首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A higher AT content and rate of mtDNA sequence divergence was found in parasitic wasps (Apocrita) compared with nonparasitic wasps (Symphyta). The compositional bias was reflected in extreme codon bias for a cytochrome oxidase I protein coding gene fragment as well as in the types of amino acid substitutions that have occurred during the evolution of this gene fragment. In some instances, compositional bias influenced the definition of a conservative amino acid change. The increased rate of mtDNA sequence evolution probably arose during the early Jurassic, coincident with the first appearance of parasitic wasps in the fossil record. Our results suggest a causal link between the rate of sequence divergence and the parasitic lifestyle.Abbreviations AT adenosine-thymine - CO-1 cytochrome oxidase 1 - mtDNA mitochondrial DNA - Myr million years Correspondence to: M. Dowton  相似文献   

2.
Phylogenetic relationships of the family Vangidae and representatives of several other passeriform families were inferred from 882 base positions of mitochondrial DNA sequences of 12S and 16S rRNA genes. Results indicated the monophyly of the Vangidae, which includes the genus Tylas, hitherto often placed in the family Pycnonotidae. Our results also revealed the Malagasy endemic Newtonia, a genus never previously assigned to the Vangidae, to be a member of this family. These results suggest the occurrence of an extensive in situ radiation of this family within Madagascar, and that the extant high diversity of this family is not the result of multiple colonizations from outside. The extremely high morphological and ecological diversification of the family seems to have been enhanced through the use and ultimate occupancy of vacant niches in this island. Received: 8 September 2000 / Accepted: 13 February 2001  相似文献   

3.
We investigated the phylogeny of the Braconidae (Insecta: Hymenoptera) with a much expanded data set compared with that of previous attempts, employing 16S and 28S rDNA gene fragments, together with a suite of morphological characters, from 74 ingroup taxa. Most notably, parsimony analyses under a range of models recovered the Aphidiinae as sister group to the cyclostomes and the Ichneutinae as sister group to the microgastroids. The cyclostomes were recovered as a natural group only if certain, putatively misplaced genera (Mesostoa, Aspilodemon) were excluded from them. Further, mapping of rearrangement characters onto this phylogeny of the Braconidae indicated parallel inversions of the mt-tRNAD gene, with the two instances of inversion distinguishable by the presence or absence of an additional tRNA gene (tRNAH). This is the first report of a parallel inversion of a mt-tRNA gene and makes the Braconidae the first metazoan family to display both parallel inversions and translocations. Received: 6 April 2001 / Accepted: 9 July 2001  相似文献   

4.
A 314-bp fragment of the mitochondrial 12S rRNA gene from 21 cestodes species of eight families was synthesized by PCR with specially designed primers. These allowed amplification of parasite DNA without concomitant synthesis of host DNA. Phylogenetic trees were inferred from the sequence data using three methods (maximum parsimony, maximum likelihood, and Fitch–Margoliash). At the major nodes all three trees were similar. For the first time the genus Mesocestoides could be arranged into the Cyclophyllidea and a narrow relationship between the Mesocestoididae, Taeniidae, Hymenolepididae, Anoplocephalidae, and Dipylidiidae was shown. Members of the families Catenotaeniidae and a cluster of two families (Hymenolepididae and Dilepididae) form two monophyletic groups which derive prior to the remaining families of this phylogenetic study. A third and a fourth clear monophyletic group were formed by the Taeniidae and by the Mesocestoididae. A high degree of variation within the examined 304-bp fragment was observed between two isolates of Taenia taeniaeformis, supporting often discussed genetic heterogeneity within this species. In contrast, only one nucleotide exchange was found in 23 isolates of Echinococcus multilocularis of various geographic origin, indicating that this species is genetically homogenous. Received: 1 October 1997 / Accepted: 4 December 1997  相似文献   

5.
Studies of the distribution of the three group I introns (intron A, intron T, and intron AT) in the 26S rDNA of Gaeumannomyces graminis had suggested that they were transferred to a common ancestor of G. graminis var. avenae and var. tritici after it had branched off from var. graminis. Intron AT and intron A exhibited vertical inheritance and coevolved in concert with their hosts. Intron loss could occur after its acquisition. Loss of any one of the three introns could occur in var. tritici whereas only loss of intron T had been found in the majority of var. avenae isolates. The existence of isolates of var. tritici and var. avenae with three introns suggested that intron loss could be reversed by intron acquisition and that the whole process is a dynamic one. This process of intron acquisition and intron loss reached different equilibrium points for different varieties and subgroups, which explained the irregular distribution of these introns in G. graminis. Each of the three group I introns was more closely related to other intron sequences that share the same insertion point in the 26S rDNA than to each other. These introns in distantly related organisms appeared to have a common ancestry. This system had provided a good model for studies on both the lateral transfer and common ancestry of group I introns in the 26S rRNA genes. Received: 17 May 1996 / Accepted: 14 January 1997  相似文献   

6.
7.
The sequence of the mitochondrial COII gene has been widely used to estimate phylogenetic relationships at different taxomonic levels across insects. We investigated the molecular evolution of the COII gene and its usefulness for reconstructing phylogenetic relationships within and among four collembolan families. The collembolan COII gene showed the lowest A + T content of all insects so far examined, confirming that the well-known A + T bias in insect mitochondrial genes tends to increase from the basal to apical orders. Fifty-seven percent of all nucleotide positions were variable and most of the third codon positions appeared free to vary. Values of genetic distance between congeneric species and between families were remarkably high; in some cases the latter were higher than divergence values between other orders of insects. The remarkably high divergence levels observed here provide evidence that collembolan taxa are quite old; divergence levels among collembolan families equaled or exceeded divergences among pterygote insect orders. Once the saturated third-codon positions (which violated stationarity of base frequencies) were removed, the COII sequences contained phylogenetic information, but the extent of that information was overestimated by parsimony methods relative to likelihood methods. In the phylogenetic analysis, consistent statistical support was obtained for the monophyly of all four genera examined, but relationships among genera/families were not well supported. Within the genus Orchesella, relationships were well resolved and agreed with allozyme data. Within the genus Isotomurus, although three pairs of populations were consistently identified, these appeared to have arisen in a burst of evolution from an earlier ancestor. Isotomurus italicus always appeared as basal and I. palustris appeared to harbor a cryptic species, corroborating allozyme data. Received: 12 January 1996 / Accepted: 10 August 1996  相似文献   

8.
The genus Chrysolina consists of specialized phytophagous leaf-beetles (Coleoptera, Chrysomelidae) with feed on several plant families. There is no explicit phylogenetic hypothesis available for this genus, which includes 65 subgenera and more than 400 species with a wide distribution. We obtained 839-bp sequence data from the 16S rDNA and cytochrome oxidase subunit I (COI) mitochondrial genes. Thirty Chrysolina taxa representing eight host–plant affiliations, two species of the closely related genus Oreina, and two outgroups were sampled. These data sets were used separately and combined to obtain the mitochondrial cladogram of the group using maximum-parsimony and maximum-likelihood criteria. The results were compared to current proposals for Chrysolina systematics that are based on morphological, ecological, and karyological data. The trees obtained were in the most part congruent with the proposed ancestral association of Chrysolina to Lamiaceae based on chromosome number in several lineages. A minimum of five host-plant switches from the ancestral state inferred at the family level and two at the subclass level suggests the absence of parallel evolution of beetles and their host plants. Another switch leading to oligophagy at the family level was deduced to have occurred in the lineage of the subgenus Chrysolina s.str. Received: 22 May 1998 / Accepted: 16 September 1998  相似文献   

9.
Sequence differences in the tRNA-proline (tRNApro) end of the mitochondrial control-region of three species of Pacific butterflyfishes accumulated 33–43 times more rapidly than did changes within the mitochondrial cytochrome b gene (cytb). Rapid evolution in this region was accompanied by strong transition/transversion bias and large variation in the probability of a DNA substitution among sites. These substitution constraints placed an absolute ceiling on the magnitude of sequence divergence that could be detected between individuals. This divergence ``ceiling' was reached rapidly and led to a decay in the relative rate of control-region/cytb b evolution. A high rate of evolution in this section of the control-region of butterflyfishes stands in marked contrast to the patterns reported in some other fish lineages. Although the mechanism underlying rate variation remains unclear, all taxa with rapid evolution in the 5′-end of the control-region showed extreme transition biases. By contrast, in taxa with slower control-region evolution, transitions accumulated at nearly the same rate as transversions. More information is needed to understand the relationship between nucleotide bias and the rate of evolution in the 5′-end of the control-region. Despite strong constraints on sequence change, phylogenetic information was preserved in the group of recently differentiated species and supported the clustering of sequences into three major mtDNA groupings. Within these groups, very similar control-region sequences were widely distributed across the Pacific Ocean and were shared between recognized species, indicating a lack of mitochondrial sequence monophyly among species. Received: 30 June 1996 / Accepted: 15 May 1997  相似文献   

10.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

11.
Complete chloroplast 23S rRNA and psbA genes from five peridinin-containing dinoflagellates (Heterocapsa pygmaea, Heterocapsa niei, Heterocapsa rotun-data, Amphidinium carterae, and Protoceratium reticulatum) were amplified by PCR and sequenced; partial sequences were obtained from Thoracosphaera heimii and Scrippsiella trochoidea. Comparison with chloroplast 23S rRNA and psbA genes of other organisms shows that dinoflagellate chloroplast genes are the most divergent and rapidly evolving of all. Quartet puzzling, maximum likelihood, maximum parsimony, neighbor joining, and LogDet trees were constructed. Intersite rate variation and invariant sites were allowed for with quartet puzzling and neighbor joining. All psbA and 23S rRNA trees showed peridinin-containing dinoflagellate chloroplasts as monophyletic. In psbA trees they are related to those of chromists and red algae. In 23S rRNA trees, dinoflagellates are always the sisters of Sporozoa (apicomplexans); maximum likelihood analysis of Heterocapsa triquetra 16S rRNA also groups the dinoflagellate and sporozoan sequences, but the other methods were inconsistent. Thus, dinoflagellate chloroplasts may actually be related to sporozoan plastids, but the possibility of reproducible long-branch artifacts cannot be strongly ruled out. The results for all three genes fit the idea that dinoflagellate chloroplasts originated from red algae by a secondary endosymbiosis, possibly the same one as for chromists and Sporozoa. The marked disagreement between 16S rRNA trees using different phylogenetic algorithms indicates that this is a rather poor molecule for elucidating overall chloroplast phylogeny. We discuss possible reasons why both plastid and mitochondrial genomes of alveolates (Dinozoa, Sporozoa and Ciliophora) have ultra-rapid substitution rates and a proneness to unique genomic rearrangements. Received: 27 December 1999 / Accepted: 24 March 2000  相似文献   

12.
A full-length cytochrome b pseudogene was found in rodents; it has apparently been translocated from a mitochondrion to the nuclear genome in the subfamily Arvicolinae. The pseudogene (ψcytb) differed from its mitochondrial counterpart at 201 of 1143 sites (17.6%) and by four indels. Cumulative evidence suggests that the pseudogene has been translocated to the nucleus. Phylogenetic reconstruction indicates that the pseudogene arose before the diversification of M. arvalis/M. rossiaemeridionalis from M. oeconomus, but after the divergence of the peromyscine/sigmodontine/arvicoline clades some ∼10 MYA. Published rates of divergence between mitochondrial genes and their nuclear pseudogenes suggest that the translocation of this mitochondrial gene to the nuclear genome occurred some 6 MYA, in agreement with the phylogenetic evidence. Received: 16 January 1998 / Accepted: 18 July 1998  相似文献   

13.
Complete sequences of seven protein coding genes from Penaeus notialis mitochondrial DNA were compared in base composition and codon usage with homologous genes from Artemia franciscana and four insects. The crustacean genes are significantly less A + T-rich than their counterpart in insects and the pattern of codon usage (ratio of G + C-rich versus A + T-rich codon) is less biased. A phylogenetic analysis using amino acid sequences of the seven corresponding polypeptides supports a sister-taxon status for mollusks–annelid and arthropods. Furthermore, a distance matrix-based tree and two most-parsimonious trees both suggest that crustaceans are paraphyletic with respect to insects. This is also supported by the inclusion of Panulirus argus COII (complete) and COI and COIII (partial) sequence data. From analysis of single and combined genes to infer phylogenies, it is observed that obtained from single genes are not well supported in most topologies cases and notably differ from that of the tree based on all seven genes. Received: 25 August 1998 / Accepted: 8 March 1999  相似文献   

14.
Glutamine synthetase type I (GSI) genes have previously been described only in prokaryotes except that the fungus Emericella nidulans contains a gene (fluG) which encodes a protein with a large N-terminal domain linked to a C-terminal GSI-like domain. Eukaryotes generally contain the type II (GSII) genes which have been shown to occur also in some prokaryotes. The question of whether GSI and GSII genes are orthologues or paralogues remains a point of controversy. In this article we show that GSI-like genes are widespread in higher plants and have characterized one of the genes from the legume Medicago truncatula. This gene is part of a small gene family and is expressed in many organs of the plant. It encodes a protein similar in size and with between 36 and 46% amino acid sequence similarity to prokaryotic GS proteins used in the analyses, whereas it is larger and with less than 25% similarity to GSII proteins, including those from the same plant species. Phylogenetic analyses suggest that this protein is most similar to putative proteins encoded by expressed sequence tags of other higher plant species (including dicots and a monocot) and forms a cluster with FluG as the most divergent of the GSI sequences. The discovery of GSI-like genes in higher plants supports the paralogous evolution of GSI and GSII genes, which has implications for the use of GS in molecular studies on evolution. Received: 4 May 1999 / Accepted: 17 September 1999  相似文献   

15.
Analysis of the 18S rDNA sequences of five species of the family Dugesiidae (phylum Platyhelminthes, suborder Tricladida, infraorder Paludicola) and eight species belonging to families Dendrocoelidae and Planaridae and to the infraorder Maricola showed that members of the family Dugesiidae have two types of 18S rDNA genes, while the rest of the species have only one. The duplication event also affected the ITS-1, 5.8S, ITS-2 region and probably the 28S gene. The mean divergence value between the type I and the type II sequences is 9% and type II 18S rDNA genes are evolving 2.3 times more rapidly than type I. The evolutionary rates of type I and type II genes were calibrated from biogeographical data, and an approximate date for the duplication event of 80–120 million years ago was calculated. The type II gene was shown, by RT-PCR, to be transcribed in adult individuals of Schmidtea polychroa, though at very low levels. This result, together with the fact that most of the functionally important positions for small-subunit rRNA in prokaryotes have been conserved, indicates that the type II gene is probably functional. Received: 24 March 1998 / Accepted: 17 March 1999  相似文献   

16.
One of the most important omissions in recent evolutionary theory concerns how eukaryotes could emerge and evolve. According to the currently accepted views, the first eukaryotic cell possessed a nucleus, an endomembrane system, and a cytoskeleton but had an inefficient prokaryotic-like metabolism. In contrast, one of the most ancient eukaryotes, the metamonada Giardia lamblia, was found to have formerly possessed mitochondria. In sharp contrast with the traditional views, this paper suggests, based on the energetic aspect of genome organization, that the emergence of eukaryotes was promoted by the establishment of an efficient energy-converting organelle, such as the mitochondrion. Mitochondria were acquired by the endosymbiosis of ancient α-purple photosynthetic Gram-negative eubacteria that reorganized the prokaryotic metabolism of the archaebacterial-like ancestral host cells. The presence of an ATP pool in the cytoplasm provided by this cell organelle allowed a major increase in genome size. This evolutionary change, the remarkable increase both in genome size and complexity, explains the origin of the eukaryotic cell itself. The loss of cell wall and the appearance of multicellularity can also be explained by the acquisition of mitochondria. All bacteria use chemiosmotic mechanisms to harness energy; therefore the periplasm bounded by the cell wall is an essential part of prokaryotic cells. Following the establishment of mitochondria, the original plasma membrane-bound metabolism of prokaryotes, as well as the funcion of the periplasm providing a compartment for the formation of different ion gradients, has been transferred into the inner mitochondrial membrane and intermembrane space. After the loss of the essential function of periplasm, the bacterial cell wall could also be lost, which enabled the naked cells to establish direct connections among themselves. The relatively late emergence of mitochondria may be the reason why multicellularity evolved so slowly. Received: 29 May 1997 / Accepted: 9 October 1997  相似文献   

17.
The complete mitochondrial genome sequence of the pig, Sus scrofa, was determined. The length of the sequence presented is 16,679 nucleotides. This figure is not absolute, however, due to pronounced heteroplasmy caused by variable numbers of the motif GTACACGTGC in the control region of different molecules. A phylogenetic study was performed on the concatenated amino acid and nucleotide sequences of 12 protein-coding genes of the mitochondrial genome. The analysis identified the pig (Suiformes) as a sister group of a cow/whale clade, making Artiodactyla paraphyletic. The split between pig and cow/whale was molecularly dated at 65 million years before present. Received: 2 December 1997 / Accepted: 20 February 1998  相似文献   

18.
Partial sequences of two mitochondrial genes, the 12S ribosomal gene (739 bp) and the cytochrome b gene (672 bp), were analyzed in hopes of reconstructing the evolutionary relationships of 11 leporid species, representative of seven genera. However, partial cytochrome b sequences were of little phylogenetic value in this study. A suite of pairwise comparisons between taxa revealed that at the intergeneric level, the cytochrome b gene is saturated at synonymous coding positions due to multiple substitution events. Furthermore, variation at the nonsynonymous positions is limited, rendering the cytochrome b gene of little phylogenetic value for assessing the relationships between leporid genera. If the cytochrome b data are analyzed without accounting for these two classes of nucleotides (i.e., synonymous and nonsynonymous sites), one may incorrectly conclude that signal exists in the cytochrome b data. The mitochondrial 12S rRNA gene, on the other hand, has not experienced excessive saturation at either stem or loop positions. Phylogenies reconstructed from the 12S rDNA data support hypotheses based on fossil evidence that African rock rabbits (Pronolagus) are outside of the main leporid stock and that leporids experienced a rapid radiation. However, the molecular data suggest that this radiation event occurred in the mid-Miocene several millions of years earlier than the Pleistocene dates suggested by paleontological evidence. Received: 23 April 1998 / Accepted: 14 May 1998  相似文献   

19.
The very high AT content of hymenopteran mtDNA has warranted speculation about nucleotide substitution processes in this group. Here we investigate the pattern of honeybee, Apis mellifera, mtDNA nucleotide polymorphisms inferred from phylogeny in terms of differences between the ATPase6, COI, COII, COIII, cytochrome b, and ND2 genes and strand asymmetry in mutation rates. The observed transition/transversion ratios and the distribution of nonsynonymous substitutions between regions differed significantly. The pattern of differences between genes leading to these heterogeneities (the ATPase6 and COIII genes group apart from the rest) differed markedly from that predicted on the basis of long-term evolutionary change and may indicate differences between current and long-term dynamics of sequence evolution. Also, there is strong strand asymmetry in substitutions, which probably results in a mutability of G and C sufficiently high to account for the AT-richness of honeybee mtDNA. Received: 21 October 1998 / Accepted: 27 January 1999  相似文献   

20.
Among Bacteria the carA and carB genes encoding the small (CarA) and large (CarB) subunits of carbamoylphosphate synthase (CPS) have been lost in certain symbionts (Haemophylus influenzae) and in most obligate intracellular parasites (Chlamydiae, Spirochaetes, Mycoplasmatales, Rickettsiae) having genome sizes in the 0.7- to 1.1-Mb range. Compared to Bacteria, Archaea exhibit a more varied pattern of CPS gene losses and an unusual propensity to incorporate CPS genes derived from both Bacteria and other Archaea. Schematically they fall into three groups. Group 1 taxa (the crenarchaeon Aeropyrum pernix and the euryarchaea Pyrococcus horikoshi and Pyrococcus abyssii) lack CPS genes altogether. Group 2 taxa (comprising Halobacteriales, Thermoplasmales, Methanococcales, Methanomicrobiales, Archaeoglobales) harbor CPS genes whose encoded CarB and CarA subunit proteins are ostensibly bacterial in origin; that is, they are intermixed with bacterial homologues on a phylogeny of concatenated CarA and CarB sequences and are not distinguishable from bacterial sequences after searching for domain-specific amino acid residue positions. Group 3 taxa (the crenarchaea Pyrobaculum aerophilum, Sulfolobus solfataricus, and Sulfolobus tokodaii and the euryarchaeon Pyrococcus furiosus) harbor CPS genes whose encoded proteins appear to be archaeal: consistent with an archaeal origin, the CarA and CarB sequences in this group possess both unique signatures and signatures affiliating them to Eukarya. Based on the topology of the clade comprising the four Group 3 taxa, we argue that CPS genes of P. furiosus (a euryarchaeon) and those of the crenarchaea P. aerophilum, S. solfataricus, and S. tokodaii are of a single type, resulting from the two genes being laterally transferred from a crenarchaeon to P. furiosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号