM:), cadmium chloride (0.1 mM:), or the absence of Ca(2+) or Na(+) in the superfusion medium. Unexpectedly, higher concentrations of mecamylamine alone (1-50 microM:) increased 5-HT release. This suggested the presence of inhibitory input to 5-HT neurones and that these inhibitory neurones possess tonically active nicotinic receptors. The effect of mecamylamine (50 microM:) on 5-HT release was reduced by the muscarinic M(1) receptor agonist, McN-A-343 (100 microM:), but pirenzepine (0.005-1 microM:), which blocks M(1) receptors, alone increased 5-HT release. Hippocampal serotonergic neurones are known to possess both excitatory nicotinic receptors and inhibitory M(1) receptors. Although there may be several explanations for our results, one possible explanation is that nicotine stimulates 5-HT release by activating nicotinic heteroreceptors on 5-HT terminals. Mecamylamine (0.5 microM:) antagonises this effect, but higher concentrations increase 5-HT release indirectly by blocking the action of endogenous acetylcholine on nicotinic receptors situated on cholinergic neurones that provide muscarinic inhibitory input to 5-HT neurones.  相似文献   

2.
1. Intracellular recordings have been made from neurons in the central nervous system of the horse-shoe crab, Limulus polyphemus. Neurons possess resting potentials between -40 and -60 mV, with action potentials ranging from 2-3 mV up to 60 mV in amplitude. Neurons also have excitatory and inhibitory postsynaptic potentials. 2. All the neurons studied are inhibited by GABA and excited by cholinomimetics. The GABA response is chloride mediated and reversibly antagonised by picrotoxinin but not by bicuculline or bicuculline methochloride or methoiodide. The cholinergic response is nicotinic and blocked by pentolinium, hexamethonium, chlorisondamine and dihydro-beta-erythroidine. 3. L-Glutamate can excite some cells, inhibit others and have a biphasic action, inhibition followed by excitation, on other cells. The inhibitory effect is chloride mediated and blocked by picrotoxinin. Ibotenate mimics the action of glutamate both in terms of inhibition and excitation but kainate and quisqualate only mimic the excitatory action of L-glutamate. 4. Dopamine, octopamine, 5-hydroxytryptamine and histamine excite some neurons while inhibiting others or have a biphasic action. Dopamine and octopamine normally have different effects on the same cell, suggesting they act via different receptors. Octopamine shows stereospecificity for the (-) isomer which is more than 100 times more active than the (+) isomer and octopamine is reversibly antagonised by phentolamine and cyproheptadine. 5. Proctolin has an excitatory action on these neurons and this effect is long lasting and can be potentiated by dibutyl cyclic AMP. 6. The pharmacology of Limulus central neurons is compared to the pharmacology of insect and crustacean central neurons. It is concluded that GABA and acetylcholine are central transmitters throughout the arthropods. It is also probable that L-glutamate and octopamine have a physiological role in the arthropod central nervous system. Proctolin appears to modify neuronal and muscle activity in the arthropods and has a modulatory or transmitter function.  相似文献   

3.
Responses of neurons in the antennal lobe (AL) of the moth Manduca sexta to stimulation of the ipsilateral antenna by odors consist of excitatory and inhibitory synaptic potentials. Stimulation of primary afferent fibers by electrical shock of the antennal nerve causes a characteristic IPSP-EPSP synaptic response in AL projection neurons. The IPSP in projection neurons reverses below the resting potential, is sensitive to changes in external and internal chloride concentration, and thus is apparently mediated by an increase in chloride conductance. The IPSP is reversibly blocked by 100 microM picrotoxin or bicuculline. Many AL neurons respond to application of GABA with a strong hyperpolarization and an inhibition of spontaneous spiking activity. GABA responses are associated with an increase in neuronal input conductance and a reversal potential below the resting potential. Application of GABA blocks inhibitory synaptic inputs and reduces or blocks excitatory inputs. EPSPs can be protected from depression by application of GABA. Muscimol, a GABA analog that mimics GABA responses at GABAA receptors but not at GABAB receptors in the vertebrate CNS, inhibits many AL neurons in the moth.  相似文献   

4.
In the cerebellum, infusion of NMDA (200 microM) for 20 min evoked a marked (200%) increase of extracellular cyclic GMP (cGMP) levels. The selective GABA(A) receptor agonist muscimol (0.01-100 microM) was able to counteract the NMDA effect with an EC(50) of 0.65 microM; the inhibitory effect of muscimol (10 microM) was prevented by bicuculline (50 microM). Diazepam (10 microM) significantly potentiated the muscimol (1 microM) inhibition; furthermore, when coinfused with 0.1 microM muscimol (a concentration not affecting, on its own, the cGMP response to NMDA), diazepam (10 microM) reduced the NMDA effect. Similar results were obtained with zolpidem (0.1-1 microM). Finally, local infusion of the benzodiazepine site antagonist flumazenil (10 microM), together with muscimol and diazepam, almost completely restored the effect of NMDA on extracellular cGMP levels. It is concluded that GABA(A) receptors potently control the NMDA/nitric oxide/cGMP pathway in the cerebellum in vivo. In terms of the alpha subunit composition, we can deduce that the cerebellar GABA(A) receptor does not contain alpha(6) or beta(4) subunits because it is diazepam-sensitive. Moreover, the observation that zolpidem is active at a rather low concentration, in combination with localization studies present in the literature, tend to exclude the presence of alpha(5) subunits in the receptor composition and suggest the involvement of an alpha(1) subunit.  相似文献   

5.
Acetylcholine has been suggested as a neurotransmitter released in the Aplysia gill by peripheral afferents of central neurons and by peripheral neurons within the gill. The perfused gill, isolated from the abdominal ganglion, was examined. At concentrations greater than 1 microM, acetylcholine elicited a slowly developing tonic contraction of the afferent vein that reversed upon washout. This effect was observed on both quiescent and active preparations. At concentrations less than 1 microM, acetylcholine perfusion resulted in a reduction of gill tone. The excitatory effect of acetylcholine was reduced 80 and 60% by the cholinergic antagonists atropine and hexamethonium, respectively. The acetylcholine-evoked contraction was potentiated 2.5-fold when curare was coinfused. Carbachol did not mimic the excitatory effects of acetylcholine. At all concentrations examined (1-100 microM), carbachol infusion reduced baseline tension, the amplitude of spontaneous contractions and contractions evoked by FMRFamide and dopamine. Contractions evoked by perfusion of p-chlorophenylthiocyclic AMP were greatly reduced when carbachol was added to the perfusate. Further addition of curare reversibly blocked carbachol inhibition of the cyclic AMP-evoked contractions. These findings suggest that excitatory and inhibitory cholinergic receptors are involved in the regulation of gill contractile behavior by acetylcholine.  相似文献   

6.
P Serfozo  D J Cash 《FEBS letters》1992,310(1):55-59
Chlordiazepoxide (CDPX) enhanced the rate of chloride exchange mediated by the major GABAA receptor found on sealed native membrane vesicles from rat cerebral cortex. The initial rate constant for chloride exchange for this receptor, (JA), a measure of open channel, was determined from the progress of GABA-mediated influx of 36Cl-. The dependence of JA on GABA concentration was hyperbolic in the presence of CDPX (150 microM, sufficient to give maximum enhancement of chloride exchange rate) but sigmoid in its absence. Enhancement of channel opening (10-fold at 0.3 microM GABA) decreased with increasing GABA concentration. The maximal response, above 1,000 microM GABA, was unaltered. The half-response concentration was reduced from 80 microM to 50 microM. CDPX alone caused no measurable 36Cl- exchange. In the presence of CDPX, channel opening occurred with only one bound GABA molecule, whereas in its absence, channel opening with two bound GABA molecules was much more favorable. This could not be direct allosteric modulation of the channel opening conformational change by binding of CDPX at effector sites, but could be explained by an additional change of the receptor on binding CDPX to give a closed state which gave channel opening mediated by a single GABA binding site. Another possibility is that CDPX could act at one of the channel opening binding sites without a postulated, second closed conformational state.  相似文献   

7.
1. Intracellular recordings were made from identified neurones in the suboesophageal ganglia of Helix aspersa. Seven neuropeptides were tested for activity and their actions compared with acetylcholine and FMRFamide.2. Three peptides isolated from nematodes, AF-1, AF-2 and PAN-1 had mainly inhibitory effects with thresholds of around 1 nM. This inhibition was due to an increase in potassium conductance.3. The molluscan neuropeptides LSSFVRIamide, CARP and ACEP-1 were all active on certain neurones; the first two showed only inhibitory effects while ACEP-1 was mainly excitatory. The thresholds in each case were 0.1–10 μM. When norleucine replaced methionine in CARP, the potency was reduced by at least 100 times.4. The echinoderm peptide, SALMF-1, only excited neurones but with a very low threshold, around 1.0 fM.5. There was no obvious correlation between the action of these peptides and either acetylcholine or FMRFamide.  相似文献   

8.
1. Extrasynaptic GABA-receptors occur on both neurone somata and unmyelinated axons in the mammalian peripheral nervous system. Activation of these receptors leads to depolarization, reduced spike amplitude and slowed conduction, probably mediated through increased Cl- conductance. 2. GABA also depolarizeds preganglionic nerve terminals in the rat superior cervical ganglion and reduces the release of acetylcholine by preganglionic nerve impulses. 3. The Schwann and satellite neuroglial cells surrounding peripheral unmyelinated axons and neurones possess a GABA-carrier promoting net uptake of GABA at external concentrations greater than or equal to 1 microM. 4. The possible significance of extrasynaptic receptors and carriers for GABA is discussed.  相似文献   

9.
Although originally cloned from rat brain, the P2X7 receptor has only recently been localized in neurones, and functional responses mediated by these neuronal P2X7 receptors (P2X7 R) are largely unknown. Here we studied the effect of P2X7 R activation on the release of neurotransmitters from superfused rat hippocampal slices. ATP (1-30 mm) and other ATP analogues elicited concentration-dependent [3 H]GABA outflow, with the following rank order of potency: benzoylbenzoylATP (BzATP) > ATP > ADP. PPADS, the non-selective P2-receptor antagonist (3-30 microm), Brilliant blue G (1-100 nm) the P2X7 -selective antagonist and Zn2+ (0.1-30 microm) inhibited, whereas lack of Mg2+ potentiated the response by ATP. In situ hybridization revealed that P2X7 R mRNA is expressed in the neurones of the cell body layers in the hippocampus. P2X7 R immunoreactivity was found in excitatory synaptic terminals in CA1 and CA3 region targeting the dendrites of pyramidal cells and parvalbumin labelled structures. ATP (3-30 microm) and BzATP (0.6-6 microm) elicited concentration-dependent [14 C]glutamate efflux, and blockade of the kainate receptor-mediated transmission by CNQX (10-100 microm) and gadolinium (100 microm), decreased ATP evoked [3 H]GABA efflux. The Na+ channel blocker TTX (1 microm), low temperature (12 degrees C), and the GABA uptake blocker nipecotic acid (1 mm) prevented ATP-induced [3 H]GABA efflux. Brilliant blue G and PPADS also reduced electrical field stimulation-induced [3 H]GABA efflux. In conclusion, P2X7 Rs are localized to the excitatory terminals in the hippocampus, and their activation regulates the release of glutamate and GABA from themselves and from their target cells.  相似文献   

10.
在大鼠下丘脑薄片和豚鼠腹腔神经节上,分别用玻璃微电极细胞外和细胞内记录方法,观察了10-6mol/L糖皮质激素(GC)对谷氨酸和GABA受体介导效应的快速调制作用。结果表明,GC灌流后5min,对谷氨酸受体介导的效应起抑制作用,而对GABA受体介导的效应起增强作用。撤除GC后,神经元对谷氨酸和GABA的反应恢复到对照水平。低钙高镁灌流液不能取消GC的调制作用。结果提示,GC在不需要突触环路条件下,可能通过非基因组途径影响谷氨酸和GABA受体介导的效应。  相似文献   

11.
GAT-1, a gamma-aminobutyric acid (GABA) transporter cloned from rat brain, was expressed in Xenopus oocytes. Voltage-clamp measurements showed concentration-dependent, inward currents in response to GABA (K0.5 4.7 microM). The transport current required extracellular sodium and chloride ions; the Hill coefficient for chloride was 0.7, and that for sodium was 1.7. Correlation of current and [3H]GABA uptake measurements indicate that flux of one positive charge occurs per molecule of GABA transported. Membrane hyperpolarization from -40 to -100 mV increased the transport current approximately 3-fold. The results indicate that the transport of one molecule of GABA involves the co-transport of two sodium ions and one chloride ion.  相似文献   

12.
Effects of barbiturates on the inhibitory action of GABA to the hexamethonium-resistant excitatory response of the stomach to stimulation of the vagal afferent fibers were studied in cats. Inhibition of the hexamethonium-resistant excitatory response by GABA were compared under alpha-chloralose, alpha-chloralose-phenobarbital (PhB), and alpha-chloralose-pentobarbital (PB)-anesthesia in cats. The ID50 of GABA on the hexamethonium-resistant excitatory response was not significantly affected by PhB, but reduced by PB. Both picrotoxin and bicuculline antagonized the effects of GABA. The present experiments demonstrated that PB potentiated the inhibitory effect of GABA on the hexamethonium-resistant excitatory response of the stomach, and suggested that the potentiation by PB may be due to activation of GABA-receptor-ionophore complex.  相似文献   

13.
Acetylcholine has long been thought to be the neurotransmitter of the cochlear efferent system in mammals although the evidence is largely indirect. By using whole-cell recordings from isolated outer hair cells, we show that acetylcholine activates a large rapidly desensitizing outward potassium current. This corresponds to hyperpolarization of the membrane potential from rest. The half maximal dose for acetylcholine was 13.5 microM with a cooperativity of 2. The response was not due to a conventional muscarinic action of acetylcholine for it was not blocked by 0.1 microM atropine and muscarinic antagonists but it could be blocked by 0.1 microM curare, suggesting that it shared many properties of a nicotinic receptor. It was, however, inhibited by 10 microM strychnine. The potassium current activated by acetylcholine required external calcium and was characterized by a significant delay at room temperature. This points to the involvement of a second messenger system, possibly calcium itself.  相似文献   

14.
Fast inhibitory synaptic transmission in the central nervous system is mediated by ionotropic GABA or glycine receptors. Auditory outer hair cells present a unique inhibitory synapse that uses a Ca2+-permeable excitatory acetylcholine receptor to activate a hyperpolarizing potassium current mediated by small conductance calcium-activated potassium (SK) channels. It is shown here that unitary inhibitory postsynaptic currents at this synapse are mediated by SK2 channels and occur rapidly, with rise and decay time constants of approximately 6 ms and approximately 30 ms, respectively. This time course is determined by the Ca2+ gating of SK channels rather than by the changes in intracellular Ca2+. The results demonstrate fast coupling between an excitatory ionotropic neurotransmitter receptor and an inhibitory ion channel and imply rapid, localized changes in subsynaptic calcium levels.  相似文献   

15.
Utilizing standard microiontophoretic techniques and recording extracellularly in cats, we studied the effects of flurazepam, a water-soluble benzodiazepine, on the spike activity of single cerebral neurones and its interactions with several excitatory and inhibitory putative neurotransmitters. Large iontophoretic doses (5--30 nA, 0.1 M solution) of flurazepam induced a depression of spike amplitude. Smaller doses (less than 5 nA, 0.1 M solution or 20--50 nA, 20 mM in 0.16 M NaCl) reduced the excitation produced by glutamate, aspartate, and homocysteate, but antagonism of acetylcholine-evoked excitations required large flurazepam doses (up to 30 nA, 0.1 M solution). Even lower doses of flurazepam (less than 10 nA, 20 mM in 0.16 M NaCl) enhanced the inhibitory effect of gamma-aminobutyric acid (GABA) but antagonized that of 5-hydroxytryptamine, and had no effect on dopamine-induced inhibition of firing. Hence, only GABA-evoked inhibitions were significantly potentiated by flurazepam. These results demonstrate the multiple possible interactions between a benzodiazepine and different putative neurotransmitters in the mammalian cerebral cortex.  相似文献   

16.
Intracellular regulatory mechanisms of neuronal response to acetylcholine were studied on intracellularly perfused isolated neurones of Lymnaea stagnalis using voltage-clamp technique. It was found that at the change of concentration of free intracellular Ca2+ from 0.06 to 0.7 microM the inhibitory effect of intracellularly added serotonin depends on Ca2+, and the modulation of acetylcholine responses by intracellular serotonin is unchanged. The blockers of calmoduline trifluoperazine and W-7 inhibit inward acetylcholine current at both intra- and extracellular introduction. Possible mechanisms mediating the effect of intracellularly added serotonin on the membrane cholinoreceptors of neurones are discussed.  相似文献   

17.
We have developed an alternating access transport model that accounts well for GAT1 (GABA:Na+:Cl-) cotransport function in Xenopus oocyte membranes. To do so, many alternative models were fitted to a database on GAT1 function, and discrepancies were analyzed. The model assumes that GAT1 exists predominantly in two states, Ein and E(out). In the Ein state, one chloride and two sodium ions can bind sequentially from the cytoplasmic side. In the Eout state, one sodium ion is occluded within the transporter, and one chloride, one sodium, and one gamma-aminobutyric acid (GABA) molecule can bind from the extracellular side. When Ein sites are empty, a transition to the Eout state opens binding sites to the outside and occludes one extracellular sodium ion. This conformational change is the major electrogenic GAT1 reaction, and it rate-limits forward transport (i.e., GABA uptake) at 0 mV. From the Eout state, one GABA can be translocated with one sodium ion to the cytoplasmic side, thereby forming the *Ein state. Thereafter, an extracellular chloride ion can be translocated and the occluded sodium ion released to the cytoplasm, which returns the transporter to the Ein state. GABA-GABA exchange can occur in the absence of extracellular chloride, but a chloride ion must be transported to complete a forward transport cycle. In the reverse transport cycle, one cytoplasmic chloride ion binds first to the Ein state, followed by two sodium ions. One chloride ion and one sodium ion are occluded together, and thereafter the second sodium ion and GABA are occluded and translocated. The weak voltage dependence of these reactions determines the slopes of outward current-voltage relations. Experimental results that are simulated accurately include (a) all current-voltage relations, (b) all substrate dependencies described to date, (c) cis-cis and cis-trans substrate interactions, (d) charge movements in the absence of transport current, (e) dependencies of charge movement kinetics on substrate concentrations, (f) pre-steady state current transients in the presence of substrates, (g) substrate-induced capacitance changes, (h) GABA-GABA exchange, and (i) the existence of inward transport current and GABA-GABA exchange in the nominal absence of extracellular chloride.  相似文献   

18.
The effects and the sites of action of 5-Hydroxytryptamine (5HT) were examined in transverse muscular strips of pigeon oesophagus. 5-Hydroxytryptamine (0.001 to 30 microM) induced a concentration-dependent excitatory effect on the EMG activity. This response was mainly characterized by an increase in burst frequency. The maximum 5-HT-induced excitatory effect was not altered by methysergide (10 microM), but was abolished by tetrodotoxin (3 microM). Excitatory response to 5-HT was partly opposed by atropine (1 microM), potentiated by 5-methoxy-N, N-dimethyltryptamine (1 microM) and was not altered by guanethidine (10 microM). These results indicate that 5-HT activates the pigeon oesophagus indirectly via neural elements and has no direct action on the smooth muscle cells. 5-HT is thought to stimulate three different intramural neuron types: excitatory cholinergic neurons, excitatory non-cholinergic neurons and inhibitory non-cholinergic non-adrenergic neurons. The action on these different neurons seems to be mediated via different receptors.  相似文献   

19.
Whole-cell patch-clamp recordings were obtained from 116 freshly dissociated neuronal somata from the optic lobe of adult locusts (Schistocerca gregaria). Prerequisites were a papain treatment and the directed transfer of somata to the recording chamber by dabbing. Of the recorded somata, 65 were from lamina and 51 from other optic lobe neurons. All somata supported voltage-activated outward currents and some (24% of optic lobe, 3% of lamina neurons) also fast inward currents. Most lamina neurons supported an outward current that activated (V 1/2=−8.5 mV) and inactivated rapidly and a sustained outward current. Some lamina and most optic lobe neurons expressed only a sustained outward current (V 1/2=−9.4 mV). GABA and histamine elicited inward currents at negative holding potentials. Most optic lobe (95%) but only 18% of lamina neurons showed a γ-aminobutyric acid (GABA) current, whereas a similar percentage of optic lobe (50%) and lamina neurons (67%) expressed a histamine current. Both currents reversed near the chloride equilibrium potential, were reversibly reduced by picrotoxin, and did not show rundown. Thus, they likely represent chloride currents mediated by ionotropic receptors. Our data indicate that the lamina neurons recorded mainly represent monopolar cells postsynaptic to histaminergic photoreceptors. The optic lobe neurons, on which GABA and histamine apparently act as inhibitory neurotransmitters, are more heterogeneous. Accepted: 30 November 1997  相似文献   

20.
Spontaneous, single channel, chloride currents were recorded in 48% of cell-attached patches on neurones in the CA1 region of rat hippocampal slices. In some patches, there was more than 1 channel active. They showed outward rectification: both channel conductance and open probability were greater at depolarized than at hyperpolarized potentials. Channels activated by γ-aminobutyric acid (GABA) in silent patches on the same neurones had similar conductance and outward rectification. The spontaneous currents were inhibited by bicuculline and potentiated by diazepam. It was concluded that the spontaneously opening channels were constitutively active, nonsynaptic GABAA channels. Such spontaneously opening GABAA channels may provide a tonic inhibitory mechanism in these cells and perhaps in other cells that have GABAA receptors although not having a GABAA synaptic input. They may also be a target for clinically useful drugs such as the benzodiazepines. Received: 31 August 1999/Revised: 2 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号