首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Coral Reefs - Corals from the Gulf of Aqaba (northern Red Sea) are resilient to high temperatures and therefore this region is regarded as globally important for reef conservation. However,...  相似文献   

2.
Coral Reefs - Corals in the Gulf of Aqaba (GoA) in the northern Red Sea show high thermal tolerance. The GoA has therefore been suggested as a coral reef refuge from climate change. However, as a...  相似文献   

3.
Quantitative studies of coral communities in the central and northern Red Sea were designed for comparison of the community structure in both areas. The central Red Sea provides reef-building Scleractinia and reef-inhabiting Alcyonaria with optimal temperature conditions, whereas the north tip of the Gulf of Aqaba (29°30 N) represents the northernmost outpost of coral reefs in the Indian Ocean. It is generally assumed that coral diversity decreases towards the margins of the global reef-belt. In the Red Sea, generic diversity of hermatypic Scleractinia slightly decreases from the central to the northern part (51 : 48 genera); but cnidarian species abundance (species number per 25 m2 area) was found to increase from 62 to 98 species and the Shannon-Wiener diversity index increased from 2.58 to 3.67 with regard to colony number. The mean colony size was 189 cm2 at Sanganeb-Atoll, but only 52 cm2 at Aqaba. The mean numbers of colonies were inversely related: 662 per 25 m2 at Sanganeb-Atoll and 2028 at Aqaba. Uninhabited parts of the studied areas amounted to 47 % at Sanganeb-Atoll and to 56 % at Aqaba. The community structure of the studied areas indicates that occasional perturbations prevent the progress of the community towards a low-diversity equilibrium state. Since severe hydrodynamic damage is extremely rare in 10 m depth, major disturbances may occur by sedimentation, by the interference of grazers (e. g.Diadema setosum) and due to overgrowth by space-competitors (mainly soft corals). These events are to be regarded as throwbacks in the process of monopolization of the area by well adapted species. Recovery from such perturbations (i.e. recolonization of dead areas) obviously takes place at different velocities in the northern and central Red Sea, for the mean water temperature at Aqaba is 5 °C lower than in the central Red Sea. Hence the process of taking over a given space by a few species proceeds further in the central Red Sea than at its northern end. The increase in diversity per area towards high latitudes is comparable to that with depth. It is concluded from the great number of species at Aqaba that these reefs mark the northernmost outpost of the Indian Ocean only geographically but not ecophysiologically; they would occur at even higher latitudes, if the Gulf of Aqaba extended farther north.  相似文献   

4.
The cyanobacteria Synechococcus and Prochlorococcus are abundant primary producers in the nitrogen-poor waters of the Gulf of Aqaba, northern Red Sea. Expression of the nitrogen regulatory gene ntcA is a useful indicator for determining the N-status of cyanobacteria, and preliminary work with this gene suggests that it may also serve as a useful biodiversity marker. Here we investigated the genotypic diversity of ntcA among the full spectrum of cultured Synechococcus and Prochlorococcus lineages and assessed cyanobacterial genotypic composition in environmental samples from the Gulf of Aqaba. The high level of ntcA diversification established this gene as an excellent biodiversity marker capable of distinguishing between numerous clades within each genus with high resolution. An unexpected large diversity was observed among Synechococcus populations, including the detection of four novel clades for which culture representatives have yet to be isolated. In addition, extensive microdiversity within a number of Synechococcus clades was revealed. Temporal differences in the detection of the various Synechococcus clades suggest seasonal fluctuations in the genotypic make-up of Synechococcus populations. In contrast, virtually all Prochlorococcus sequences fell within a single high-light adapted clade that was detected year round. We suggest that the limited genotypic diversity among Prochlorococcus in combination with a limited capacity for acclimation to environmental changes resulting from its small genome size led to the dramatic rise and demise of Prochlorococcus populations over the yearly cycle in the Gulf of Aqaba.  相似文献   

5.
A total of 23 species and three groups of form variants of oncaeidcopepods have been identified, which were collected in smallmesh net samples taken along a transect from the northernmostRed Sea (>27°N) to the Gulf of Aqaba down to a maximumdepth of 800 m. Two of the species were present only in theRed Sea main basin, but were not recorded in the Gulf. By comparingthe present results with previously published data from thecentral and southern Red Sea a first assessment of the zoogeographicaldistribution of Oncaeidae in the entire Red Sea has been achieved.The species diversity of Oncaeidae in the Gulf of Aqaba appearsto be considerably lower compared to the southern Red Sea, where31 oncaeid species and four groups of form variants have beenfound. The observed latitudinal gradient in species numbersof Oncaeidae generally corresponds to the gradients observedfor various other zooplankton taxa in the Red Sea. First dataon the vertical distribution of oncaeid species in the Gulfare provided.  相似文献   

6.
The distribution pattern, taxonomic composition and communitystructure of mesozooplankton was studied along a transect with10 positions between the Gulf of Aqaba and the northern RedSea. Five positions were resampled two or three times duringa cruise of RV ‘Meteor’ in February/March 1999.In spite of clear differences in the density stratificationbetween the Gulf of Aqaba and the northern Red Sea, the mesozooplanktoncomposition was very similar: Copepods were by far the mostabundant taxon, contributing 76–95% to the total community.The remainder was composed largely of ostracods, chaetognaths,appendicularians and molluscs. The mesozooplankton of the deeplymixed stations was homogeneously distributed, at all other stationsthe bulk of the mesozooplankton (>70%) was concentrated inthe mixed surface layer with peaks of calanoids, cyclopoidsand appendicularians in the vicinity of the chlorophyll a (Chla) maximum layer. Ostracods and poecilostomatoids dominatedthe layers below. Standing stocks within the total water column(550–1200 m) varied between 93 and 431 x 103 individualsm–2 for copepods and 5–76 x 103 individuals m–2for other mesozooplankton with highest numbers in the northernGulf of Aqaba, where vertical mixing was deep (400–500m) and Chl a and mesozooplankton distributions homogeneous throughoutthe water column. Towards the south, the mixed depth decreasedfrom 300 m in the central Gulf of Aqaba to 50 m in the Red Sea.Cluster analysis separated three distinct groups of stations,compounding the observed differences between the northern Gulfof Aqaba (Position I) and the other positions. The analysisalso revealed temporal differences between the February andMarch sections of the cruise, indicating the winter–springtransition. The stations sampled in March are characterisedby a higher total abundance and by a higher percentage of appendiculariansand ostracods than the stations sampled in February  相似文献   

7.
Aim Unique topographic features left the Red Sea and its north‐eastern extension into the Gulf of Aqaba practically devoid of coral‐reef‐based organisms during the last glacial maximum. The current ichthyofauna in these two ‘regions’ thus represents the product of relatively recent colonization by species found in the Arabian Sea, which adjoins the Red Sea at its southern tip. We used this system to test why some marine species seemingly fail to extend their geographic range, thereby generating spatial heterogeneity in biodiversity. Location The Arabian Sea, Red Sea, and the Gulf of Aqaba. Methods A list of coral‐reef‐associated fish species, belonging to the 10 most speciose families, was compiled for each region using published sources. The data were analysed (major axis regression, randomization tests) for taxonomic and body‐size‐dependent biases in colonization probabilities. A simple probabilistic model was used to examine the potential contribution of local (within‐region) extinctions to determining species composition in the Red Sea. Results Of the 462 reef‐associated species that inhabit the Arabian Sea, 69% have crossed successfully into the Red Sea; of these, 55% have crossed into the Gulf of Aqaba. A species’ probability of being found in either ‘target’ was independent of presumed innate differences, i.e. ecological correlates of taxonomic affiliation and body size. Similarly, local extinctions were found unlikely to have been of consequence over the past several thousand years. Main conclusions Present‐day differences in the species richness of reef‐associated fish species among the Arabian Sea, Red Sea and Gulf of Aqaba appear to be the product of external, non‐selective constraints on colonization. The random nature of the colonization process is suggestive of ecological redundancy among coral‐reef fish species. Importantly, the study places a time frame on the processes that determine spatial patterns of biodiversity in reef fish.  相似文献   

8.
The stability and persistence of coral reefs in the decades to come is uncertain due to global warming and repeated bleaching events that will lead to reduced resilience of these ecological and socio‐economically important ecosystems. Identifying key refugia is potentially important for future conservation actions. We suggest that the Gulf of Aqaba (GoA) (Red Sea) may serve as a reef refugium due to a unique suite of environmental conditions. Our hypothesis is based on experimental detection of an exceptionally high bleaching threshold of northern Red Sea corals and on the potential dispersal of coral planulae larvae through a selective thermal barrier estimated using an ocean model. We propose that millennia of natural selection in the form of a thermal barrier at the southernmost end of the Red Sea have selected coral genotypes that are less susceptible to thermal stress in the northern Red Sea, delaying bleaching events in the GoA by at least a century.  相似文献   

9.
Synopsis Observations on populations of the lionfish, Pterois volitans (Scorpaenidae), in the Red Sea revealed that during the last four decades a novel phenotype of this species has started to evolve, which instead of the typical ray-like supraocular tentacles bears a pair of feather-like tentacles, one or both of which bear a sharply defined eye-mark, previously noted in this fish in the eastern Indian ocean. During the ongoing studies of the last 25 years it has become clear that this ornamentation, possibly first observed in the Red Sea at the southern tip of Sinai, had gradually extended both westward to the Egyptian shores, and eastward, along the 180 km of the Gulf of Aqaba. In the last decade such ornamented specimens have begun to appear and multiply at the northern tip of the Gulf, within the large population of ‘regular’ lionfish bearing ray-like tentacles. The evolutionary basis for this development, and the possible usefulness of this novel signal are discussed.  相似文献   

10.
Ichthyological Research - The samarid flatfish Plagiopsetta biocellata sp. nov. is described from Egypt, Gulf of Aqaba, southern Red Sea, based on a specimen collected in the coral-reef lagoon at a...  相似文献   

11.
The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef systems. We carried out a quantitative assessment of ISI-listed research published from the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef-associated bacteria) and compared the amount of research conducted in the Red Sea to that from Australia’s Great Barrier Reef (GBR) and the Caribbean. On average, for these eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and about 1/8th the amount of the Caribbean. Further, more than 50 % of the published research from the Red Sea originated from the Gulf of Aqaba, a small area (<2 % of the area of the Red Sea) in the far northern Red Sea. We summarize the general state of knowledge in these eight topics and highlight the areas of future research priorities for the Red Sea region. Notably, data that could inform science-based management approaches are badly lacking in most Red Sea countries. The Red Sea, as a geologically “young” sea located in one of the warmest regions of the world, has the potential to provide insight into pressing topics such as speciation processes as well as the capacity of reef systems and organisms to adapt to global climate change. As one of the world’s most biodiverse coral reef regions, the Red Sea may yet have a significant role to play in our understanding of coral reef ecology at a global scale.  相似文献   

12.
13.
The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the 'small-cell' and 'large-cell' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for ~93% of all sequences, whereas a tail of 'rare' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions.  相似文献   

14.
15.
The connectivity among marine populations is determined by the dispersal capabilities of adults as well as their eggs and larvae. Dispersal distances and directions have a profound effect on gene flow and genetic differentiation within species. Genetic homogeneity over large areas is a common feature of coral reef fishes and can reflect high dispersal capability resulting in high levels of gene flow. If fish larvae return to their parental reef, gene flow would be restricted and genetic differentiation could occur. Larabicus quadrilineatus (Labridae) is considered as an endemic fish species of the Red Sea and Gulf of Aden. The juveniles of this species are cleaner fish that feed on ectoparasites of other fishes. Here, we investigated the genetic population structure and gene flow in L. quadrilineatus among five locations in the Red Sea to infer connectivity among them. To estimate genetic diversity, we analysed 369 bp of 237 mitochondrial DNA control region sequences. Haplotype and nucleotide diversities were higher in the southern than in the northern Red Sea. Analysis of molecular variance (amova) detected the highest significant genetic variation between northern and central/southern populations (Phi(CT) = 0.01; P < 0.001). Migration analysis revealed a several fold higher northward than southward migration, which could be explained by oceanographic conditions and spawning season. Even though the Phi(ST) value of 0.01 is rather low and implies a long larval dispersal distance, estimates based on the isolation-by-distance model show a very low mean larval dispersal distance (0.44-5.1 km) compared to other studies. In order to enable a sustainable ornamental fishery on the fourline wrasse, the results of this study suggest that populations in the northern and southern Red Sea should be managed separately as two different stocks. The rather low larval dispersal distance of about 5 km needs to be considered in the design of marine protected areas to enable connectivity and self-seeding.  相似文献   

16.
17.
Pleistocene sea-level fluctuations profoundly changed landmass configurations around northern Australia. The cyclic emergence of the Torres Strait land bridge and concomitant shifts in the distribution of shallow-water marine habitats repeatedly sundered east and west coast populations. These biogeographical perturbations invoke three possible scenarios regarding the directions of interglacial range expansion: west to east, east to west, or bidirectional. We evaluated these scenarios for the olive sea snake, Aipysurus laevis, by exploring its genetic structure around northern Australia based on 354 individuals from 14 locations in three regions (Western Australia, WA; Gulf of Carpentaria, GoC; Great Barrier Reef, GBR). A 726-bp fragment of the mitochondrial DNA ND4 region revealed 41 variable sites and 38 haplotypes, with no shared haplotypes among the three regions. Population genetic structure was strong overall, phiST=0.78, P<0.001, and coalescent analyses revealed no migration between regions. Genetic diversity was low in the GBR and GoC and the genetic signatures of these regions indicated range or population expansions consistent with their recent marine transgressions around 7000 years ago. By contrast, genetic diversity on most WA reefs was higher and there were no signals of recent expansion events on these reefs. Phylogenetic analyses indicated that GBR and GoC haplotypes were derived from WA haplotypes; however, statistical parsimony suggested that recent range expansion in the GBR-GoC probably occurred from east coast populations, possibly in the Coral Sea. Levels of contemporary female-mediated gene flow varied within regions and reflected potential connectivity among populations afforded by the different regional habitat types.  相似文献   

18.
Genetic diversity of sea turtles (hawksbill turtle) was studied using sequencing of mitochondrial DNA (mtDNA, D-loop region). Thirty dead embryos were collected from the Kish and Qeshm Islands in the Persian Gulf. Analysis of sequence variation over 890 bp of the mtDNA control region revealed five haplotypes among 30 individuals. This is the first time that Iranian haplotypes have been recorded. Nucleotide and haplotype diversity was 0.77 and 0.001 for Qeshm Island and 0.64 and 0.002 for Kish Island, respectively. Total haplotype diversity was calculated as 0.69, which demonstrates low genetic diversity in this area. The data also indicated very high rates of migration between the populations of these two islands. A comparison of our data with data from previous studies downloaded from a gene bank showed that turtles of the Persian Gulf migrated from the Pacific and the Sea of Oman into this area. On the other hand, evidence of migration from populations to the West was not found.  相似文献   

19.
The snapper Pristipomoides multidens is reported for the first time from the Gulf of Aqaba. A comparison of mitochondrial cytochrome oxidase subunit 1 (COI) with available data revealed a high similarity with a sample from Mauritius and a lower similarity with samples from the China Sea. The status and distribution of the Red Sea species of Pristipomoides are summarised.  相似文献   

20.
The biota of the eastern basin of the Mediterranean Sea has experienced dramatic changes in the last decades, in part as a result of the massive invasion of Red Sea species. The mechanism generally hypothesized for the 'Red-to-Med' invasion is that of natural dispersal through the Suez Canal. To date, however, this hypothesis has not been tested. This study examines the mode of invasion, using as a model the mussel Brachidontes pharaonis, an acclaimed 'Lessepsian migrant' that thrives along the eastern Mediterranean coast. Our findings reveal two distinct lineages of haplotypes, and five possible explanations are discussed for this observation. We show that the genetic exchange among the Mediterranean, Gulf of Suez and the northern Red Sea is sufficiently large to counteract the build up of sequential genetic structure. Nevertheless, these basins are rich in unique haplotypes of unknown origin. We propose that it is historic secondary contact, an ongoing anthropogenic transport or both processes, that participate in driving the population dynamics of B. pharaonis in the Mediterranean and northern Red Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号