首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants have developed many mechanisms to protect themselves against most potential microbial pathogens and diseases. Pathogenesis-related proteins are produced as a part of the active defenses to prevent attack. In this study, the induction of PR proteins in Eruca sativa in response to fungal pathogen Alternaria brassicicola was investigated in 10 days and one-month-old plants. Induction of pathogen resulted in a much marked increase in the activities of β-1,3-glucanase and chitinase in resistant cultivar (RTM-2002) as compared to susceptible (T-27) one. The enzyme activity gradually increased throughout the experimental period of 168 h compare to control. However, the activation of β-1,3-glucanase and chitinase was more rapid and to a greater extent in plants of RTM-2002 than in T-27. western blot analysis revealed the presence of 33 and 32 kDa β-1,3-glucanase and chitinase in induced arugula plants, respectively. The biochemical approach described in this article with E. sativa provide the basis for further efforts concentrating on the isolation and characterization of elements involved in perception and in the early steps of intracellular signal transduction.  相似文献   

2.
Pathogenesis-related (PR) proteins are induced in response to pathogen attack. In the present study, the induction of PR proteins in response to the fungal pathogen Macrophomina phaseolina was investigated in 15-day- and 1-month-old plants of Vigna aconitifolia with resistant and susceptible cultivars. Inoculation of the fungal pathogen resulted in the enzyme activity gradually increased throughout the experimental period of 168 h compared to control. However, the activation of β-1,3-glucanase and chitinase was more rapid and to a greater extent in the resistant FMM-96 cultivar as compared to susceptible RM0-40 and CZM-3 cultivars. Furthermore, the western blot analysis revealed the presence of 33- and 30-kDa bands of β-1,3-glucanase and chitinase in induced moth bean plants, respectively. The possible implications of these findings as part of the general defense response of moth bean plants against the fungal pathogen (M. phaseolina) have been discussed.  相似文献   

3.
将‘鲁豆4号’大豆接种丛枝菌根(AM)真菌聚生球囊霉Glomus fasiculatum和大豆胞囊线虫(SCN)Heterodera glycines 4号生理小种后, 定期测定大豆根系中AM真菌及线虫侵染速率、过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、β-1,3葡聚糖酶及几丁质酶活性的动态变化。结果表明, 接种AM真菌大豆根系中4种酶活性高于对照水平; 先接种AM真菌后接种SCN处理根系中POD、PAL及几丁质酶的活性高于只接种SCN的处理,并且酶活性峰值出现的时间均早于或相当于后者。另外,PAL及几丁质酶活性出现高峰时期也正是AM真菌侵染率迅速升高及线虫侵染速率快速下降期。因此,AM真菌先激活了大豆的防御反应,然后使其对SCN的侵染产生快速反应,PAL及几丁质酶在AM真菌诱导的抗、耐线虫病害机制中起重要作用。值得注意的是,先接种AM真菌后接种SCN处理大豆根系中,β-1,3葡聚糖酶活性低于只接种AM真菌的处理。作者认为本试验条件下,该酶在大豆抗SCN病害中的作用表现不明显。  相似文献   

4.
Leaf, stem, and root extracts of near-isogenic tomato plantscv. Craigella, resistant and susceptible to Verticillium albo-atrum,showed constitutive 1,3-ß-glucanase activity whichincreased following inoculation with the pathogen. Partiallypurified enzyme extracts were obtained by dialysing a 30–80%ammonium sulphate fraction of the tissue brei. The enzyme hadpH and temperature optima of 5?5 and 44 ?C respectively, withhigh activity between 50 and 60 ?C. The response to laminarinconcentration was linear between 1?2 and 7?5 mg ml–1.Root inoculation of susceptible plants with 106 propagules ml–1V. albo-atrum led to a umform 300 per cent increase in all steminternodes except the terminal one, which was 500 per cent ofthe controls. No spatial relationship of enzyme activity tothe localization of fungus within the stem was apparent. Petioles,leaves, and roots of susceptible infected plants similarly showedan increase in activity but less than that in stems. Changedlevels of stern enzyme activity at different times after inoculationwere associated with reductions in the number of vessels containinghyphae. Extracts of plants of the resistant isoline showed increasedglucanase activity over controls, but this was substantiallylower than that in susceptible plants and was associated withthe greatly reduced mycelial colonization in resistant plants. It is concluded that single gene resistance in tomato to Verticilliumis not associated with innately higher levels of 1,3-ß-glucanasein healthy plants. The increased activity in infected plantsis proportional to the overall quantity of pathogen in the plantor of pathogenic metabolites.  相似文献   

5.
Three- and four-fold increases in chitinase activity were detected in the youngest, fully expanded leaf (L1) of Stylosanthes guianensis cv. Endeavour following inoculation of the second youngest, fully expanded leaf (L2) with virulent Type B and Type A isolates of Colletotrichum gloeosporioides compared with chitinase activity in L1 leaves of uninoculated plants. Only small increases in β-1,3-glucanase were detected in L1 leaves of systemically protected plants. Chitinase activity was maximal in leaf L1 36 to 48 h after inoculation of leaf L2, and this was coincident with the onset of resistance to anthracnose in L1 leaves. Chitinase activity also increased in L1 leaves inoculated with a weakly pathogenic isolate of C. gloeosporioides. Resistance developed in these L1 leaves to subsequent infection by a virulent isolate of the pathogen approximately 36 h after protective-inoculation with the weakly pathogenic isolate. Two chitinase isozymes, with molecular weights of 65,000 daltons (pI 3.1) and 54,000 daltons (pI 4.0), were separated from extracts of C. gloeosporioides-challenged S. guianensis cv. Endeavour leaves. S. guianensis chitinase caused death of C. gloeosporioides hyphae, particularly in the presence of β-1,3-glucanase. Mycelial viability declined as activity of chitinase was increased in mixtures containing a fixed activity of β-l,3-glucanase.  相似文献   

6.
Chitinase and β-1,3-glucanase activities were assayed in roots, stems and leaves of 12-day-old chickpea ( Cicer arietinum L.) plants. While glucanase activity was higher in roots than in the aerial parts of the plant, leaves had higher Chitinase activity. Both glucanase and chitinase activities were induced in roots and stems in response to wounding (excision into 1-cm pieces), with activity increasing 6 h after treatment, reaching a maximum between 24 and 48 h, and thereafter remaining nearly constant up to 72 h. Ethephon treatment also induced β-1,3-glucanase and chitinase activities in stems but not in roots. Both enzymes occurred in root and stem tissues as a complex mixture of isoenzymes. At least four different peaks with glucanase and chitinase activities could be resolved by gel filtration chromatography on Sephacryl S-200 and chromatofocusing on PBE 94 (pH 4–7). Following ammonium sulfate precipitation and ion exchange on CM- and DEAE-Trisacryl, three β-1,3-glucanase and chitinase fractions, referred to as basic, neutral and acidic, were separated on the basis of their chromatographic behaviour. Most of the total protein (75%) of stem extracts was found in the acidic fraction, whereas the major glucanase (53%) and chitinase (62%) activities were in the basic and neutral fractions, respectively. While wounding resulted in an increase in the neutral glucanase and chitinase activities, the activities of the acidic fractions were promoted by ethephon.  相似文献   

7.
Abstract

The effect of Salicylic Acid (SA) in inducing resistance in groundnut plants against Alternaria alternata was investigated. Foliar application of SA at the concentration of 1 mM significantly reduced the leaf blight disease intensity and increased the pod yield under glasshouse conditions. Changes in the activities of phenylalanine ammonium lyase, chitinase β-1,3 glucanase and in phenolic content on groundnut after application of SA and inoculation with A. alternate were studied. In SA-treated leaves (plants) an increase in phenolic content was observed five days after challenge inoculation with A. alternata in groundnut plants pretreated with SA. There was a marked increase in chitinase and pathogen inoculation in SA-treated leaves. In chitinase, β-1,3 glucanase activities were observed in response to plants with an increase in SA treated leaves. Foliar applications of SA-induced in peroxidase and polyphenol oxidase activities were observed upon challenge inoculation with pathogen.  相似文献   

8.
Inoculation of different bean cultivars with Colletotrichum lindemuthianum race β results in a marked increase of β-1,3-glucanase and chitinase activities. The increase is much faster in incompatible than in compatible interactions. Induced β-1,3-glucanase (pI 9,5) differs from the constitutive β-1,3-glucanase (pI 4,5) of healthy plants. The induced enzyme can partly degrade, in vitro, the cell walls of C. lindemutianum. The possible role of these hydrolytic enzymes inplants defence is discussed.  相似文献   

9.
β-1,3-glucanase and chitinase activity in response to infection by Alternaria triticina in wheat was examined. Susceptible and resistant wheat genotypes showed differential response to infection, suggesting the use of these enzymes in identifying resistant wheat lines. Further, it was observed that both the enzymes showed similar pattern of induction due to inoculation indicating the probable synergistic action of β-1,3-glucanase and chitinase in combating the fungal infection.  相似文献   

10.
To evaluate the biocontrol effectiveness of chitinase-producing bacterium, Paenibacillus illinoisensis strain KJA-424 against pathogenic strain of Phytophthora capsici in pepper plants, growth response and kinetics of pathogen related (PR) proteins were estimated after inoculation with P. capsici (P), and with a combination of P. capsici and strain KJA-424 cell culture (P+A). Fresh weight and chlorophyll content in shoots at P+A-treated plants significantly increased by 23.4 and 34.2%, respectively after 7days of inoculation, compared to P-treated plants. Root mortality in P+A-treated plants was significantly reduced compared to P-treated plants. Seven days after inoculation, the activities of -1,3-glucanase, cellulase and chitinase in P-treated roots had decreased by 54.8, 36.5 and 52.8%, respectively, compared to P+A-treated roots, while those in P-treated leaves increased by 22.8, 36.3 and 23.8%, respectively, compared to those in P+A-treated leaves. The activities of -1,3-glucanase, cellulase and chitinase in roots are negatively correlated with root mortality. All these results suggest that the inoculation of an antagonist, P. illinoisensis alleviates root mortality, reduction of PR proteins in roots, and activates of PR proteins in leaves infected by P. capsici.  相似文献   

11.
12.
Four antagonists bacteria namely, Bacillus megaterium MB3, B. subtilis MB14, B. subtilis MB99 and B. amyloliquefaciens MB101 were able to produce chitinase, β-1,3-glucanase and protease in different range with the presence of Rhizoctonia solani cell wall as a carbon source. Amplification of chitinase (chiA) gene of 270 bp and β-1, 3-glucanase gene of 415 bp was given supportive evidence at molecular level of antibiosis. After in vitro screening, all antagonists were tested against R. solani under greenhouse conditions. Root treatment of Bacillus strains showed superior defense during pathogen suppression in terms of chitinase, glucanase, peroxidase, poly phenol oxidase, phenylalanine ammonia-lyase activity and total phenolic content in leaves of tomato. All these enzymes accumulated high in tomato leaves as compared to roots. Pathogenesis-related proteins and defense-related enzymes accumulation was directly correlated with plant protection and greenhouse results indicated that B. amyloliquefaciens MB101- and B. subtilis MB14-treated plants offered 69.76 and 61.51 % disease reductions, respectively, over the infected control. These results established that these organisms have the potential to act as biocontrol agents. This study could be highlighted a mutual importance of liquid formulation of antagonistic Bacillus spp. against root associated sclerotia former pathogen R. solani.  相似文献   

13.
The effect of Pseudomonas fluorescens treatment and Fusarium oxysporum f. sp. cubense inoculation on induction of phenylalanine ammonia-lyase (PAL), peroxidase (POX), chitinase, -1,3-glucanase and accumulation of phenolics in banana (Musa sp.) was studied. When banana roots were treated with P. fluorescens strain Pf10, a two-fold increase in phenolic content in leaf tissues was recorded 3 – 6 d after treatment. Challenge inoculation with F. oxysporum, the wilt pathogen, steeply increased the phenolic content in P. fluorescens-treated banana plants. Significant increase in POX activity was detected 6 – 9 d after P. fluorescens treatment. PAL, chitinase and -1,3-glucanase activities increased significantly from 3 d after P. fluorescens treatment and reached the maximum 6 d after treatment. Challenge inoculation with F. oxysporum further increased the enzyme activities. These results suggest that the enhanced activities of defense enzymes and elevated content of phenolics may contribute to bioprotection of banana plants against F. oxysporum.  相似文献   

14.
The objective of this work was to evaluate the effect of Beauveria bassiana (Bb 1205) on controlling Fusarium oxysporum f. sp. lycopersici (Fol 17108) in tomato plants in greenhouse conditions. Inoculation of Bb 1205 was the most promising among the agronomic variables and expression of the activity of the enzymes β-1,3-glucanases and chitinases. Inoculation of Bb 1205 occurred at a concentration of 1 × 108 conidia·mL−1, which was administered onto the leaves, directly into the soil and via injection. Infection with Fol 17108 occurred with 1 × 106 spores·mL−1, which were added directly to the soil. Spectrophotometry was used for measuring agronomic parameters, namely activity of chitinases and β-1,3-glucanases in foliage and roots. When Bb 1205 was added to the soil, the chlorophyll index and aerial part length showed significant differences. In addition, it was determined that root length, fresh weight of foliage, flower, and fruit count increased 82 days after inoculation (dai). Chitinase activity induced by Bb 1205 in leaves and roots of tomato plants infected with Fol 17108 was observed when injected into the stem at 32 dai (41.8 and 11.6-fold, respectively). Inoculation on the foliage showed a 10-fold increase of β-1,3-glucanases in the roots after 82 dpi. As for leaves, a 3.8-fold increase was found when the stem was inoculated. In the different in vivo applications, Bb 1205 activated its defenses by expressing the chitinase enzymes and β-1,3-glucanase, thus reducing the damage caused by Fol 17108, demonstrating increase plant growth thereafter.  相似文献   

15.
Sheath blight disease caused by Rhizoctonia solani Kuhn is becoming a major constraint to rice production, especially in the intensified cultivation system. To know the in rice, it is important to get the knowledge of the activity of defence-related enzymes due to the fungal infection. The pathogen induced superoxide dismutase (SOD) and chitinase activities in rice plants, while suppressing peroxidase (POD) and phenylalanine ammonia-lyase (PAL) activities at 36 and 24 h after inoculation, respectively. Induction of two POD isozymes, POD-3 and -4, up to 48 h after inoculation and disappearance of the said isomers at 72 h onwards in rice–Rhizoctonia interaction implicated the role of these isomers in susceptible host–pathogen interaction. Apart from POD and SOD, the activities of other stress-related enzymes, viz. PAL, polyphenol oxidase (PPO) and β-1,3-glucanase were also studied. From this study, it was found that these defence-related enzymes are most significantly related to host–pathogenic interaction.  相似文献   

16.
The enzyme system (culture filtrate) from Streptomyces sp. W19-1 formed gentiobiose from curdlan (β-1,3-glucan). The mechanism of the formation of gentiobiose was investigated in this study.

Two kinds of enzymes, β-1,3-glucanase and β-glucosidase (transglucosidase), were isolated from the culture filtrate of the strain by hydroxylapatite column chromatography. The β-1,3-glucanase hydrolyzed curdlan to glucose and laminari-oligosaccharides, and the β-glucosidase formed gentiobiose by transglucosylation from the resultant laminari-oligosaccharides, especially laminaribiose. The two enzymes took part in the formation of gentiobiose from curdlan.  相似文献   

17.
Plants dispense localised and systemic defense responses against biotic colonisers and plant resistance to pathogens depends upon timely recognition of pathogen infection and subsequent rapid activation of defense responses through signal transduction pathways. Induction of host defense responses involving compatible and incompatible interactions in tomato landrace, LE996, LE150 and LE1165 (Solanum lycopersicum), and wild relatives, Seijima Jeisei and I979 (S. hirsutum) genotypes, and early blight (EB) pathogen, Alternaria solani were studied. Accumulation patterns of different defense related proteins in resistant genotypes (LE996, Seijima jeisei and I979) and susceptible genotypes (LE150 and LE1165) are reported here. Challenge inoculation led to similar protein profiles in resistant genotypes yielding 11 proteins, unique are 14, 54, and 58 kD proteins that are absent with susceptible genotypes. Resistant genotypes accumulated more proteins well in advance, 6-h after challenge inoculation. Resistant genotype LE996 expressed 54%, 90%, and 52% enhanced enzymatic activity of peroxidase, polyphenol oxidase and phenylalanine ammonia lyase respectively than susceptible LE150 and correlated phenolics accumulation peaked 2-d after challenge inoculation. Activity gel assay indicated the unique expression of PO1 and PO2 in LE996 upon challenge inoculation. Significant increase in expression of chitinases (63%) and β-1,3-glucanase (71%) upon challenge inoculation than susceptible LE150 control was recorded. Western blotting indicated the unique presence of less than 30 kD chitinase in resistant LE996 and Seijima Jeisei and was absent in susceptible LE150. The results demonstrate the importance of pathogenesis-related (PR) proteins in EB resistance and their use as biochemical markers for genotype selection.  相似文献   

18.
We studied the effect of constitutive expression of pathogenesis-related proteins (PRs) in tobacco plants on vesicular-arbuscular mycorrhiza. Tobacco lines genetically transformed to express various PRs constitutively under the control of the cauliflower mosaic virus 35S promoter of tobacco were examined. Immunoblot analysis and activity measurements demonstrated high levels of expression of the PRs in the root systems of the plants. Constitutive expression of the following acidic isoforms of tobacco PRs did not affect the time course or the final level of colonization by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae: PR-1a, PR-3 (=PR-Q), PR-Q(prm1), PR-4, and PR-5. Similarly, constitutive expression of an acidic cucumber chitinase, of a basic tobacco chitinase with and without its vacuolar targeting peptide, of a basic (beta)-1,3-glucanase, and of combinations of PR-Q and PR-Q(prm1) or basic chitinase and basic (beta)-1,3-glucanase did not affect colonization by the mycorrhizal fungus. A delay of colonization by G. mosseae was observed in tobacco plants constitutively expressing the acidic isoform of tobacco PR-2, a protein with (beta)-1,3-glucanase activity.  相似文献   

19.
Treatment of tomato leaves with aqueous extract (0.5%) of the galls of Quercus infectoria significantly reduced infection from subsequent inoculation with Alternaria solani, the tomato early blight pathogen. When the leaves were challenge-inoculated with A. solani 3 d after application of Q. infectoria gall extract (QIGE), the percent defoliation decreased from 33.6 to 7.3. Two to three day pre-treatment with QIGE reduced the percent defoliation by 77 percent. The biochemical responses of tomato plants to QIGE were also studied. In tomato plants treated with QIGE, phenolic content increased rapidly, reached the maximum at 2 d after treatment. Phenylalanine ammonia-lyase (PAL) activity increased significantly from 1 d after treatment and the maximum enzyme activity was recorded 2 d after treatment at which period a 3-fold increase in PAL activity was observed when compared to the control. Peroxidase (PO) activity was also significantly increased 1 d after treatment and the maximum activity was reached 2 d after treatment. Peroxidase isozyme analysis indicated that PO-1 was increased dramatically in tomato leaves 1 d after treatment and maintained at the same level throughout the experimental period of 6 d. When tomato leaves were treated with QIGE, a two-fold increase in chitinase and β-1,3-glucanase activities was recorded 2 and 3 d respectively, after treatment. The enhanced activities of defense-related enzymes and elevated levels of phenolics in QIGE-treated tomato plants between 1 and 3 d after treatment suggest that these induced biochemical defenses may be involved in the suppression of early blight by QIGE.  相似文献   

20.
The objective of this study was to examine the effects of Bacillus amyloliquefaciens Y1 on the control of Fusarium wilt disease and subsequent improvement in the growth of tomato plants. The Y1 strain strongly inhibited Fusarium oxysporum f. sp. lycopersici in vitro and also produced indole-3-acetic acid (IAA) in both the presence and absence of tryptophan. Over 96% of tomato seeds germinated when treated with either water, tryptone soy broth, or Y1 cultures, whereas root (5.40?cm) and shoot (5.15?cm) lengths were greatest in tomato seedlings treated with Y1 cultures that lacked tryptophan. Three experimental treatments – Black White medium (BW), BW medium with a commercial fungicide (BW?+?F), and Y1 culture inoculated in BW medium (Y1) – were applied to control Fusarium wilt disease under in vivo conditions. Application of Y1 culture and BW?+?F led to significantly lower disease incidence than did BW; moreover, shoot length and fresh and dry weight of both roots and shoots were greater in plants treated with Y1 than in plants treated with either BW or BW?+?F. A similar trend was observed for chitinase and β-1,3-glucanase activities in roots and leaves of tomato plants in all treatment groups over most of the experimental period. Finally, the presence of Y1 in the rhizospheric soils of Y1-treated plants resulted in a significant reduction in the populations of other bacteria. The results of our study demonstrated the effectiveness of Y1 not only in the control of Fusarium wilt disease but also for the enhancement of plant growth in cultivated tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号