首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a cDNA clone for the histone H3 we have isolated, from two genomic libraries of Xenopus laevis and Xenopus tropicalis, clones containing four different histone gene clusters. The structural organization of X. laevis histone genes has been determined by restriction mapping, Southern blot hybridization and translation of the mRNAs which hybridize to the various restriction fragments. The arrangement of the histone genes in X. tropicalis has been determined by Southern analysis using X. laevis genomic fragments, containing individual genes, as probes. Histone genes are clustered in the genome of X. laevis and X. tropicalis and, compared to invertebrates, show a higher organization heterogeneity as demonstrated by structural analysis of the four genomic clones. In fact, the order of the genes within individual clusters is not conserved.  相似文献   

2.
We have isolated genomic clones from Xenopus borealis representing 3 different types of histone gene cluster. We show that the major type (H1, H2B, H2A, H4, H3), present at about 60-70 copies per haploid genome (1), is tandemly reiterated with a repeat length of 15 kb. In situ hybridization to mitotic chromosomes shows that the majority of histone genes in Xenopus borealis are at one locus. This locus is on the long arm of one of the small sub-metacentric chromosomes. A minor cluster type with the gene order H1, H3, H4, H2A is present at about 10-15 copies. The genome also contains rare or unique cluster types present at less than 5 copies having other types of organisation. An isolate of this type had the gene order H1, H4, H2B, H2A, H1 (no H3 cloned). Microinjection of all of the clones into Xenopus laevis oocyte nuclei shows that most of the genes present are functional or potentially functional and a number of variant histone proteins have been observed. S1 mapping experiments confirm that the genes of the major cluster are expressed in all tissues and at all developmental stages examined.  相似文献   

3.
We have studied the organization of the histone genes in the DNA from several individuals of Xenopus laevis. For that purpose, Southern blots of genomic DNA, that was digested with several restriction enzymes, were hybridized with radioactively labeled DNA fragments from clone X1-hi-1 (14), containing genes for Xenopus histones H2A, H2B, H3 and H4. In the DNA of all animals that were screened we found a major repeating unit of 14 kilobasepairs, which contains genes for histones H2A, H2B, H3 and H4 (H1 not tested) and is represented up to 30 times in the genome. The order of the genes in this major repeating unit is H4 - H3 - H2A - H2B. This order is different from that in the histone DNA of clone X1-hi-1, i.e. H3 - H4 - H2A - H2B. In addition to the genes in the major repeating unit, histone genes are present in unique restriction fragments in numbers that vary from one animal to another. The restriction patterns for the histone genes in these unique fragments were found to be different for all eight Xenopus individuals that were screened. The cloned Xenopus histone gene fragment X1-hi-1 represents such a unique fragment and is not present in the DNA of each single individual. The total number of genes coding for each of the nucleosomal histones is 45-50 per haploid genome.  相似文献   

4.
Primer extension analysis has been used to study the principal H4 mRNAs present at different developmental stages and in several adult tissues of Xenopus borealis and X. laevis. In X. borealis a single sequence class predominates in oocytes, tadpoles and cultured fibroblasts. There is also a polymorphic minor type which shows no developmental regulation. The primer extension bands obtained from adult liver and kidney RNA appear to be the same as ovary and therefore these tissues almost certainly contain the same major H4 mRNA species. This is confirmed by S1 mapping of the 3' end of the mRNA. Thus for H4 genes in X. borealis there is no evidence of the kind of switches in histone gene expression seen in sea urchins or certain protostomes. The situation in X. laevis is complicated by considerably higher gene variability both within and between individuals. Nevertheless, in this species, as in X. borealis, there seems to be no major developmental switch in the regulation of H4 gene expression, a conclusion that also holds for an H1C and an H3 gene.  相似文献   

5.
6.
Using previously cloned Xenopus nucleosomal core histone genes as hybridization probes, a genomic DNA library of Xenopus laevis was screened for histone gene clusters. From over 200 histone-gene containing clones identified, 36 were selected as possibly containing H1 histone genes by hybridization to a probe derived from a sea urchin H1 histone gene. These 36 clones were further analyzed by hybrid-selected translation for the definitive presence of H1 histone genes. The genes for three different H1 histone variants were found: H1A , H1B and H1C . Mapping of the histone genes within each clone showed that at least three different gene arrangements can occur within a cluster and that the type of H1 histone variant present in a cluster may be related to the cluster type. S1-mapping experiments indicated that histone genes found in different cluster-types can be expressed in oocytes. Also, the H1 gene found in one cluster-type was expressed in at least three different cell-types: oocytes, gastrula-stage embryos, and erythroblasts.  相似文献   

7.
Duplicated homeobox genes in Xenopus   总被引:3,自引:0,他引:3  
  相似文献   

8.
In Xenopus laevis , the change in the amount of histone H4 mRNA per embryo measured by Northern blotting methods follows a unique change during early embryogenesis: It starts to increase first at the blastula stage, doubles by the gastrula stage then decreases considerably at the neurula stage, and then increases again from the tailbud stage on. The present paper establishes these developmental changes, and furthermore, provides evidence that the synthesis of H4 mRNA starts or at least increases to a detectable level at the midblastula stage as shown by S–1 protection analysis of the expression of paternal histone H4 genes in X. borealis (♀) and X. laevis (♂) hybrid embryos.  相似文献   

9.
Ovarian poly (A) + RNA from Xenopus laevis and Xenopus borealis was used to construct two cDNA libraries which were screened for histone sequences. cDNA clones to H4 mRNA were obtained from both species and an H3 cDNA clone from Xenopus laevis. The complete DNA sequences of these clones have been determined and are presented. These new sequences are compared with other H3 and H4 DNA sequences both in the coding and 3' noncoding regions. We find that there is considerable non-random codon usage in ten H4 genes. In addition there are some sequence similarities in the 3' noncoding regions of H3 and H4 genes.  相似文献   

10.
The accessibility of DNA in chromatin to psoralen was assayed to compare the chromatin structure of the rRNA coding and spacer regions of the two related frog species Xenopus laevis and Xenopus borealis. Isolated nuclei from tissue culture cells were photoreacted with psoralen, and the extent of cross-linking in the different rDNA regions was analyzed by using a gel retardation assay. In both species, restriction fragments from the coding regions showed two distinct extents of cross-linking, indicating the presence of two types of chromatin, one that contains nucleosomes and represents the inactive gene copies, and the other one which is more cross-linked and corresponds to the transcribed genes. A similar cross-linking pattern was obtained with restriction fragments from the enhancer region. Analysis of fragments including these sequences and the upstream portions of the genes suggests that active genes are preceded by nonnucleosomal enhancer regions. The spacer regions flanking the 3' end of the genes gave different results in the two frog species. In X. borealis, all these sequences are packaged in nucleosomes, whereas in X. laevis a distinct fraction, presumably those flanking the active genes, show a heterogeneous chromatin structure. This disturbed nucleosomal organization correlates with the presence of a weaker terminator at the 3' end of the X. laevis genes compared with those of X. borealis, which allows polymerases to transcribe into the downstream spacer.  相似文献   

11.
12.
13.
We have investigated the structure of oocyte and somatic 5S ribosomal RNA and of 5S RNA encoding genes in Xenopus tropicalis. The sequences of the two 5S RNA families differ in four positions, but only one of these substitutions, a C to U transition in position 79 within the internal control region of the corresponding 5S RNA encoding genes, is a distinguishing characteristic of all Xenopus somatic and oocyte 5S RNAs characterized to date, including those from Xenopus laevis and Xenopus borealis. 5S RNA genes in Xenopus tropicalis are organized in clusters of multiple repeats of a 264 base pair unit; the structural and functional organization of the Xenopus tropicalis oocyte 5S gene is similar to the somatic but distinct from the oocyte 5S DNA in Xenopus laevis and Xenopus borealis. A comparative sequence analysis reveals the presence of a strictly conserved pentamer motif AAAGT in the 5'-flanking region of Xenopus 5S genes which we demonstrate in a separate communication to serve as a binding signal for an upstream stimulatory factor.  相似文献   

14.
15.
We have detected a DNAseI hypersensitive site in the ribosomal DNA spacer of Xenopus laevis and Xenopus borealis. The site is present in blood and embryonic nuclei of each species. In interspecies hybrids, however, the site is absent in unexpressed borealis rDNA, but is present normally in expressed laevis rDNA. Hypersensitive sites are located well upstream (over lkb) of the pre-ribosomal RNA promoter. Sequencing of the hypersensitive region in borealis rDNA, however, shows extensive homology with the promoter sequence, and with the hypersensitive region in X. laevis. Of two promoter-like duplications in each spacer, only the most upstream copy is associated with hypersensitivity to DNAaseI. Unlike DNAaseI, Endo R. MspI digests the rDNA of laevis blood nuclei at a domain extending downstream from the hypersensitive site to near the 40S promoter. Since the organisation of conserved sequence elements within this "proximal domain" is similar in three Xenopus species whose spacers have otherwise evolved rapidly, we conclude that this domain plays an important role in rDNA function.  相似文献   

16.
Although it is widely regarded that the targeting of RNA molecules to subcellular destinations depends upon the recognition of cis-elements found within their 3' untranslated regions (UTR), relatively little is known about the specific features of these cis-sequences that underlie their function. Interaction between specific repeated motifs within the 3' UTR and RNA-binding proteins has been proposed as a critical step in the localization of Vg1 RNA to the vegetal pole of Xenopus oocytes. To understand the relative contributions of repeated localization element (LE) sequences, we used comparative functional analysis of Vg1 LEs from two frog species, Xenopus laevis and Xenopus borealis. We show that clusters of repeated VM1 and E2 motifs are required for efficient localization. However, groups of either site alone are not sufficient for localization. In addition, we present evidence that the X. borealis Vg1 LE is recognized by the same set of RNA-binding proteins as the X. laevis Vg1 LE and is capable of productive interactions with the X. laevis transport machinery as it is sufficient to direct vegetal localization in X. laevis oocytes. These results suggest that clustered sets of cis-acting sites within the LE direct vegetal transport through specific interactions with the localization machinery.  相似文献   

17.
Xenopus 5S RNA genes exhibit a pattern of differential expression during development in which some members (oocyte-type) are transcribed only in oocytes, while others (somatic-type) are expressed in both oocytes and somatic cells. Using cloned DNA probes specific for each gene type, we determined the positions of these genes on Xenopus metaphase chromosomes by in situ hybridization. Somatic-type 5S genes in both X. laevis and X. borealis are located at the distal end of the long arm of only one chromosome (number 9). The oocyte-type 5S RNA genes are found at the distal ends of the long arms of most Xenopus chromosomes, including chromosome 9. Thus, large scale differences in chromosomal location cannot explain the selective expression of these genes, as suggested previously.  相似文献   

18.
Previously, the only anuran amphibians known to have the capacity to regenerate a lens after lentectomy were Xenopus laevis and Xenopus tropicalis. This regeneration process occurs during the larval life through transdifferentiation of the outer cornea promoted by inductive factors produced by the retina and accumulated inside the vitreous chamber. However, the capacity of X. tropicalis to regenerate a lens is much lower than that of X. laevis. This study demonstrates that Xenopus borealis, a species more closely related to X. laevis than to X. tropicalis, is not able to regenerate a lens after lentectomy. Nevertheless, some morphological modifications corresponding to the first stages of lens regeneration in X. laevis were observed in the outer cornea of X. borealis. This suggested that in X borealis the regeneration process was blocked at early stages. Results from histological analysis of X. borealis and X. laevis lentectomized eyes and from implantation of outer cornea fragments into the vitreous and anterior chambers demonstrated that: (i) in X. borealis eye, the lens-forming competence in the outer cornea and inductive factors in the vitreous chamber are both present, (ii) no inhibiting factors are present in the anterior chamber, the environment where lens regeneration begins, (iii) the inability of X. borealis to regenerate a lens after lentectomy is due to an inhibiting action exerted by the inner cornea on the spreading of the retinal factor from the vitreous chamber towards the outer cornea. This mechanical inhibition is assured by two distinctive features of X. borealis eye in comparison with X. laevis eye: (i) a weaker and slower response to the retinal inducer by the outer cornea; (ii) a stronger and faster healing of the inner cornea. Unlike X. tropicalis and similar to X. laevis, in X. borealis the competence to respond to the retinal factor is not restricted to the corneal epithelium but also extends to the pericorneal epidermis.  相似文献   

19.
20.
The mechanism of nucleolar dominance in Xenopus hybrids   总被引:13,自引:0,他引:13  
R H Reeder  J G Roan 《Cell》1984,38(1):38-44
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号