首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endothelial nitric oxide synthase (eNOS), originally found in the endothelium of vascular tissue, also exists in other cell types, including ciliated epithelia of airways. The eNOS is ultrastructurally localized to the basal body of the microtubules of the cilia, and nitric oxide (NO) stimulates ciliary beat frequency (CBF). We examined whether the expression of eNOS is present in ciliated cells of other organs. Western blotting analysis revealed that eNOS was expressed in the rat cerebrum, lung, trachea, testis, and oviduct. Immunohistochemical staining showed that eNOS was localized in the ciliated epithelia of airways, oviduct, testis, and ependymal cells of brain in addition to the endothelium and smooth muscle of the vasculature. To confirm the activation of eNOS in the ciliated epithelia, we examined the effect of L-arginine (L-Arg), the substrate of NOS, on the production of nitrite and nitrate (NOx) in the cultured explants of rat trachea. L-Arg (100 microM) increased NOx levels significantly (p<0.05). In explants exposed to inhibitors of NOS, the effect of l-Arg on the production of NOx was blocked. These findings suggest that epithelial NO plays an important role in signal transduction associated with ciliary functions.  相似文献   

2.
Nitric oxide (NO), produced in lung vascular endothelium and airway epithelium, has an important role in regulating smooth muscle cell growth and tone. Chronic lung disease, a frequent complication of premature birth, is characterized by excess abundance, tone, and reactivity of smooth muscle in the pulmonary circulation and conducting airways, leading to increased lung vascular and airway resistance. Whether these structural and functional changes are associated with diminished pulmonary expression of endothelial nitric oxide synthase (eNOS) protein is unknown. Both quantitative immunoblot analysis and semiquantitative immunohistochemistry showed that there was less eNOS protein in the endothelium of small intrapulmonary arteries and epithelium of small airways of preterm lambs that were mechanically ventilated for 3 wk compared with control lambs born at term. No significant differences were detected for other proteins (inducible NOS, alpha-smooth muscle actin, and pancytokeratin). Lung vascular and respiratory tract resistances were greater in the chronically ventilated preterm lambs compared with control term lambs. These results support the notion that decreased eNOS in the pulmonary circulation and respiratory tract of preterm lambs may contribute to the pathophysiology of chronic lung disease.  相似文献   

3.
Nitric oxide (NO) is a potent vasodilator, but it can also modulate contractile responses of the airway smooth muscle. Whether or not endothelial (e) NO synthase (NOS) contributes to the regulation of bronchial tone is unknown at present. Experiments were designed to investigate the isoforms of NOS that are expressed in murine airways and to determine whether or not the endogenous release of NO modulates bronchial tone in wild-type mice and in mice with targeted deletion of eNOS [eNOS(-/-)]. The presence of neuronal NOS (nNOS), inducible NOS (iNOS), and eNOS in murine trachea and lung parenchyma was assessed by RT-PCR, immunoblotting, and immunohistochemistry. Airway resistance was measured in conscious unrestrained mice by means of a whole body plethysmography chamber. The three isoforms of NOS were constitutively present in lungs of wild-type mice, whereas only iNOS and nNOS were present in eNOS(-/-) mice. Labeling of nNOS was localized in submucosal airway nerves but was not consistently detected, and iNOS immunoreactivity was observed in tracheal and bronchiolar epithelial cells, whereas eNOS was expressed in endothelial cells. In wild-type mice, treatment with N-nitro-L-arginine methyl ester, but not with aminoguanidine, potentiated the increase in airway resistance produced by inhalation of methacholine. eNOS(-/-) mice were hyperresponsive to inhaled methacholine and markedly less sensitive to N-nitro-L-arginine methyl ester. These results demonstrate that the three NOS isoforms are expressed constitutively in murine lung and that NO derived from eNOS plays a physiological role in controlling bronchial airway reactivity.  相似文献   

4.
Airway epithelia play a crucial role in protecting the lung from the external environment. Ciliated airway epithelial cells contribute to mucociliary transport systems via ciliary beating and electrolyte transport mechanisms to defend against respiratory tract infection. Both of these activities are regulated by nitric oxide (NO)-dependent mechanisms. To better understand the role of the NO-cGMP signal transduction cascade in these responses, we investigated the localization of endothelial nitric oxide synthase (eNOS), soluble guanylyl cyclase (sGC), cGMP-dependent protein kinase (PKG) I-alpha, and PKG I-beta in the tracheas and lungs of normal rats by immunohistochemistry. Mouse anti-eNOS, rabbit anti-sGC, PKG I-alpha, and PKG I-beta antibodies were used. Strong immunostaining for eNOS was detected in ciliated tracheal, bronchial, and bronchiolar epithelia, in Clara cells, and in Type II alveolar cells. The pattern of sGC and PKG I-beta immunostaining showed striking parallels with that of eNOS staining. No staining was detectable in ciliated epithelium with the anti-PKG I-alpha antibody. Taken together, these observations suggest that PKG I-beta might transduce NO-sGC signaling into biological responses in ciliated respiratory epithelia.(J Histochem Cytochem 47:1369-1374, 1999)  相似文献   

5.
Localization and distribution of NOS1 in murine airways.   总被引:1,自引:0,他引:1  
Nitric oxide synthase 1 (NOS1) is a major determinant of bronchial responsiveness in mice and has been proposed as an asthma gene in man. Nevertheless, how nitric oxide production by NOS1 contributes to airway responsiveness remains unclear. Although NOS1 is usually closely associated with nerves, it has also been found in a variety of other cell types, particularly epithelium. We sought to better understand the role of NOS1 by determining its major site of expression in murine airways. Using nicotinamide adenine dinucleotide phosphate-diaphorase (diaphorase), which non-selectively detects nitric oxide synthase (NOS), we found strong evidence of NOS in the airways largely restricted to the airway epithelium and trachea glands. In contrast, diaphorase staining of NOS1-deficient mutant mice demonstrated a marked reduction in epithelial cells of the trachea but not bronchioles, suggesting that the epithelium is the major site of NOS1 expression. This was supported by immunohistochemistry, which also demonstrated significant staining in glands and to a lesser degree in airway smooth muscle. Double immunofluorescence staining of tracheas for NOS1 and the nerve marker PGP 9.5 failed to demonstrate co-localization, indicating that nerves are not an important source of NOS1 in the murine airway wall. Finally, removal of the trachea epithelium by digestion resulted in a marked decrease in NOS1 detection by Western blotting, confirming the epithelium as the major site of NOS1 expression in the murine airway. These findings support the notion that the role of NOS1 in murine bronchial responsiveness involves the epithelium of the central airways.  相似文献   

6.
We investigated the source(s) for exhaled nitric oxide (NO) in isolated, perfused rabbits lungs by using isozyme-specific nitric oxide synthase (NOS) inhibitors and antibodies. Each inhibitor was studied under normoxia and hypoxia. Only nitro-L-arginine methyl ester (L-NAME, a nonselective NOS inhibitor) reduced exhaled NO and increased hypoxic pulmonary vasoconstriction (HPV), in contrast to 1400W, an inhibitor of inducible NOS (iNOS), and 7-nitroindazole, an inhibitor of neuronal NOS (nNOS). Acetylcholine-mediated stimulation of vascular endothelial NOS (eNOS) increased exhaled NO and could only be inhibited by L-NAME. Selective inhibition of airway and alveolar epithelial NO production by nebulized L-NAME decreased exhaled NO and increased hypoxic pulmonary artery pressure. Immunohistochemistry demonstrated extensive staining for eNOS in the epithelia, vasculature, and lymphatic tissue. There was no staining for iNOS but moderate staining for nNOS in the ciliated cells of the epithelia, lymphoid tissue, and cartilage cells. Our findings show virtually all exhaled NO in the rabbit lung is produced by eNOS, which is present throughout the airways, alveoli, and vessels. Both vascular and epithelial-derived NO modulate HPV.  相似文献   

7.
NOSIP, a novel modulator of endothelial nitric oxide synthase activity.   总被引:10,自引:0,他引:10  
Production of nitric oxide (NO) in endothelial cells is regulated by direct interactions of endothelial nitric oxide synthase (eNOS) with effector proteins such as Ca2+-calmodulin, by posttranslational modifications such as phosphorylation via protein kinase B, and by translocation of the enzyme from the plasma membrane caveolae to intracellular compartments. Reversible acylation of eNOS is thought to contribute to the intracellular trafficking of the enzyme; however, protein factor(s) that govern the translocation of the enzyme are still unknown. Here we have used the yeast two-hybrid system and identified a novel 34 kDa protein, termed NOSIP (eNOS interacting protein), which avidly binds to the carboxyl-terminal region of the eNOS oxygenase domain. Coimmunoprecipitation studies demonstrated the specific interaction of eNOS and NOSIP in vitro and in vivo, and complex formation was inhibited by a synthetic peptide of the caveolin-1 scaffolding domain. NO production was significantly reduced in eNOS-expressing CHO cells (CHO-eNOS) that transiently overexpressed NOSIP. Stimulation with the calcium ionophore A23187 induced the reversible translocation of eNOS from the detergent-insoluble to the detergent-soluble fractions of CHO-eNOS, and this translocation was completely prevented by transient coexpression of NOSIP in CHO-eNOS. Immunofluorescence studies revealed a prominent plasma membrane staining for eNOS in CHO-eNOS that was abolished in the presence of NOSIP. Subcellular fractionation studies identified eNOS in the caveolin-rich membrane fractions of CHO-eNOS, and coexpression of NOSIP caused a shift of eNOS to intracellular compartments. We conclude that NOSIP is a novel type of modulator that promotes translocation of eNOS from the plasma membrane to intracellular sites, thereby uncoupling eNOS from plasma membrane caveolae and inhibiting NO synthesis.  相似文献   

8.
In ciliated airway epithelial cells endothelial nitric oxide synthase as well as several other membrane bound proteins are located in the apical cell pole. To date, mechanisms that serve to target and to keep these proteins in this region are unknown. Endothelial nitric oxide synthase is known to target to caveolae by interaction with caveolin-1 or caveolin-3. Since caveolin-1 is found only in a subpopulation of ciliated cells at the basolateral cell membrane, we examined if caveolin-3 could be responsible for the apical localization of endothelial nitric oxide synthase in ciliated cells. We used real-time RT-PCR, laser-assisted microdissection, Western blotting and double-labeling immunohistochemistry to examine the presence of caveolin-3 in the airway epithelium of the rat. Indeed, we found caveolin-3-mRNA as well as protein in ciliated cells throughout the trachea and the bronchial tree. Caveolin-3-immunoreactivity was confined to the apical region and was colocalized with endothelial nitric oxide synthase and the high affinity choline transporter in a compartment distinct from the plasma membrane at the light microscopic level. No caveolae were found in the apical plasma membrane of ciliated cells but a tubulovesicular network was present in the apical region that reached up to the basal bodies of the cilia and was in close contact with mitochondria. Co-immunoprecipitation of caveolin-3 with endothelial nitric oxide synthase verified that both proteins interact in airway ciliated cells. These findings indicate that caveolin-3 is responsible to keep endothelial nitric oxide synthase in a membrane compartment in the apical region of ciliated cells.  相似文献   

9.
Summary The occurrence and distribution of peptide-containing nerve fibres [substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), neuropeptide Y (NPY)] and noradrenergic nerve fibres [tyrosine hydroxylase (TH)- and dopamine beta hydroxylase (DBH)-positive] in the airways of the pig were studied by means of immunohistochemistry. SP- and CGRP-immunoreactive (-IR) nerve fibres were present close to and within the lining respiratory epithelium, around blood vessels, within the tracheobronchial smooth muscle layer and around local tracheobronchial ganglion cells. The content of CGRP- and neurokinin A (NKA)-like immunoreactivity (-LI) measured by radioimmunoassay (RIA) was twice as high in the trachea compared to that in the peripheral bronchi. SP was a more potent constrictor agent than NKA on pig bronchi in vitro. CGRP had a relaxant effect on precontracted pig bronchi. On blood vessels CGRP exerted a relaxant effect that was more pronounced on pulmonary arteries than on bronchial arteries. VIP/PHI-IR fibres were seen in association with exocrine glands and in the tracheobronchial smooth muscle layer. VIP-positive nerve fibres were abundant around blood vessels in the trachea but sparse or absent around blood vessels in the peripheral bronchi. This histological finding was supported by RIA; it was shown that the content of peptides displaying VIP-like immunoreactivity (-LI) was 18 times higher in the trachea compared to peripheral bronchi. VIP was equally potent as CGRP in relaxing precontracted pig bronchi in vitro. Both bronchial and pulmonary arteries were relaxed by VIP. NPY was colocalized with VIP in tracheal periglandular nerve fibres and in nerve fibres within the tracheobronchial smooth muscle layer. NPY was also present in noradrenergic (DBH-positive) vascular nerve fibres. The content of NPY was much higher (15-fold) in the trachea compared to small bronchi. NPY caused a contraction of both pulmonary and bronchial arteries. The bronchial smooth muscle contraction to field stimulation in vitro was purely cholinergic. A non-cholinergic relaxatory effect following field stimulation was observed after bronchial precontraction. Capsaicin had no effect on pig bronchi in vitro.  相似文献   

10.
Endothelial nitric oxide synthase (eNOS) or NOS-III in the endothelium catalyzes production of nitric oxide (NO). Nitric oxide diffuses freely into vascular smooth muscle, where it activates soluble guanylate cyclase (sGC) to produce guanosine 3',5'-cyclic monophosphate (cGMP) and causes vasorelaxation. The NO/cGMP pathway is an important signaling pathway in the control of perinatal pulmonary circulation. An exact colocalization of NOS-III in the pulmonary endothelium and sGC in the vascular smooth muscle was demonstrated using a double immunolabeling technique. The sGC immunoreactivity was higher in resistant pulmonary vessels and veins than in conduit arteries, whereas NOS-III immunoreactivity was higher in conduit arteries than in veins. These results demonstrated anatomically in situ a paracrine role of NOS-III and sGC in the regulation of fetal pulmonary circulation and suggested a heterogeneous distribution of NOS-III and sGC within fetal ovine pulmonary vasculature. Our results provided an anatomic basis that supported previous functional studies on perinatal control of pulmonary circulation.  相似文献   

11.
Endothelial nitric oxide synthase (eNOS) is responsible for the production of nitric oxide (NO) in blood vessels. NO has been shown to be involved in the inhibition of vascular smooth muscle cell (VSMC) proliferation. In the present study, the eNOS gene was transferred into rat aortic smooth muscle cells by using an adenoviral vector, and the effect of endogenously produced NO on VSMC proliferation was investigated. The presence of eNOS in eNOS-transfected cells was confirmed by immunocytochemistry and Western blot analysis. eNOS transfection resulted in inhibition of VSMC proliferation. This effect was accompanied by increased levels of p53 and p21. This effect was abrogated in the presence of the protein kinase A (PKA) inhibitor Rp-8-bromoadenosine 3',5'-cyclic monophosphothioate. The increased levels of p53 and p21 observed in eNOS-transfected cells were reduced in the presence of the PKA inhibitor. These data suggest that p21 and p53 play a role in the inhibition of proliferation in eNOS-transfected cells and that levels of these two proteins are regulated by PKA.  相似文献   

12.
13.
Nitric oxide (NO) plays a key role in vascular function, cell proliferation, and apoptosis. Proper subcellular localization of endothelial NO synthase (eNOS) is crucial for its activity; however, the role of eNOS trafficking for NO biosynthesis remains to be defined. Overexpression of NOS-interacting protein (NOSIP) induces translocation of eNOS from the plasma membrane to intracellular compartments, thereby impairing NO production. Here we report that endogenous NOSIP reduces the enzymatic capacity of eNOS, specifically in the G(2) phase of the cell cycle by targeting eNOS to the actin cytoskeleton. This regulation is critically dependent on the nucleocytoplasmic shuttling of NOSIP and its cytoplasmic accumulation in the G(2) phase. The predominant nuclear localization of NOSIP depends on a bipartite nuclear localization sequence (NLS) mediating interaction with importin alpha. Mutational destruction of the NLS abolishes nuclear import and interaction with importin alpha. Nuclear export is insensitive to leptomycin B and hence different from the CRM1-dependent default mechanism. Inhibition of NOSIP expression by RNA interference completely abolishes G(2)-specific cytoskeletal association and inhibition of eNOS. These findings describe a novel cell cycle-dependent modulation of endogenous NO levels that are critical to the cell cycle-related actions of NO such as apoptosis or cell proliferation.  相似文献   

14.
15.
16.
Nitric oxide in the gut is produced by nNOS in enteric neurons and by eNOS in smooth muscle cells. The eNOS in smooth muscle is activated by vasoactive intestinal peptide (VIP) released from enteric neurons. In the present study, we examined the effect of nitric oxide on VIP-induced eNOS activation in smooth muscle cells isolated from human intestine and rabbit stomach. NOS activity was measured as formation of the 1:1 co-product, l-citrulline from l-arginine. VIP caused an increase in l-citrulline production that was inhibited by NO in a concentration dependent manner (IC(50)~25 microM; maximal inhibition 72% at 100 microM NO). Basal l-citrulline production, however, was unaffected by NO. The effect was not mediated by cGMP/PKG since the PKG inhibitor KT5823 had no effect on eNOS autoinhibition. The autoinhibition was selective for NO since the co-product l-citrulline had no effect on VIP-induced NOS activation. Similar effects were obtained in rabbit gastric and human intestinal smooth muscle cells. The results suggest that NO produced in smooth muscle cells as a result of the activation of eNOS by VIP exerts an autoinhibitory restraint on eNOS thereby regulating the balance of the VIP/cAMP/PKA and NO/cGMP/PKG pathways that regulate the relaxation of gut smooth muscle.  相似文献   

17.
The regulation of vascular wall homeostasis by nitric oxide (NO) generated by endothelium is being intensively studied. In the present paper, the involvement of NO in the vascular endothelial growth factor (VEGF), insulin or leptin-stimulated proliferation of human endothelial cells (HUVEC) was measured by [3H]thymidine or bromodeoxyuridine incorporation. VEGF and insulin, but not leptin, increased NO generation in HUVEC, as detected with ISO-NO electrode. Proliferation of HUVEC induced by leptin was not changed or was higher in the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME) a nitric oxide synthase (NOS) inhibitor. In contrast, L-NAME blunted the proproliferative effect of VEGF and insulin. Furthermore, we demonstrated that, in human arterial smooth muscle cells (hASMC) transfected with endothelial NOS (eNOS) gene, the generation of biologically active VEGF protein was NO-dependent. Inhibition of NO generation by L-NAME decreased the synthesis of VEGF protein and attenuated HUVEC proliferation induced by conditioned media from transfected hASMC. Endothelium-derived NO seems to participate in VEGF and insulin, but not leptin, mitogenic activity. Additionally, the small amounts of NO released from endothelial cells, as mimicked by eNOS transfection into hASMC, may activate generation of VEGF in sub-endothelial smooth muscle cells, leading to increased synthesis of VEGF protein necessary for turnover and restitution of endothelial cells.  相似文献   

18.
Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS) in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (-/-)) is associated with activation of the platelet derived growth factor (PDGF) signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (-/-) mice. Moreover, nitric oxide (NO) negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence.  相似文献   

19.
Summary Physiological and histochemical studies have recently supported the notion that nitric oxide (NO) is the transduction signal responsible for the non-adrenergic, non-cholinergic relaxation of the vasculature as well as the airways of the mammalian lung. We report the presence of immunoreactivity to NO synthase (NOS) in nerve cell bodies and nerve fibres in the neural plexus of the buccal cavity and lungs of the frog, Rana temporaria, using the indirect immunocytochemical technique of avidin-biotin and the NADPH-diaphorase technique. The neural ganglia located next to the muscle layer and within the connective tissue of the buccal cavity were partially immunoreactive for NOS. In the lungs, NOS immunoreactivity occurred in nerve cell bodies, as well as in both myelinated and unmyelinated nerve fibres. Fine nerve fibres immunoreactive to NOS were observed within the muscle fibre bundles and next to the respiratory epithelium. Both the presence of NOS immunoreactivity and the positive histochemical reaction for NADPH-diaphorase in the neural plexus of amphibian respiratory tract suggests a broad evolutionary role for NO as a peripheral neurotransmitter.  相似文献   

20.
We have examined whether differential expression of UT receptors in cardiovascular tissues from rats and humans may account for the diverse vascular actions reported for urotensin-II. We found UT immunoreactivity ubiquitously expressed in arterial and venous smooth muscle and cardiomyocytes in both species, however, compared to human, levels of UT immunoreactivity in rat vascular endothelial cells was below the level for detection. In rat skeletal muscle cells UT receptor localized to the sarcolemma, a pattern comparable to that for isoforms of nitric oxide synthase suggesting that urotensin-II mediated hindquarter vasodilatation may involve release of nitric oxide from skeletal muscle fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号