首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The genomic sequences within the alpha-block (approximately 288-310 kb) of the human and chimpanzee MHC class I region contains ten MHC class I genes and three MIC gene fragments grouped together within alternating duplicated genomic segments or duplicons. In this study, the chimpanzee and human genomic sequences were analyzed in order to determine whether the remnants of the ERVK9 and other retrotransposon sequences are useful genomic markers for reconstructing the evolutionary history of the duplicated MHC gene families within the alpha-block. A variety of genes, pseudogenes, autologous DNA transposons and retrotransposons such as Alu and ERVK9 were used to categorize the ten duplicons into four distinct structural groups. The phylogenetic relationship of the ten duplicons was examined by using the neighbour joining method to analyze transposon sequence topologies of selected Alu members, LTR16B and Charlie9. On the basis of these structural groups and the phylogeny of the duplicated transposon sequences, a duplication model was reconstructed involving four multipartite tandem duplication steps to explain the organization and evolution of the ten duplicons within the alpha-block of the chimpanzee and human. The phylogenetic analysis and inferred duplication history suggests that the Patr/HLA-F was the first MHC class I gene to have been fixed and not required as a precursor for further duplication within the alpha-block of the ancestral species.  相似文献   

3.
Genomes can be described as a collection of clusters, the gene families, whose members are called paralogs. Paralogs are genes that most probably share duplication history and show a significant similarity in their sequences, even if they perform slightly different biological function. Among the different mechanisms that have led to an increase of the genomic information during biological evolution, gene duplication is probably the most important. To better understand duplication events, the first step is to investigate the history of the gene families in order to detect which duplication events have taken place, and in which relative (partial) order. Here we present a method, called PaTre, that, given a gene family, attempts to construct the paralogy tree of the family. We will work under the hypothesis that every family member derives from a duplication process of another member. By the term paralogy tree, we mean a directed tree in which the root represents the most ancient paralog of the family and each oriented arc (a, b) represents the existence of a duplication event from the template gene a to its copy b. Notice that gene a survives the event and can serve as a template of more than one duplication event; in fact, there can be more than one arc leaving a. PaTre uses new algorithmic techniques motivated by the specific application at hand. The reliability of the inferential process has been tested by means of a simulator that implements different hypotheses on the duplication-with-modification paradigm and on three examples of different biological gene families, belonging either to lower and higher organisms.  相似文献   

4.
载脂蛋白多基因家族分子进化的研究   总被引:2,自引:2,他引:0  
王乐  柴建华 《遗传学报》1994,21(2):81-95
与脂质运输有关的载脂蛋白基因构成一个复杂的多基因家族。为探讨这种演化时间长的基因家族的进化规律,本文首先建立了一种在非均衡进化速率条件下计算系统发生树中任意分支长度的简易方法,并可在此基础上算出无根分支系统树中分歧年代的期望值。进一步对本文科10个种属共26种载脂蛋白的系统演作作了实际分析,结果提示:①ApoA-I'ApoA-IV,ApoE及ApoA-II的共同祖先可能在奥陶纪水生脊椎动物中就已存  相似文献   

5.
Phylogenetic Analysis of the Cytochrome P450 3 (CYP3) Gene Family   总被引:2,自引:0,他引:2  
Cytochrome P450 genes (CYP) constitute a superfamily with members known from the Bacteria, Archaea, and Eukarya. The CYP3 gene family includes the CYP3A and CYP3B subfamilies. Members of the CYP3A subfamily represent the dominant CYP forms expressed in the digestive and respiratory tracts of vertebrates. The CYP3A enzymes metabolize a wide variety of chemically diverse lipophilic organic compounds. To understand vertebrate CYP3 diversity better, we determined the killifish (Fundulus heteroclitus) CYP3A30 and CYP3A56 and the ball python (Python regius) CYP3A42 sequences. We performed phylogenetic analyses of 45 vertebrate CYP3 amino acid sequences using a Bayesian approach. Our analyses indicate that teleost, diapsid, and mammalian CYP3A genes have undergone independent diversification and that the ancestral vertebrate genome contained a single CYP3A gene. Most CYP3A diversity is the product of recent gene duplication events. There is strong support for placement of the guinea pig CYP3A genes within the rodent CYP3A diversification. The rat, mouse, and hamster CYP3A genes are mixed among several rodent CYP3A subclades, indicative of a complex history involving speciation and gene duplication. Phylogenetic analyses suggest two CYP3A gene duplication events early in rodent history, with the rat CYP3A9 and mouse Cyp3a13 clade having a sister relationship to all other rodent CYP3A genes. In primate history, the human CYP3A43 gene appears to have a sister relationship to all other known primate CYP3A genes. Other, more recent gene duplications are hypothesized to have occurred independently within the human, pig, rat, mouse, guinea pig, and fish genomes. Functional analyses suggest that gene duplication is strongly tied to acquisition of new function and that convergent evolution of CYP3A function may be frequent among independent gene copies. Current address (Rachel L. Cox): Laboratory of Aquatic Biomedicine, Marine Biology Laboratory, Woods Hole, MA 02543, USA  相似文献   

6.
The problem of reconstructing the duplication history of a set of tandemly repeated sequences was first introduced by Fitch (1977). Many recent studies deal with this problem, showing the validity of the unequal recombination model proposed by Fitch, describing numerous inference algorithms, and exploring the combinatorial properties of these new mathematical objects, which are duplication trees. In this paper, we deal with the topological rearrangement of these trees. Classical rearrangements used in phylogeny (NNI, SPR, TBR, ...) cannot be applied directly on duplication trees. We show that restricting the neighborhood defined by the SPR (Subtree Pruning and Regrafting) rearrangement to valid duplication trees, allows exploring the whole duplication tree space. We use these restricted rearrangements in a local search method which improves an initial tree via successive rearrangements. This method is applied to the optimization of parsimony and minimum evolution criteria. We show through simulations that this method improves all existing programs for both reconstructing the topology of the true tree and recovering its duplication events. We apply this approach to tandemly repeated human Zinc finger genes and observe that a much better duplication tree is obtained by our method than using any other program.  相似文献   

7.
Human red and green visual pigment genes are X-linked duplicate genes. To study their evolutionary history, introns 2 and 4 (1,987 and 1,552 bp, respectively) of human red and green pigment genes were sequenced. Surprisingly, we found that intron 4 sequences of these two genes are identical and that the intron 2 sequences differ by only 0.3%. The low divergences are unexpected because the duplication event producing the two genes is believed to have occurred before the separation of the human and Old World monkey (OWM) lineages. Indeed, the divergences in the two introns are significantly lower than both the synonymous divergence (3.2% +/- 1.1%) and the nonsynonymous divergence (2.0% +/- 0.5%) in the coding sequences (exons 1-6). A comparison of partial sequences of exons 4 and 5 of human and OWM red and green pigment genes supports the hypothesis that the gene duplication occurred before the human-OWM split. In conclusion, the high similarities in the two intron sequences might be due to very recent gene conversion, probably during evolution of the human lineage.   相似文献   

8.
There is a mosaic pattern of variation between the two tandemly arranged human alpha 1-acid glycoprotein genes. Both the synonymous and the nonsynonymous sites of exons 3 and 4 are more divergent than the rest of the gene, suggesting that they have had a different evolutionary history. Comparisons of the two gene sequences with rat AGP indicate that exons 3 and 4 of AGP2 have been evolving without functional constraint since their divergence from AGP1. It is proposed that the conserved region of the gene has been homogenized recently by gene conversion with the homologous regions of AGP1. The Alu sequences surrounding the genes appear to have been involved in both the gene duplication and the gene conversion events.  相似文献   

9.
10.
Kim MS  Seo JS  Ahn SJ  Kim NY  Je JE  Sung JH  Lee HH  Chung JK 《Genomics》2008,92(5):366-371
Fishes possess more genes than other vertebrates, possibly because of a genome duplication event during the evolution of the teleost (ray-finned) fish lineage. To further explore this idea, we cloned five genes encoding phosphoinositide-specific phospholipase C-delta (PLC-delta), designated respectively PoPLC-deltas, from olive flounder (Paralichthys olivaceus), and we performed phylogenetic analysis and sequence comparison to compare our putative gene products (PoPLC-deltas) with the sequences of known human PLC isoforms. The deduced amino acid sequences shared high sequence identity with human PLC-delta1, -delta3, and -delta4 isozymes and exhibited similar primary structures. In phylogenetic analysis of PoPLC-deltas with PLC-deltas of five teleost fishes (zebrafish, stickleback, medaka, Tetraodon, and Takifugu), three tetrapods (human, chicken, and frog), and two tunicates (sea squirt and pacific sea squirt), whose putative sequences of PLC-delta are available in Ensembl genome browser, the result also indicated that the two paralogous genes corresponding to each PLC-delta isoform originated from fish-specific genome duplication prior to the divergence of teleost fish. Our analyses suggest that an ancestral PLC-delta gene underwent three rounds of genome duplication during the evolution of vertebrates, leading to the six genes of three PLC-delta isoforms in teleost fish.  相似文献   

11.
Comparative genome-scale analyses of protein-coding gene sequences are employed to examine evidence for whole-genome duplication and horizontal gene transfer. For this purpose, an orthogroup should be delineated to infer evolutionary history regarding each gene, and results of all orthogroup analyses need to be integrated to infer a genome-scale history. An orthogroup is a set of genes descended from a single gene in the last common ancestor of all species under consideration. However, such analyses confront several problems: 1) Analytical pipelines to infer all gene histories with methods comparing species and gene trees are not fully developed, and 2) without detailed analyses within orthogroups, evolutionary events of paralogous genes in the same orthogroup cannot be distinguished for genome-wide integration of results derived from multiple orthogroup analyses. Here I present an analytical pipeline, ORTHOSCOPE* (star), to infer evolutionary histories of animal/plant genes from genome-scale data. ORTHOSCOPE* estimates a tree for a specified gene, detects speciation/gene duplication events that occurred at nodes belonging to only one lineage leading to a species of interest, and then integrates results derived from gene trees estimated for all query genes in genome-wide data. Thus, ORTHOSCOPE* can be used to detect species nodes just after whole-genome duplications as a first step of comparative genomic analyses. Moreover, by examining the presence or absence of genes belonging to species lineages with dense taxon sampling available from the ORTHOSCOPE web version, ORTHOSCOPE* can detect genes lost in specific lineages and horizontal gene transfers. This pipeline is available at https://github.com/jun-inoue/ORTHOSCOPE_STAR.  相似文献   

12.
Reconstructing the duplication history of tandemly repeated genes   总被引:4,自引:0,他引:4  
We present a novel approach to deal with the problem of reconstructing the duplication history of tandemly repeated genes that are supposed to have arisen from unequal recombination. We first describe the mathematical model of evolution by tandem duplication and introduce duplication histories and duplication trees. We then provide a simple recursive algorithm which determines whether or not a given rooted phylogeny can be a duplication history and another algorithm that simulates the unequal recombination process and searches for the best duplication trees according to the maximum parsimony criterion. We use real data sets of human immunoglobulins and T-cell receptors to validate our methods and algorithms. Identity between most parsimonious duplication trees and most parsimonious phylogenies for the same data, combined with the agreement with additional knowledge about the sequences, such as the presence of polymorphisms, shows strong evidence that our reconstruction procedure provides good insights into the duplication histories of these loci.  相似文献   

13.
Evolution of a D. melanogaster glutamate tRNA gene cluster   总被引:18,自引:0,他引:18  
We have determined the DNA sequence of a cloned cluster of essentially identical glutamate tRNA genes of D. melanogaster. The cluster consists of five genes: a gene triplet spanning approximately 0.55 kb followed by a 0.45 kb gene doublet 3.0 kb downstream. The genes are all arranged with the same polarity, do not encode the tRNA CCA end and contain no intervening sequences. Examination of the 5' and 3' sequences immediately flanking each gene reveals a striking pattern of sequence homologies between certain of the genes, which suggests a possible evolutionary history of this gene cluster. We propose that two ancestral genes each gave rise to gene doublets by duplication, while one of these gene pairs then gave rise, in turn, to a trio of genes as a result of unequal crossover.  相似文献   

14.
New genes arise through duplication and modification of DNA sequences on a range of scales: single gene duplication, duplication of large chromosomal fragments and whole-genome duplication. Each duplication mechanism has specific characteristics that influence the fate of the resulting duplicates, such as the size of the duplicated fragment, the potential for dosage imbalance, the preservation or disruption of regulatory control and genomic context. The ability to diagnose or identify the mechanism that produced a pair of paralogs has the potential to increase our ability to reconstruct evolutionary history, to understand the processes that govern genome evolution and to make functional predictions based on paralogy. The recent availability of large amounts of whole-genome sequence, often from several closely related species, has stimulated a wealth of new computational methods to diagnose gene duplications.  相似文献   

15.
Mouse M and P lysozymes are the products of separate genes, are specifically expressed in separate tissues, and are adapted to different functions. The lysozyme genes have assumed these markedly different characteristics following their generation by gene duplication 30-50 million years ago. The discovery of the lysozyme P gene only 5 kb upstream from the M gene in tandem repeat has enabled an investigation of the molecular basis of their duplication and subsequent divergence. The duplication is shown to have involved recombination between two B2 repeat sequences flanking the original gene. The resulting downstream copy has retained the myeloid specificity of expression along with just 1.7 kb of upstream sequences, while the upstream copy is inactive in macrophages and has become expressed instead in the small intestine. Although multiple gene conversion events have served to maintain a generally high homology between the genes, certain regions have been found to be specific for either one of the gene pair: two repetitive sequences peculiar to the P region may serve to protect the coding regions from gene conversion, while sequences unique to the M gene may be more directly involved in differential regulation.  相似文献   

16.
Summary The core histone genes ofSaccharomyces cerevisiae are arranged as duplicate nonallelic sets of specifically paired genes. The identity of structural organization between the duplicated gene pairs would have its simplest evolutionary origin in the duplication of a complete locus in a single event. In such a case, the time since the duplication of one of the genes should be identical to that since duplication of the gene adjacent to it on the chromosome. A calculation of the evolutionary distances between the coding DNA sequences of the histone genes leads to a duplication paradox: The extents of sequence divergence in the silent component of third-base positions for adjacent pairs of genes are not identical. Estimates of the evolutionary distance between the two H3-H4 noncoding intergene DNA sequences are large; the divergence between the two separate sequences is indistinguishable from the divergence between either of the regions and a randomly generated permutation of itself. These results suggest that the duplication event may have occurred much earlier than previously estimated. The potential age of the duplication, and the attractive simplicity of the duplication of both the H3-H4 and the H2A-H2B gene pairs having taken place in a single event, leads to the hypothesis that modern haploidS. cerevisiae may have evolved by diploidization or fusion of two ancient fungi.  相似文献   

17.
18.
Carbamoylphosphate synthetase (CPS) catalyzes the first committed step in pyrimidine biosynthesis, arginine biosynthesis, or the urea cycle. Organisms may contain either one generalized or two specific CPS enzymes, and these enzymes may be heterodimeric (encoded by linked or unlinked genes), monomeric, or part of a multifunctional protein. In order to help elucidate the evolution of CPS, we have performed a comprehensive phylogenetic analysis using the 21 available complete CPS sequences, including a sequence from Sulfolobus solfataricus P2 which we report in this paper. This is the first report of a complete CPS gene sequence from an archaeon, and sequence analysis suggests that it encodes an enzyme similar to heterodimeric CPSII. We confirm that internal similarity within the synthetase domain of CPS is the result of an ancient gene duplication that preceded the divergence of the Bacteria, Archaea, and Eukarya, and use this internal duplication in phylogenetic tree construction to root the tree of life. Our analysis indicates with high confidence that this archaeal sequence is more closely related to those of Eukarya than to those of Bacteria. In addition to this ancient duplication which created the synthetase domain, our phylogenetic analysis reveals a complex history of further gene duplications, fusions, and other events which have played an integral part in the evolution of CPS.   相似文献   

19.
In insects, the odorant receptor (Or) multigene family is an intermediate-sized family with genes present in all chromosomes, indicating that duplication followed by interchromosomal transposition played an important role in the early stages of the family evolution. Here, we have explored the occurrence of interchromosomal transpositions in more recent stages through the comparative analysis of a subset of Or genes in Drosophila, where the gene content of chromosomal arms is highly conserved. The studied subset consisted of 11 Or genes located on the left arm of chromosome 3 (Muller’s D element) in D. melanogaster. Our study focused on the number and chromosomal arm location of these members of the family across the 12 Drosophila species with complete genome sequences. In contrast to previous results from in situ hybridization comparative mapping that were mainly based on single-copy genes, our study, based on members of a multigene family of moderate size, revealed repeated interchromosomal transposition events and a complex history of some of the studied genes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Phylogenetic analyses supported the hypothesis that the vertebrate toll-like receptors (TLRs) include two very ancient groups that arose by gene duplication prior to the divergence of protostomes and deuterostomes: (1) the TLR1 family (including mammalian TLR1, TLR2, TLR6, and TLR10); and (2) a clade including the remainder of mammalian TLRs. Correlating data on ligand type, subcellular localization, and gene expression in leukocytes and other tissues with the phylogeny provided evidence that certain major functional specializations within the TLRs occurred after ancient gene duplication events and that these traits have been retained through further events of gene duplication. For example, the recognition of bacterial lipoproteins appears to have arisen in the ancestor of the TLR1 family and continues to characterize members of that family whose ligands are known. Likewise, expression on the endosomal membrane and the recognition of nucleic acids appears to have been arisen in the ancestor of the TLR7 family and some related TLRs. On the other hand, gene expression patterns across tissues appear to have been much more volatile over the evolution of the vertebrate TLRs, since genes may show expression profiles similar to those of distantly related genes but dissimilar to those of closely related genes. Thus, the vertebrate TLRs provide an example of a multi-gene family in which gene duplication has been followed by extensive changes in certain aspects of gene function, while others have been conserved throughout vertebrate history. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号