首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloramphenicol-resistant (CAPr) reconstituted cells and cybrids were isolated by fusion of karyoplasts (or intact cells) of mouse amelanotic melanoma B16 cells with cytoplasts of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) -deficient, CAPr rat myoblastic cells, L6TG.CAPr, and double selection in HAT medium containing CAP. Reconstituted cells or cybrids exhibited unique cellular arrangement, and about one third of the isolated clones expressed high tyrosinase activity and marked melanin synthesis, although the parental mouse cells expressed low tyrosinase activity and the parental rat cells did not express tyrosinase activity. These phenotypic changes have been stable for more than a year. The phenotypic reversions of these clonal cells were induced by treatment with a tumor promoter. There were changes in the morphology of the treated cells to that of the mouse B16 cells and extinction of tyrosinase activity and melanin synthesis in pigmented clonal cells. These phenotypic changes and reversions induced by a promoter were repeatedly reversible.  相似文献   

2.
DNA isolated from mammalian cell nuclear reveals discrete size patterns when partially digested with micrococcal nuclease. The DNA repeat lengths from different tissues within a species or from different species may vary. These differences have been attributed to the presence of different species of histone H1. To examine the nature of regulation of DNA repeat lengths and their possible relationship to histone H1, we have selected several mouse and human cell lines that differ in their DNA repeat lengths and examined them and their cell hybrids. 24 mouse X human and five mouse X mouse hybrid cell lines were analyzed. All the interspecific hybrids exhibited the repeat pattern characteristic of the murine parent. The mouse intraspecific hybrids had a repeat pattern of only one of the parents. We conclude that the partial human chromosome complements retained in the hybrids assume the repeat lengths exhibited by the mouse cells. Because H1 histones have been implicated in the determination of DNA repeat lengths, we also investigated the regulation of H1 histone expression in these cell hybrids. Purified H1 histones were radioactively labeled in vitro, and individual subfractions were subjected to proteolysis followed by gel electrophoresis. The resulting partial peptide maps off H1 histone subfractions A and B were distinguishable from one another and from different cell lines. In the mouse X human hybrids analyzed, only the mouse H1 histones were detected. These observations were extended to H2b by analysis of the hybrid cell histone by Triton-acid-urea gels. Neither the DNA repeat length nor histone expression is affected by the presence of any specific human chromosome. The fact that human genes are expressed in these hybrids suggests that the H1 histones of one species is able to interact with the chromatin of another species in a biologically funtional conformation. Analysis of the intraspecific PG19 X B82 (mouse X mouse) hybrids reveals the presence of H1 histone subfractions of the B82 mouse cells. Because these hybrids exhibit the nucleosome repeat length only of the PG19 cells, it appears that if histone H1 plays a role in determining the repeat length it does so in consort with other nonhistone chromosomal proteins.  相似文献   

3.
The most distinctive feature of oocyte-specific linker histones is the specific timing of their expression during embryonic development. In Xenopus nuclear transfer, somatic linker histones in the donor nucleus are replaced with oocyte-specific linker histone B4, leading to the involvement of oocyte-specific linker histones in nuclear reprogramming. We recently have discovered a mouse oocyte-specific linker histone, named H1foo, and demonstrated its expression pattern in normal preimplantation embryos. The present study was undertaken to determine whether the replacement of somatic linker histones with H1foo occurs during the process of mouse nuclear transfer. H1foo was detected in the donor nucleus soon after transplantation. Thereafter, H1foo was restricted to the chromatin in up to two-cell stage embryos. After fusion of an oocyte with a cell expressing GFP (green fluorescent protein)-tagged somatic linker histone H1c, immediate release of H1c in the donor nucleus was observed. In addition, we used fluorescence recovery after photobleaching (FRAP), and found that H1foo is more mobile than H1c in living cells. The greater mobility of H1foo may contribute to its rapid replacement and decreased stability of the embryonic chromatin structure. These results suggest that rapid replacement of H1c with H1foo may play an important role in nuclear remodeling.  相似文献   

4.
Nuclei of differentiated cells can acquire totipotency following transfer into the cytoplasm of oocytes. While the molecular basis of this nuclear reprogramming remains unknown, the developmental potential of nuclear-transfer embryos is influenced by the cell-cycle stage of both donor and recipient. As somatic H1 becomes immunologically undetectable on bovine embryonic nuclei following transfer into ooplasm and reappears during development of the reconstructed embryo, suggesting that it may act as a marker of nuclear reprogramming, we investigated the link between cell-cycle state and depletion of immunoreactive H1 following nuclear transplantation. Blastomere nuclei at M-, G1-, or G2-phase were introduced into ooplasts at metaphase II, telophase II, or interphase, and the reconstructed embryos were processed for immunofluorescent detection of somatic histone H1. Immunoreactivity was lost more quickly from donor nuclei at metaphase than at G1 or G2. Regardless of the stage of the donor nucleus, immunoreactivity was lost most rapidly when the recipient cytoplast was at metaphase and most slowly when the recipient was at interphase. When the recipient oocyte was not enucleated, however, immunoreactive H1 remained in the donor nucleus. The phosphorylation inhibitors 6-DMAP, roscovitine, and H89 inhibited the depletion of immunoreactive H1 from G2, but not G1, donor nuclei. In addition, immunoreactive H1 was depleted from mouse blastomere nuclei following transfer into bovine oocytes. Finally, expression of the developmentally regulated gene, eIF-1A, but not of Gapdh, was extinguished in metaphase recipients but not in interphase recipients. These results indicate that evolutionarily conserved cell-cycle-regulated activities, nuclear elements, and phosphorylation-linked events participate in the depletion of immunoreactive histone H1 from blastomere nuclei transferred in oocyte cytoplasm and that this is linked to changes in gene expression in the transferred nucleus.  相似文献   

5.
To examine the roles of the cytoplasms of differentiated somatic cells on nuclear gene expression, reconstituted cells (RC-cells) were isolated clonally by fusing karyoplasts (isolated nuclei) from neomycin-resistant mouse teratocarcinoma PCC4-neor cells with cytoplasts (isolated cytoplasms) of chloramphenicol (CAP)-resistant rat myoblasts L6TG.CAPr cells, and after double selection in the medium containing 400 micrograms/ml of neomycin and 100 micrograms/ml of CAP (G418 plus CAP medium). The RC-cells were characterized by the presence of two genetic markers, neomycin- and CAP-resistance, by the absence of latex beads which had incorporated into karyoplast donor PCC4-neor cells as a cytoplasmic physical marker, and by the similar karyotypes as that of parental PCC4-neor cells. In contrast to the teratocarcinoma cybrids previously isolated, all the isolated RC-clones expressed myoblast-like morphologies of three types. The phenotypic expression of these RC-cells was compared with that of PCD-1 cells, a teratocarcinoma-derived myoblast line. RC-cells and PCD-1 cells did not express alkaline phosphatase (ALPase) activity while parental PCC4-neor expressed it strongly. After induction of myogenic differentiation by treatments with excess thymidine and conditioned medium, two clones were capable of forming short multinucleated cells. The protein synthetic patterns of RC-cells analysed by two-dimensional polyacrylamide gel were different from PCC4-neor cells, and quite resembled those of PCD-1 cells. Particularly, multinucleated RC-clones expressed alpha-tropomyosin, and contained 10 nm filaments, characteristic markers of early myogenic cells. These results suggest that the RC-cells are myoblast-like cells, that a few of them maturate to partially differentiated myogenic cells, that the rat myoblast cytoplasm contains regulatory factor(s) able to determine the myogenic cell lineage of the undifferentiated stem cells, and that this factor is continuously expressed in these myoblasts.  相似文献   

6.
Recombination of mammalian mitochondrial DNA (mtDNA) was examined using mouse X rat somatic cell hybrid clones and rat cybrid clones. The mouse X rat hybrids were isolated by fusion of chloramphenicol-sensitive (CAPs) mouse and CAP-resistant (CAPr) rat cells. The rat cybrids were isolated by fusion of rat cells with type B mtDNA and enucleated cells with type A mtDNA. Genetic and physical analyses showed that the mtDNAs of the hybrids and cybrids were simple mixtures of the two parental mtDNAs except in the following two cases: One was subclone H2-9 of mouse X rat hybrids, which was CAPr even though mtDNA from the CAPs mouse parent was predominantly retained. The other was rat cybrid subclones, Y12-24 and -61, which showed specific loss of one Hinf I fragment of type B mtDNA, B10. These observations suggest that, in contrast to the case with plant mtDNA, recombination of mammalian mtDNA occurs rarely, if at all.  相似文献   

7.
8.
9.
欧海龙  黄英 《生命科学》2007,19(2):179-183
哺乳动物细胞内存在着多种亚型的连接组蛋白,其中Hlfoo是首先在小鼠中发现、在卵母细胞中特异表达的一种连接组蛋白。H1foo通过与染色质的结合,改变染色质的结构,进而参与卵母细胞的成熟、受精后对精子染色质的重构及在体细胞核移植中对体细胞核的重编程等。本文就Hlfoo的分子结构特征、表达特点及其在受精过程、体细胞核的重编程过程中的作用作一综述。  相似文献   

10.
11.
The pattern of nucleosomal histones poly(ADP-ribosyl)ation is changed under conditions which affect the poly(ADP-ribosyl)ation state of the enzyme. At low NAD concentrations the enzyme can poly(ADP-ribosyl)ate histones H1 and H1, H2A, A2A, and H2B. However at NAD concentrations above 10 microM the enzyme preferentially poly(ADP-ribosyl)ates histone H1 to a hyper ADP-ribosylated form. Furthermore we have observed hyper ADP-ribosylation of histone H2B at NAD concentrations of 10 microM suggesting that histone H2B can undergo the same type of ADP-ribosylation pattern as histone H1. Also at higher NAD concentrations an elongation of the polymer attached to the enzyme and other nuclear proteins takes place.  相似文献   

12.
利用纯化的砂鼠利什曼原虫细胞核作为起始材料对其染色质碱性蛋白进行分析,发现这类生物中只存在四种核芯组蛋白(H_4,H_2A,H_2B和H_3)。 用凝胶电泳比较全细胞的与细胞核的碱性蛋白时,检出了一种来自细胞质的酸溶性蛋白(L组分)。细胞化学的检测表明它定位于动基体(Kinetoplast)。  相似文献   

13.
Long-term survivors of reconstituted human-mouse cells have been isolated and characterized by utilizing nuclear and cytoplasmic genetic markers. Karyoplasts were derived from the human SV40-transformed fetal lung fibroblast strain WI38 VA13, while cytoplasts were obtained from the mouse fibroblast A9 cell line which was both hypoxanthine-aminopterin-thymidine-sensitive (HATs; nuclear marker) and chloramphenicol-resistant (CAPr; cytoplasmic marker). The fusion products were isolated in medium containing HAT and CAP. Clones initially showed a growth pattern different from either human or mouse parental cell, but after repeated subculturing, morphologically resembled the nuclear donor cell. The human and mouse components in these cells were identified from other possible fusion combinations by karyotypic, enzymatic and mitochondrial DNA (mDNA) analyses. The karyotype, using both Q-banding and C-banding revealed only human chromosomes. Electrophoretic mobility of the enzyme malate dehydrogenase, a nuclear controlled enzyme, confirmed the human nucleus. Buoyant density centrifugation of radioactive labelled isolated mitochondrial DNA from the reconstituted cells provided evidence that the cytoplasm was of mouse origin.  相似文献   

14.
15.
Nuclear autoantibodies have been found in patients with autoimmune diseases. One possible source for nuclear antigens are apoptotic cells. However, the mechanism of how apoptotic cells make nuclear factors accessible to the immune system is still elusive. In the present study, we investigated the redistribution of nuclear components after UV irradiation in the microglial cell line BV-2 and in primary mouse microglia at the ultrastructural level. We used transmission electron microscopy-coupled electron energy loss spectroscopy (EELS) to measure phosphorus as an indicator for nucleic acids and immunogold labeling to detect histone H3 and lamin B1 in apoptotic cells. EELS revealed elevated concentrations of phosphorus in nuclear and cytoplasmic condensed chromatin compared to the remaining cytoplasm. Furthermore, immunolabeling of lamin B1 and histone H3 was detected in apoptotic microglia not only in the nucleus, but also in the cytoplasm, and even at the plasma membrane. Confocal images of apoptotic microglia, which were not previously permeabilized, showed patches of histone H3 and lamin B1 labeling at the cell surface. The pan-caspase inhibitor Z-VAD-FMK (carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone) prevented the occurrence of cytoplasmic condensed chromatin in apoptotic microglia. Our findings indicate that nuclear components leak from the nucleus into the cytoplasm in apoptotic microglia. At least histone H3 and lamin B1 reach the cell surface, this may promote autoreactive processes.  相似文献   

16.
The pattern of histones from several mouse embryonal carcinoma cell (ECC) lines, differentiated cell lines, and adult organs was analyzed using acid-urea gels containing Triton X-100 and long SDS-gel electrophoresis. All cell lines had comparable histone types except for a unique H2B-like component that was found only in the ECC line PCC4. The mouse histone H1 has four different subtypes (H1a, H1b, H1c, and H1d), as resolved in SDS-gel electrophoresis. The expression of the four subtypes was shown to be cell line specific. Subtypes H1a and H1d are present in approximately the same relative amounts in all cell lines investigated. Subtype H1b is found in higher relative amounts than subtype H1c in ECC lines and testis. The ratio of H1b and H1c is reversed in differentiated cell lines and in kidney, white blood cells, liver and spleen. All four subtypes of H1 are phosphorylated although to a different extent in different cell lines. In ECC lines, subtypes H1b and especially H1d incorporate most of a 32P label, whereas H1c is predominately phosphorylated in differentiated parietal endoderm cell lines. These data indicate that H1 subtypes differ depending on the stage of cell differentiation. Difference in ratio between H1 subtypes and in phosphorylation might influence the chromatin configuration and thus gene expression in these cells.  相似文献   

17.
Multiple pathways contribute to nuclear import of core histones   总被引:2,自引:0,他引:2       下载免费PDF全文
Nuclear import of the four core histones H2A, H2B, H3 and H4 is one of the main nuclear import activities during S-phase of the cell cycle. However, the molecular machinery facilitating nuclear import of core histones has not been elucidated. Here, we investigated the pathways by which histone import can occur. First, we show that core histone import can be competed by the BIB (β-like import receptor binding) domain of ribosomal protein L23a suggesting that histone import is an importin mediated process. Secondly, affinity chromatography on immobilized core histones revealed that several members of the importin β family of transport receptors are able to interact with core histones. Finally, we demonstrate that at least four known and one novel importin, importin 9, can mediate nuclear import of core histones into the nuclei of permeabilized cells. Our results suggest that multiple pathways of import exist to provide efficient nuclear uptake of these abundant, essential proteins.  相似文献   

18.
We have reconstituted salt-treated SV40 minichromosomes with differentially phosphorylated forms of histone H1 extracted from either G0-, S- or M-phase cells. Sedimentation studies revealed a clear difference between minichromosomes reconstituted with S-phase histone H1 compared with histone H1 from G0- or M-phase cells, indicating that the phosphorylation state of histone H1 has a direct effect on chromatin structure. Using reconstituted minichromosomes as substrate in the SV40 in vitro replication system, we measured a higher replication efficiency for SV40 minichromosomes reconstituted with S-phase histone H1 compared with G0- or M-phase histone H1. These data indicate that the chromatin structure induced by the phosphorylation of histone H1 influences the replication efficiency of SV40 minichromosomes in vitro.  相似文献   

19.
20.
Dynamic behavior of histone H1 microinjected into HeLa cells   总被引:3,自引:1,他引:2       下载免费PDF全文
Histone H1 was purified from bovine thymus and radiolabeled with tritium by reductive methylation or with 125I using chloramine-T. Red blood cell-mediated microinjection was then used to introduce the labeled H1 molecules into HeLa cells synchronized in S phase. The injected H1 molecules rapidly entered HeLa nuclei, and a number of tests indicate that their association with chromatin was equivalent to that endogenous histone H1. The injected molecules copurified with HeLa cell nucleosomes, exhibited a half-life of approximately 100 h, and were hyperphosphorylated at mitosis. When injected HeLa cells were fused with mouse 3T3 fibroblasts less than 10% of the labeled H1 molecules migrated to mouse nuclei during the next 48 h. Thus, the intracellular behavior of histone H1 differs markedly from that of high mobility group proteins 1 and 2 (HMG1 and HMG2), which rapidly equilibrate between human and mouse nuclei after heterokaryon formation (Rechsteiner, M., and L. Kuehl, 1979, Cell, 16:901-908; Wu, L., M. Rechsteiner, and L. Kuehl, 1981, J. Cell Biol, 91: 488-496). Despite their slow rate of migration between nuclei, the injected H1 molecules were evenly distributed on mouse and human genomes soon after mitosis of HeLa-3T3 heterokaryons. These results suggest that although most histone H1 molecules are stably associated with interphase chromatin, they undergo extensive redistribution after mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号