首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yu D  Keene AC  Srivatsan A  Waddell S  Davis RL 《Cell》2005,123(5):945-957
Formation of normal olfactory memory requires the expression of the wild-type amnesiac gene in the dorsal paired medial (DPM) neurons. Imaging the activity in the processes of DPM neurons revealed that the neurons respond when the fly is stimulated with electric shock or with any odor that was tested. Pairing odor and electric-shock stimulation increases odor-evoked calcium signals and synaptic release from DPM neurons. These memory traces form in only one of the two branches of the DPM neuron process. Moreover, trace formation requires the expression of the wild-type amnesiac gene in the DPM neurons. The cellular memory traces first appear at 30 min after conditioning and persist for at least 1 hr, a time window during which DPM neuron synaptic transmission is required for normal memory. DPM neurons are therefore "odor generalists" and form a delayed, branch-specific, and amnesiac-dependent memory trace that may guide behavior after acquisition.  相似文献   

2.
The global logic used by the brain for differentially encoding positive and negative experiences remains unknown along with how such experiences are represented by collections of memory traces at the cellular level. Here we contrast the cellular memory traces that form in the dorsal paired medial (DPM) neurons of Drosophila after conditioning flies with odors associated with aversive or appetitive unconditioned stimuli (US). Our results show that the appetitive DPM neuron trace is distinguished from the aversive in three fundamental ways: (1) The DPM neurons do not respond to an appetitive US of sucrose by itself, in contrast to their robust response to an aversive US. (2) The appetitive trace persists for twice as long as the aversive trace. (3) The appetitive trace is expressed in both neurite branches of the neuron, rather than being confined to a single branch like the aversive trace. In addition, we demonstrate that training flies with nonnutritive sugars that elicit a behavioral memory that decays within 24 hr generates, like aversive conditioning, a short-lived and branch-restricted memory trace. These results indicate that the persistence and breadth of the DPM neuron memory trace influences the duration of behavioral memory.  相似文献   

3.
Davis RL 《Neuron》2011,70(1):8-19
Studies using functional cellular imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at or near acquisition and coexist with short-term behavioral memory. One trace forms with a delay after learning and coexists with intermediate-term behavioral memory. Two traces form many hours after acquisition and coexist with long-term behavioral memory. The transient memory traces may support behavior across the time windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for elucidating the logic by which the nervous system organizes and stores different temporal forms of memory.  相似文献   

4.
Preat T 《Neuron》2004,44(3):404-405
Two dorsal paired medial (DPM) neurons express the Amnesiac neuropeptide and project onto mushroom bodies, the Drosophila olfactory memory center. In this issue of Neuron, Keene et al. show that higher-level brain circuits process various olfactory memories differently. DPM neurons are required during acquisition of some odors and during memory consolidation of others. These findings reveal a surprising level of complexity for the formation of olfactory memories in Drosophila.  相似文献   

5.
Amnesiac mutant flies have an olfactory memory defect. The amn gene encodes a homolog of vertebrate pituitary adenylate cyclase-activating peptide (PACAP), and it is strongly expressed in dorsal paired medial (DPM) neurons. DPM neurons ramify throughout the mushroom bodies in the adult fly brain, and they are required for stable memory. Here, we show that DPM neuron output is only required during the consolidation phase for middle-term odor memory and is dispensable during acquisition and recall. However, we found that DPM neuron output is required during acquisition of a benzaldehyde odor memory. We show that flies sense benzaldehyde by the classical olfactory and a noncanonical route. These results suggest that DPM neurons are required to consolidate memory and are differently involved in memory of a volatile that requires multisensory integration.  相似文献   

6.
Behavioral functions of the insect mushroom bodies   总被引:8,自引:0,他引:8  
New methods of intervention in Drosophila and other insect species reveal that the mushroom bodies are involved in a diverse set of behavioral functions. The intrinsic Kenyon cells (those neurons with projections within the mushroom bodies) house part of the short-term memory trace for odors and are required for courtship conditioning memory. A pair of extrinsic mushroom body neurons (neurons with projections both inside and outside the mushroom bodies) provides a neuropeptide important for 1-hour olfactory memory. In addition, the mushroom bodies are necessary for context generalization in visual learning and for regulating the transition from walking to rest.  相似文献   

7.
Griffith LC 《Neuron》2006,49(2):171-174
The peptidergic dorsal paired medial (DPM) neurons, which innervate the mushroom bodies in Drosophila, have been widely hypothesized to be part of the unconditioned stimulus (US) pathway of odor-shock classical conditioning. In the December 2 issue of Cell, Yu et al., using functional imaging techniques, report the surprising finding that DPMs contain odor-specific memory traces and send integrated information about the conditioned stimulus (CS) to the mushroom bodies. These findings provide important new insight into the circuitry of learning in Drosophila.  相似文献   

8.
During classical conditioning, a positive or negative value is assigned to a previously neutral stimulus, thereby changing its significance for behavior. If an odor is associated with a negative stimulus, it can become repulsive. Conversely, an odor associated with a reward can become attractive. By using Drosophila larvae as a model system with minimal brain complexity, we address the question of which neurons attribute these values to odor stimuli. In insects, dopaminergic neurons are required for aversive learning, whereas octopaminergic neurons are necessary and sufficient for appetitive learning. However, it remains unclear whether two independent neuronal populations are sufficient to mediate such antagonistic values. We report the use of transgenically expressed channelrhodopsin-2, a light-activated cation channel, as a tool for optophysiological stimulation of genetically defined neuronal populations in Drosophila larvae. We demonstrate that distinct neuronal populations can be activated simply by illuminating the animals with blue light. Light-induced activation of dopaminergic neurons paired with an odor stimulus induces aversive memory formation, whereas activation of octopaminergic/tyraminergic neurons induces appetitive memory formation. These findings demonstrate that antagonistic modulatory subsystems are sufficient to substitute for aversive and appetitive reinforcement during classical conditioning.  相似文献   

9.
Olfactory learning   总被引:8,自引:0,他引:8  
Davis RL 《Neuron》2004,44(1):31-48
The olfactory nervous systems of insects and mammals exhibit many similarities, suggesting that the mechanisms for olfactory learning may be shared. Neural correlates of olfactory memory are distributed among many neurons within the olfactory nervous system. Perceptual olfactory learning may be mediated by alterations in the odorant receptive fields of second and/or third order olfactory neurons, and by increases in the coherency of activity among ensembles of second order neurons. Operant olfactory conditioning is associated with an increase in the coherent population activity of these neurons. Olfactory classical conditioning increases the odor responsiveness and synaptic activity of second and perhaps third order neurons. Operant and classical conditioning both produce an increased responsiveness to conditioned odors in neurons of the basolateral amygdala. Molecular genetic studies of olfactory learning in Drosophila have revealed numerous molecules that function within the third order olfactory neurons for normal olfactory learning.  相似文献   

10.
Neuropsychological theories proposed a critical role of the interaction between the medial temporal lobe and neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We identify neural mechanisms of this long-term memory formation process by single-unit recording and molecular biological methods in an animal model of visual pair-association task in monkeys. In our previous studies, we found a group of neurons that manifested selective responses to both of the paired associates (pair-coding neuron) in the anterior inferior temporal (IT) cortex. It provides strong evidence that single IT neurons acquire the response-selectivity through associative learning, and suggests that the reorganized neural circuits for the pair-coding neurons serve as the memory engram of the pair-association learning. In this article, we investigated further mechanisms of the neural circuit reorganization. First, we tested the role of the backward connections from the medial temporal lobe to IT cortex. lbotenic acid was injected unilaterally into the entorhinal and perirhinal cortex which provided massive backward projections ipsilaterally to IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. Second, we ask why the limbic-neocortical interactions are so important. We hypothesize that limbic neurons would undergo rapid modification of synaptic connectivity and provide backward signals that guide reorganization of neocortical neural circuits. We then investigated the molecular basis of such rapid synaptic modifiability by detecting the expression of immediate-early genes. We found strong expression of zif268 during the learning of a new set of paired associates, most intensively in area 36 of the perirhinal cortex. All these results with visual pair-association task support our hypothesis, and demonstrate that the ‘consolidation’ process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in the primate with neurophysiolocical and molecular biological approaches.  相似文献   

11.
The temporal pairing of a neutral stimulus with a reinforcer (reward or punishment) can lead to classical conditioning, a simple form of learning in which the animal assigns a value (positive or negative) to the formerly neutral stimulus. Olfactory classical conditioning in Drosophila is a prime model for the analysis of the molecular and neuronal substrate of this type of learning and memory. Neuronal correlates of associative plasticity have been identified in several regions of the insect brain. In particular, the mushroom bodies have been shown to be necessary for aversive olfactory memory formation. However, little is known about which neurons mediate the reinforcing stimulus. Using functional optical imaging, we now show that dopaminergic projections to the mushroom-body lobes are weakly activated by odor stimuli but respond strongly to electric shocks. However, after one of two odors is paired several times with an electric shock, odor-evoked activity is significantly prolonged only for the "punished" odor. Whereas dopaminergic neurons mediate rewarding reinforcement in mammals, our data suggest a role for aversive reinforcement in Drosophila. However, the dopaminergic neurons' capability of mediating and predicting a reinforcing stimulus appears to be conserved between Drosophila and mammals.  相似文献   

12.
Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt) as well as appetitive (odor-sugar) associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive olfactory memory formation respectively, or for the retrieval of these memory traces. Future studies of the dopaminergic system need to take into account such cellular dissociations in function in order to be meaningful.  相似文献   

13.
Studies utilizing general learning and memory tasks have suggested the importance of neocortical structural plasticity for memory consolidation. However, these learning tasks typically result in learning of multiple different tasks over several days of training, making it difficult to determine the synaptic time course mediating each learning event. The current study used trace-eyeblink conditioning to determine the time course for neocortical spine modification during learning. With eyeblink conditioning, subjects are presented with a neutral, conditioned stimulus (CS) paired with a salient, unconditioned stimulus (US) to elicit an unconditioned response (UR). With multiple CS-US pairings, subjects learn to associate the CS with the US and exhibit a conditioned response (CR) when presented with the CS. Trace conditioning is when there is a stimulus free interval between the CS and the US. Utilizing trace-eyeblink conditioning with whisker stimulation as the CS (whisker-trace-eyeblink: WTEB), previous findings have shown that primary somatosensory (barrel) cortex is required for both acquisition and retention of the trace-association. Additionally, prior findings demonstrated that WTEB acquisition results in an expansion of the cytochrome oxidase whisker representation and synaptic modification in layer IV of barrel cortex. To further explore these findings and determine the time course for neocortical learning-induced spine modification, the present study utilized WTEB conditioning to examine Golgi-Cox stained neurons in layer IV of barrel cortex. Findings from this study demonstrated a training-dependent spine proliferation in layer IV of barrel cortex during trace associative learning. Furthermore, findings from this study showing that filopodia-like spines exhibited a similar pattern to the overall spine density further suggests that reorganization of synaptic contacts set the foundation for learning-induced neocortical modifications through the different neocortical layers.  相似文献   

14.
Labile memory is thought to be held in the brain as persistent neural network activity. However, it is not known how biologically relevant memory circuits are organized and operate. Labile and persistent appetitive memory in Drosophila requires output after training from the α'β' subset of mushroom body (MB) neurons and from a pair of modulatory dorsal paired medial (DPM) neurons. DPM neurons innervate the entire MB lobe region and appear to be pre- and postsynaptic to the MB, consistent with a recurrent network model. Here we identify a role after training for synaptic output from the GABAergic anterior paired lateral (APL) neurons. Blocking synaptic output from APL neurons after training disrupts labile memory but does not affect long-term memory. APL neurons contact DPM neurons most densely in the α'β' lobes, although their processes are intertwined and contact throughout all of the lobes. Furthermore, APL contacts MB neurons in the α' lobe but makes little direct contact with those in the distal α lobe. We propose that APL neurons provide widespread inhibition to stabilize and maintain synaptic specificity of a labile memory trace in a recurrent DPM and MB α'β' neuron circuit.  相似文献   

15.
Animals need to associate different environmental stimuli with each other regardless of whether they temporally overlap or not. Drosophila melanogaster displays olfactory trace conditioning, where an odor is followed by electric shock reinforcement after a temporal gap, leading to conditioned odor avoidance. Reversing the stimulus timing in olfactory conditioning results in the reversal of memory valence such that an odor that follows shock is later on approached (i.e. relief conditioning). Here, we explored the effects of stimulus timing on memory in another sensory modality, using a visual conditioning paradigm. We found that flies form visual memories of opposite valence depending on stimulus timing and can associate a visual stimulus with reinforcement despite being presented with a temporal gap. These results suggest that associative memories with non-overlapping stimuli and the effect of stimulus timing on memory valence are shared across sensory modalities.  相似文献   

16.
It is broadly accepted that long-term memory (LTM) is formed sequentially after learning and short-term memory (STM) formation, but the nature of the relationship between early and late memory traces remains heavily debated [1-5]. To shed light on this issue, we used an olfactory appetitive conditioning in Drosophila, wherein starved flies learned to associate an odor with the presence of sugar [6]. We took advantage of the fact that both STM and LTM are generated after a unique conditioning cycle [7, 8] to demonstrate that appetitive LTM is able to form independently of STM. More specifically, we show that (1) STM retrieval involves output from γ neurons of the mushroom body (MB), i.e., the olfactory memory center [9, 10], whereas LTM retrieval involves output from αβ MB neurons; (2) STM information is not transferred from γ neurons to αβ neurons for LTM formation; and (3) the adenylyl cyclase RUT, which is thought to operate as a coincidence detector between the olfactory stimulus and the sugar stimulus [11-14], is required independently in γ neurons to form appetitive STM and in αβ neurons to form LTM. Taken together, these results demonstrate that appetitive short- and long-term memories are formed and processed in parallel.  相似文献   

17.
Mushroom body (MB)-dependent olfactory learning in Drosophila provides a powerful model to investigate memory mechanisms. MBs integrate olfactory conditioned stimulus (CS) inputs with neuromodulatory reinforcement (unconditioned stimuli, US), which for aversive learning is thought to rely on dopaminergic (DA) signaling to DopR, a D1-like dopamine receptor expressed in MBs. A wealth of evidence suggests the conclusion that parallel and independent signaling occurs downstream of DopR within two MB neuron cell types, with each supporting half of memory performance. For instance, expression of the Rutabaga (Rut) adenylyl cyclase in γ neurons is sufficient to restore normal learning to rut mutants, whereas expression of Neurofibromatosis 1 (NF1) in α/β neurons is sufficient to rescue NF1 mutants. DopR mutations are the only case where memory performance is fully eliminated, consistent with the hypothesis that DopR receives the US inputs for both γ and α/β lobe traces. We demonstrate, however, that DopR expression in γ neurons is sufficient to fully support short- and long-term memory. We argue that DA-mediated CS-US association is formed in γ neurons followed by communication between γ and α/β neurons to drive consolidation.  相似文献   

18.
Gap junctions play an important role in the regulation of neuronal metabolism and homeostasis by serving as connections that enable small molecules to pass between cells and synchronize activity between cells. Although recent studies have linked gap junctions to memory formation, it remains unclear how they contribute to this process. Gap junctions are hexameric hemichannels formed from the connexin and pannexin gene families in chordates and the innexin (inx) gene family in invertebrates. Here we show that two modulatory neurons, the anterior paired lateral (APL) neuron and the dorsal paired medial (DPM) neuron, form heterotypic gap junctions within the mushroom body (MB), a learning and memory center in the Drosophila brain. Using RNA interference-mediated knockdowns of inx7 and inx6 in the APL and DPM neurons, respectively, we found that flies showed normal olfactory associative learning and intact anesthesia-resistant memory (ARM) but failed to form anesthesia-sensitive memory (ASM). Our results reveal that the heterotypic gap junctions between the APL and DPM neurons are an essential part of the MB circuitry for memory formation, potentially constituting a recurrent neural network to stabilize ASM.  相似文献   

19.

Background

Administration of psychomotor stimulants like amphetamine facilitates behavior in the presence of incentive distal stimuli, which have acquired the motivational properties of primary rewards through associative learning. This facilitation appears to be mediated by the mesolimbic dopamine system, which may also be involved in facilitating behavior in the presence of distal stimuli that have not been previously paired with primary rewards. However, it is unclear whether psychomotor stimulants facilitate behavioral interaction with unconditioned distal stimuli.

Principal Findings

We found that noncontingent administration of amphetamine into subregions of the rat ventral striatum, particularly in the vicinity of the medial olfactory tubercle, facilitates lever pressing followed by visual signals that had not been paired with primary rewards. Noncontingent administration of amphetamine failed to facilitate lever pressing when it was followed by either tones or delayed presentation or absence of visual signals, suggesting that visual signals are key for enhanced behavioral interaction. Systemic administration of amphetamine markedly increased locomotor activity, but did not necessarily increase lever pressing rewarded by visual signals, suggesting that lever pressing is not a byproduct of heightened locomotor activity. Lever pressing facilitated by amphetamine was reduced by co-administration of the dopamine receptor antagonists SCH 23390 (D1 selective) or sulpiride (D2 selective).

Conclusions

Our results suggest that amphetamine administration into the ventral striatum, particularly in the vicinity of the medial olfactory tubercle, activates dopaminergic mechanisms that strongly enhance behavioral interaction with unconditioned visual stimuli.  相似文献   

20.
Within the rat medial temporal lobe, transient modulations of neural cell adhesion molecule (NCAM) polysialylation have been observed to follow spatial learning. These have been attributed to neuroplastic events associated with the processing of information destined for long term memory consolidation. To determine if similar events are associated with avoidance learning, we investigated change in polysialylated cell number in the entorhinal, perirhinal, and piriform cortex, following acquisition of a passive avoidance task in the rat. Direct quantification of polysialylated neurons in layer II of these cortical regions revealed a significant increase in polysialylated cell frequency at 12 h following passive avoidance training. Unlike spatial learning, the increased expression of polysialylated neurons persisted for up to 24-48 h following training. In the more dorsal aspect of the perirhinal/entorhinal cortex, this increase was found to be specific to learning, as it was not observed in animals rendered amnesic with scopolamine. By contrast, change in polysialylated cell frequency in the ventral aspect of the medial temporal lobe was only partially reduced by amnesic doses of scopolamine. The persisting activation of NCAM polysialylation in the more dorsal aspects of the perirhinal and entorhinal cortex is suggested to reflect the need for more extensive synaptic alterations, as compared to those required for the consolidation of spatial learning. Moreover, the neuroplastic modulations observed in the more ventral regions of the entorhinal and perirhinal cortex appear to be a unique aspect of avoidance conditioning that reflects the activation of alternative learning strategies associated with motivational and/or contextual parameters of the task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号