首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentration of lead in bone, unlike in soft tissues, increases during the lifetime and reflects severity of exposure to this element. The main aim of the study was to determine concentrations of lead and calcium and to find possible relationship between calcium and lead in the tissues of the hip joints obtained from inhabitants of the Upper Silesian Industrial Area. We also attempted to identify factors that might affect this relationship. The samples were harvested intraoperatively during total hip replacement procedures; in most cases, the indication for the surgery was hip osteoarthritis. Concentrations of lead and calcium were measured with a Pye Unicam SP-9 acetylene-oxygen flame atomic absorption spectrometer. The highest mean concentration of lead was found in the cancellous bone from the femoral head, followed by articular cartilage, cortical bone and the intertrochanteric cancellous bone (0.75?μg/g). The smallest concentration was found in the joint capsule (0.19?μg/g). The highest mean concentration of calcium was found in cancellous bone from the femoral head, followed by cancellous bone from the intertrochanteric area, cortical bone, articular cartilage and joint capsule. The concentration of lead showed no correlation with sex. The bone concentration of calcium decreased with age. In the analysed hips, this finding was true in the cortical bone, as well as in the cancellous bone of the intertrochanteric area. Statistically significant correlation between calcium and lead was found only in the hip articular cartilage.  相似文献   

2.
IntroductionPrevious studies in animal models of osteoarthritis suggest that alendronate (ALN) has antiresorptive and chondroprotective effects, and can reduce osteophyte formation. However, these studies used non-physiologic injury methods, and did not investigate early time points during which bone is rapidly remodeled prior to cartilage degeneration. The current study utilized a non-invasive model of knee injury in mice to investigate the effect of ALN treatment on subchondral bone changes, articular cartilage degeneration, and osteophyte formation following injury.MethodsNon-invasive knee injury via tibial compression overload or sham injury was performed on a total of 90 mice. Mice were treated with twice weekly subcutaneous injections of low-dose ALN (40 μg/kg/dose), high-dose ALN (1,000 μg/kg/dose), or vehicle, starting immediately after injury until sacrifice at 7, 14 or 56 days. Trabecular bone of the femoral epiphysis, subchondral cortical bone, and osteophyte volume were quantified using micro-computed tomography (μCT). Whole-joint histology was performed at all time points to analyze articular cartilage and joint degeneration. Blood was collected at sacrifice, and serum was analyzed for biomarkers of bone formation and resorption.ResultsμCT analysis revealed significant loss of trabecular bone from the femoral epiphysis 7 and 14 days post-injury, which was effectively prevented by high-dose ALN treatment. High-dose ALN treatment was also able to reduce subchondral bone thickening 56 days post-injury, and was able to partially preserve articular cartilage 14 days post-injury. However, ALN treatment was not able to reduce osteophyte formation at 56 days post-injury, nor was it able to prevent articular cartilage and joint degeneration at this time point. Analysis of serum biomarkers revealed an increase in bone resorption at 7 and 14 days post-injury, with no change in bone formation at any time points.ConclusionsHigh-dose ALN treatment was able to prevent early trabecular bone loss and cartilage degeneration following non-invasive knee injury, but was not able to mitigate long-term joint degeneration. These data contribute to understanding the effect of bisphosphonates on the development of osteoarthritis, and may support the use of anti-resorptive drugs to prevent joint degeneration following injury, although further investigation is warranted.  相似文献   

3.
Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodeling. Transglutaminases catalyze a calcium-dependent transamidation reaction that produces covalent cross-linking of available substrate glutamine residues and modifies the extracellular matrix. Increased transglutaminases-mediated activity is reported in osteoarthritis, but the relative contribution of transglutaminases-2 (TG2) is uncertain. We describe TG2 expression in human femoral osteoarthritis and in wild-type and homozygous TG2 knockout mice after surgically-induced knee joint instability. Increased TG2 levels were observed in human and wild-type murine osteoarthritic cartilage compared to the respective controls. Histomorphometrical but not X-ray investigation documented in osteoarthritic TG2 knockout mice reduced cartilage destruction and an increased osteophyte formation compared to wild-type mice. These differences were associated with increased TGFβ-1 expression. In addition to confirming its important role in osteoarthritis development, our results demonstrated that TG2 expression differently influences cartilage destruction and bone remodeling, suggesting new targeted TG2-related therapeutic strategies.  相似文献   

4.
5.
Spontaneous osteonecrosis of the knee (SONK) is a common disease in elderly humans. Clinically, SONK presents with the sudden onset of severe knee joint pain, usually in the load-bearing area of the medial compartment of the knee. Articular cartilage lesions are secondary to subchondral trabecular bone necrosis. These biochemical and structural changes in the bone and cartilage alter the biomechanics of the joint, which may then lead to secondary osteoarthritis and ultimately joint destruction. We observed 3 cases of osteonecrosis affecting the knee joint of free-ranging Macaca mulatta (rhesus macaques). The histopathology of these cases consists of defects in the subchondral bone with articular cartilage necrosis and repair. The defects were associated histologically with secondary osteoarthritis in 2 cases. The osteonecrotic lesions in the macaques resemble closely spontaneous osteonecrosis of the knee as seen in humans. This is the first report of spontaneous osteonecrosis of the knee in nonhuman primates.  相似文献   

6.
To describe the differences in knee structure and non-knee structural factors between offspring having at least one parent with a total knee replacement for severe primary knee osteoarthritis and age- and sex-matched controls with no family history of knee osteoarthritis, a population-based longitudinal study of 163 matched pairs (mean age 45 years, range 26 to 61) was performed at baseline and about 2 years later. Knee cartilage defect score (0 to 4), cartilage volume and bone size were determined with T1-weighted fat saturation magnetic resonance imaging. Body mass index (BMI), lower-limb muscle strength, knee pain, physical work capacity at 170 beats/minute (PWC170) and radiographic osteoarthritis were measured by standard protocols. In comparison with controls, offspring had higher annual knee cartilage loss (-3.1% versus -2.0% at medial tibial site, -1.9% versus -1.1% at lateral tibial site and -4.7% versus -3.7% at patellar site, all P < 0.05), a greater increase in medial cartilage defect score (+0.15 versus -0.01, P < 0.05) and a greater decline in PWC170 (-0.7 watts/kg versus -0.4 watts/kg, P < 0.01). There were no significant differences in change in BMI, lower-limb muscle strength, knee pain or tibial bone area between these two groups; however, the differences in knee cartilage loss and cartilage defect change decreased in magnitude and became non-significant after adjustment for baseline cartilage volume, tibial bone area, BMI and knee pain. This longitudinal study suggests that knee cartilage loss, change in cartilage defects and decrease in physical fitness all have roles in the development of knee osteoarthritis, which is most probably polygenic but may reflect a shared environment. Importantly, the cartilage changes are largely dependent on baseline differences in cartilage volume, tibial bone area, BMI and knee pain, suggesting that these factors might have a role in their initiation.  相似文献   

7.
The osteophyte associated with osteoarthritis (OA) is a bony outgrowth formed at the margins of the affected joint through endochondral ossification-like processes. However, the mechanism of osteophyte formation and its pathogenesis are unclear. Perlecan (Hspg2), a heparan sulfate proteoglycan, is expressed in many extracellular tissues and plays critical roles in skeletal development and diseases. The aim of the present study is to identify the role of synovial perlecan in osteophyte formation using perinatal lethality rescued perlecan-knockout mice (Hspg2?/?-Tg) wherein perlecan expression is lacking in the synovial and other tissues, except for cartilage. We analyzed the development of osteophytes in joints of Hspg2?/?-Tg mice in two different animal models: the surgical OA model, in which the medial collateral ligament was transected and the medial meniscus was resected, and the TGF-β-induced osteophyte formation model. In the surgical OA model, the osteophyte size and maturation were significantly reduced in the OA joints of Hspg2?/?-Tg mice compared with control mice, while OA developed on the medial side of the knee joints with no differences in the cartilage degradation score or synovitis score between control and Hspg2?/?-Tg mice. The reduced osteophyte formation in Hspg2?/?-Tg mice was associated with reduced cell proliferation and chondrogenesis. In the TGF-β model, the osteophyte size and maturation were also significantly reduced in Hspg2?/?-Tg mice compared with control mice. Our findings suggest that synovial perlecan plays an important role in osteophyte development in OA, and they provide insights that may facilitate the development of OA therapy.  相似文献   

8.
To describe the differences in knee structure and non-knee structural factors between offspring having at least one parent with a total knee replacement for severe primary knee osteoarthritis and age- and sex-matched controls with no family history of knee osteoarthritis, a population-based longitudinal study of 163 matched pairs (mean age 45 years, range 26 to 61) was performed at baseline and about 2 years later. Knee cartilage defect score (0 to 4), cartilage volume and bone size were determined with T1-weighted fat saturation magnetic resonance imaging. Body mass index (BMI), lower-limb muscle strength, knee pain, physical work capacity at 170 beats/minute (PWC170) and radiographic osteoarthritis were measured by standard protocols. In comparison with controls, offspring had higher annual knee cartilage loss (-3.1% versus -2.0% at medial tibial site, -1.9% versus -1.1% at lateral tibial site and -4.7% versus -3.7% at patellar site, all P < 0.05), a greater increase in medial cartilage defect score (+0.15 versus -0.01, P < 0.05) and a greater decline in PWC170 (-0.7 watts/kg versus -0.4 watts/kg, P < 0.01). There were no significant differences in change in BMI, lower-limb muscle strength, knee pain or tibial bone area between these two groups; however, the differences in knee cartilage loss and cartilage defect change decreased in magnitude and became non-significant after adjustment for baseline cartilage volume, tibial bone area, BMI and knee pain. This longitudinal study suggests that knee cartilage loss, change in cartilage defects and decrease in physical fitness all have roles in the development of knee osteoarthritis, which is most probably polygenic but may reflect a shared environment. Importantly, the cartilage changes are largely dependent on baseline differences in cartilage volume, tibial bone area, BMI and knee pain, suggesting that these factors might have a role in their initiation.  相似文献   

9.

Introduction

Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration.

Methods

sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness.

Results

All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation.

Conclusions

Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced subchondral sclerosis, synovial macrophage activation, and osteophyte formation.  相似文献   

10.
Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodelling. Under physiologic conditions, articular cartilage displays a stable chondrocyte phenotype, whereas in osteoarthritis a chondrocyte hypertrophy develops near the sites of cartilage surface damage and associates to the pathologic expression of type X collagen. Transglutaminases (TGs) include a family of Ca2+-dependent enzymes that catalyze the formation of γ-glutamyl cross-links. Their substrates include a variety of intracellular and extracellular macromolecular components. TGs are ubiquitously and abundantly expressed and implicated in a variety of physiopathological processes. TGs activity is modulated by inflammatory cytokines. TG2 (also known as tissue transglutaminase) mediates the hypertrophic differentiation of joint chondrocytes and interleukin-1-induced calcification. Histomorphometrical and biomolecular investigations document increased TG2 expression in human and experimental osteoarthritis. Consequently, the level of TG2 expression may represent an adjuvant additional marker to monitor tissue remodelling occurring in osteoarthritic joint tissue. Experimental induction of osteoarthritis in TG2 knockout mice is followed from reduced cartilage destruction and increased osteophyte formation compared to wild-type mice, suggesting a different influence on joint bone and cartilage remodelling. The capacity of transamidation by TG2 to regulate activation of latent TGF-β seems to have a potential impact on the regulation of inflammatory response in osteoarthritic tissues. Additional studies are needed to define TG2-regulated pathways that are differently modulated in osteoblasts and chondrocytes during osteoarthritis.  相似文献   

11.
The knee meniscus and hip labrum appear to be important for joint health, but the mechanisms by which these structures perform their functions are not fully understood. The fluid phase of articular cartilage provides compressive stiffness and aids in maintaining a low friction articulation. Healthy fibrocartilage, the tissue of meniscus and labrum, has a lower fluid permeability than articular cartilage. In this study we hypothesized that an important function of the knee meniscus and the hip labrum is to augment fluid retention in the articular cartilage of a mechanically loaded joint. Axisymmetric hyperporoelastic finite element models were analyzed for an idealized knee and an idealized hip. The results indicate that the meniscus maintained fluid pressure and inhibited fluid exudation in knee articular cartilage. Similar, but smaller, effects were seen with the labrum in the hip. Increasing the fibrocartilage permeability relative to that of articular cartilage gave a consolidation rate and loss of fluid load support comparable to that predicted by meniscectomy or labrectomy. The reduced articular cartilage fluid pressure that was calculated for the joint periphery is consistent with patterns of endochondral ossification and osteophyte formation in knee and hip osteoarthritis. High articular central strains and loss of fluid load support after meniscectomy could lead to fibrillation. An intact low-permeability fibrocartilage is important for limiting fluid exudation from articular cartilage in the hip and knee. This may be an important aspect of the role of fibrocartilage in protecting these joints from osteoarthritis.  相似文献   

12.
Osteoarthritis has as main characteristics the degradation of articular cartilage and the formation of new bone at the joint edges, so-called osteophytes. In this study enhanced expression of TGF-beta1 and -beta3 was detected in developing osteophytes and articular cartilage during murine experimental osteoarthritis. To determine the role of endogenous TGF-beta on osteophyte formation and articular cartilage, TGF-beta activity was blocked via a scavenging soluble TGF-beta-RII. Our results clearly show that inhibition of endogenous TGF-beta nearly completely prevented osteophyte formation. In contrast, treatment with recombinant soluble TGF-beta-RII markedly enhanced articular cartilage proteoglycan loss and reduced the thickness of articular cartilage. In conclusion, we show for the first time that endogenous TGF-beta is a crucial factor in the process of osteophyte formation and has an important function in protection against cartilage loss.  相似文献   

13.
目的探讨多种特殊染色法在骨关节组织中的染色规律及其在骨关节炎形态学研究中的应用价值。方法 6月龄健康新西兰大白兔20只,随机分为正常组和造模组各10只,根据改良Hulth法造模,6周后膝关节取材。对标本固定、脱钙后进行石蜡包埋和切片。分别采用HE、番红-固绿、AB-PAS、甲苯胺蓝、Van Gieson染色和Mallory染色,观察骨关节组织的形态学变化,并对几种染色方法进行比较。结果 HE染色显示关节一般组织形态结构,可见模型组关节软骨和软骨下骨发生骨性关节炎病理变化;番红-固绿染色法中软骨和软骨下骨的界限(黏合线)以及潮线显示清晰,软骨基质中糖胺聚糖含量减少,纤维成分增多;AB-PAS染色显示骨关节炎软骨基质糖胺聚糖尤其是酸性糖胺聚糖含量减少;甲苯胺蓝染色显示骨关节炎软骨的酸性糖胺聚糖减少;Van Gieson染色和Mallory染色可显示骨关节组织中的胶原纤维,但组织结构界限不够清晰。结论在骨性关节炎的组织形态学研究中,通过常规HE染色,结合番红-固绿染色法和AB-PAS染色法,能较客观全面地获得关节组织形态学相关信息。  相似文献   

14.
The present study measured early-stage adaptation of bone mineral (BMD) in the periarticular cancellous bone of the canine knee (stifle) joint after anterior cruciate ligament (ACL) transection (ACLX). Regional changes in BMD in the tibia and femur were analyzed by using quantitative computed tomography (qCT) at 3 wk and 12 wk after unilateral ACLX to determine whether there were focal points for BMD changes and whether these changes occurred early after the induced knee injury. BMD decreased rapidly after ACLX, and the more pronounced response was in the femur. In the 3-wk group, there were decreases in BMD in the tibia and the femur, and these changes were significant in the posterior-medial region of the femur, which showed a decrease of BMD in the ACLX limb (-0.048 +/- 0.011 g/cm(3)). In the 12-wk group, all regions in the tibia and femur exhibited significant decreases in BMD, and the average decrease was greatest in the posterior-medial region of the femur (-0.142 +/- 0.021 g/cm(3)). The regions of pronounced periarticular cancellous BMD adaptation corresponded to observed focal cartilage defects. Early decreases in BMD in the injured knee may be related to altered loading and kinematics in the knee and may be an important link in the pathogenesis of posttraumatic osteoarthritis.  相似文献   

15.

Introduction

We aimed to explore the associations between knee osteoarthritis (OA)-related tissue abnormalities assessed by conventional radiography (CR) and by high-resolution 3.0 Tesla magnetic resonance imaging (MRI), as well as biomechanical factors and findings from physical examination in patients with knee OA.

Methods

This was an explorative cross-sectional study of 105 patients with knee OA. Index knees were imaged using CR and MRI. Multiple features from CR and MRI (cartilage, osteophytes, bone marrow lesions, effusion and synovitis) were related to biomechanical factors (quadriceps and hamstrings muscle strength, proprioceptive accuracy and varus-valgus laxity) and physical examination findings (bony tenderness, crepitus, bony enlargement and palpable warmth), using multivariable regression analyses.

Results

Quadriceps weakness was associated with cartilage integrity, effusion, synovitis (all detected by MRI) and CR-detected joint space narrowing. Knee joint laxity was associated with MRI-detected cartilage integrity, CR-detected joint space narrowing and osteophyte formation. Multiple tissue abnormalities including cartilage integrity, osteophytes and effusion, but only those detected by MRI, were found to be associated with physical examination findings such as crepitus.

Conclusion

We observed clinically relevant findings, including a significant association between quadriceps weakness and both effusion and synovitis, detected by MRI. Inflammation was detected in over one-third of the participants, emphasizing the inflammatory component of OA and a possible important role for anti-inflammatory therapies in knee OA. In general, OA-related tissue abnormalities of the knee, even those detected by MRI, were found to be discordant with biomechanical and physical examination features.  相似文献   

16.

Objectives:

To evaluate the association between radiographically-assessed knee osteoarthritis and femoral neck bone characteristics in women with mild knee radiographic osteoarthritis and those without radiographic osteoarthritis.

Methods:

Ninety postmenopausal women (mean age [SD], 58 [4] years; height, 163 [6] cm; weight, 71 [11] kg) participated in this cross-sectional study. The severity of radiographic knee osteoarthritis was defined using Kellgren-Lawrence grades 0=normal (n=12), 1=doubtful (n=25) or 2=minimal (n=53). Femoral neck bone mineral content (BMC), section modulus (Z), and cross-sectional area (CSA) were measured with DXA. The biochemical composition of ipsilateral knee cartilage was estimated using quantitative MRI measures, T2 mapping and dGEMRIC. The associations between radiographic knee osteoarthritis grades and bone and cartilage characteristics were analyzed using generalized linear models.

Results:

Age-, height-, and weight-adjusted femoral neck BMC (p for linearity=0.019), Z (p for linearity=0.033), and CSA (p for linearity=0.019) increased significantly with higher knee osteoarthritis grades. There was no linear relationship between osteoarthritis grades and knee cartilage indices.

Conclusions:

Increased DXA assessed hip bone strength is related to knee osteoarthritis severity. These results are hypothesis driven that there is an inverse relationship between osteoarthritis and osteoporosis. However, MRI assessed measures of cartilage do not discriminate mild radiographic osteoarthritis severity.  相似文献   

17.
Articular cartilage and its supporting bone functional conditions are tightly coupled as injuries of either adversely affects joint mechanical environment. The objective of this study was set to quantitatively investigate the extent of alterations in the mechanical environment of cartilage and knee joint in presence of commonly observed osteochondral defects. An existing validated finite element model of a knee joint was used to construct a refined model of the tibial lateral compartment including proximal tibial bony structures. The response was computed under compression forces up to 2000 N while simulating localized bone damage, cartilage–bone horizontal split, bone overgrowth and absence of deep vertical collagen fibrils.Localized tibial bone damage increased overall joint compliance and substantially altered pattern and magnitude of contact pressures and cartilage strains in both tibia and femur. These alterations were further exacerbated when bone damage was combined with base cartilage split and absence of deep vertical collagen fibrils. Local bone boss markedly changed contact pressures and strain patterns in neighbouring cartilage. Bone bruise/fracture and overgrowth adversely perturbed the homeostatic balance in the mechanical environment of articulate cartilage surrounding and opposing the lesion as well as the joint compliance. As such, they potentially contribute to the initiation and development of post-traumatic osteoarthritis.  相似文献   

18.

Introduction

Recent studies regarding the infrapatellar fat pad (IPFP) mainly focus on the roles of the cells derived from the IPFP. There have been few clinical or epidemiological studies reporting on the association between the IPFP and knee osteoarthritis (OA). Our objective is to generate hypotheses regarding the associations between IPFP maximum area and knee OA measures in older adults.

Methods

A total of 977 subjects between 50 and 80 years of age (mean, 62.4 years) participated in the study. Radiographic knee osteophyte and joint space narrowing (JSN) were assessed using the Osteoarthritis Research Society International atlas. T1- or T2-weighted fat suppressed magnetic resonance imaging (MRI) was utilized to assess IPFP maximum area, cartilage volume, cartilage defects, and bone marrow lesions (BMLs). Knee pain was assessed by self-administered Western Ontario McMaster Osteoarthritis Index (WOMAC) questionnaire.

Results

After adjustment for potential confounders, IPFP maximum area was significantly associated with joint space narrowing (odds ratio (OR): 0.75, 95% confidence interval (CI): 0.62 to 0.91 (medial), 0.77, 95% CI: 0.62 to 0.96 (lateral)) and medial osteophytes (OR: 0.52, 95% CI: 0.35 to 0.76), knee tibial and patellar cartilage volume (β: 56.9 to 164.9 mm3/cm2, all P <0.001), tibial cartilage defects (OR: 0.58, 95% CI: 0.41 to 0.81 (medial), 0.53, 95% CI: 0.40-0.71 (lateral)), any BMLs (OR: 0.77, 95% CI: 0.63 to 0.94), and knee pain on a flat surface (OR: 0.79, 95% CI: 0.63 to 0.98). IPFP maximum area was negatively, but not significantly, associated with femoral cartilage defects, lateral tibiofemoral BMLs, and total knee pain or other knee pain subscales.

Conclusion

IPFP maximum area is beneficially associated with radiographic OA, MRI structural pathology and knee pain on a flat surface suggesting a protective role for IPFP possibly through shock absorption. Consequently, we must pay special attention to IPFP in the clinical settings, avoiding resection of normal IPFP in knee surgery.  相似文献   

19.
Osteoarthritis is a chronic joint disease with pathological changes in the articulating cartilage and all other tissues that occupy the joint. Radin and coworkers have suggested the involvement of subchondral bone in the disease process. However, evidence for an essential role in the etiology has never been proven. Recent studies showing reduced chemical and mechanical properties of subchondral bone in various stages of the disease have invigorated interest in the role of subchondral bone in the development and progression of the disease. The current study showed that the concept of bone adaptation might explain subchondral stiffening, a process where subchondral bone becomes typically sclerotic in osteoarthritis. In addition, we report reduced mechanical matrix tissue properties as well as an increase in denatured collagen content. In conclusion, although osteoarthritic bone tissue contains increased denatured collagen and has reduced matrix mechanical properties, the widely accepted concept of subchondral stiffening is compatible with the process of normal bone adaptation.  相似文献   

20.
Age-related changes in the composition of the cartilage matrix may be associated with the development of osteoarthritis, a relatively late-onset disease characterised by the destruction of joint cartilage. In order to investigate whether differences in the VNTR polymorphic region of aggrecan affect cartilage functionality and therefore the development of osteoarthritis, we examined the aggrecan polymorphic genotypes of a sample of 134 Australian twins aged over 50 (including 34 monozygotic and 27 dizygotic twin pairs). Clinical measures of hand, hip and knee osteoarthritis, as well as self-reported bone and joint pain, were tested for association with the aggrecan polymorphism. The results were consistent with either a deleterious effect of allele 27, or a protective effect of alleles 25 and 28, providing some additional evidence for an association between the aggrecan VNTR polymorphism and osteoarthritis of the hands, hips and knees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号