首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environmentally responsive molecular chaperone Hsp90 assists the maturation of many key regulatory proteins. An unexpected consequence of this essential biochemical function is that genetic variation can accumulate in genomes and can remain phenotypically silent until Hsp90 function is challenged. Notably, this variation can be revealed by modest environmental change, establishing an environmentally responsive exposure mechanism. The existence of diverse cryptic polymorphisms with a plausible exposure mechanism in evolutionarily distant lineages has implications for the pace and nature of evolutionary change. Chaperone-mediated storage and release of genetic variation is undoubtedly rooted in protein-folding phenomena. As we discuss, proper protein folding crucially affects the trajectory from genotype to phenotype. Indeed, the impact of protein quality-control mechanisms and other fundamental cellular processes on evolution has heretofore been overlooked. A true understanding of evolutionary processes will require an integration of current evolutionary paradigms with the many new insights accruing in protein science.  相似文献   

2.
Elements in microbial evolution   总被引:8,自引:0,他引:8  
Spontaneous mutation, selection, and isolation are key elements in biological evolution. Molecular genetic approaches reveal a multitude of different mechanisms by which spontaneous mutants arise. Many of these mechanisms depend on enzymes, which often do not act fully at random on the DNA, although a large number of sites of action can be observed. Of particular interest in this respect are DNA rearrangement processes, e.g., by transposition and by site-specific recombination systems. The development of gene functions has thus to be seen as the result of both DNA rearrangement processes and sequence alterations brought about by nucleotide substitutions and small local deletions, insertions, and duplications. Prokaryotic microorganisms are particularly appropriate for studying the effects of spontaneous mutation and thus microbial evolution, as they have haploid genomes, so that genetic alterations become rapidly apparent phenotypically. In addition, bacteria and their viruses and plasmids have relatively small genomes and short generation times, which also facilitate research on evolutionary processes. Besides the strategy of development of gene functions in the vertical transmission of genomes from generation to generation, the acquisition of short DNA segments from other organisms appears to be an important strategy in microbial evolution. In this process of horizontal evolution natural vector DNA molecules are often involved. Because of acquisition barriers, the acquisition strategy works best for relatively small DNA segments, hence at the level of domains, single genes, or at most operons. Among the many enzymes and functional systems involved in vertical and horizontal microbial evolution, some may serve primarily for essential life functions in each individual and only secondarily contribute to evolution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Plastids and mitochondria arose through endosymbiotic acquisition of formerly free‐living bacteria. During more than a billion years of subsequent concerted evolution, the three genomes of plant cells have undergone dramatic structural changes to optimize the expression of the compartmentalized genetic material and to fine‐tune the communication between the nucleus and the organelles. The chimeric composition of many multiprotein complexes in plastids and mitochondria (one part of the subunits being nuclear encoded and another one being encoded in the organellar genome) provides a paradigm for co‐evolution at the cellular level. In this paper, we discuss the co‐evolution of nuclear and organellar genomes in the context of environmental adaptation in species and populations. We highlight emerging genetic model systems and new experimental approaches that are particularly suitable to elucidate the molecular basis of co‐adaptation processes and describe how nuclear‐cytoplasmic co‐evolution can cause genetic incompatibilities that contribute to the establishment of hybridization barriers, ultimately leading to the formation of new species.  相似文献   

4.
Throughout the living world, genetic recombination and nucleotide substitution are the primary processes that create the genetic variation upon which natural selection acts. Just as analyses of substitution patterns can reveal a great deal about evolution, so too can analyses of recombination. Evidence of genetic recombination within the genomes of apparently asexual species can equate with evidence of cryptic sexuality. In sexually reproducing species, nonrandom patterns of sequence exchange can provide direct evidence of population subdivisions that prevent certain individuals from mating. Although an interesting topic in its own right, an important reason for analysing recombination is to account for its potentially disruptive influences on various phylogenetic-based molecular evolution analyses. Specifically, the evolutionary histories of recombinant sequences cannot be accurately described by standard bifurcating phylogenetic trees. Taking recombination into account can therefore be pivotal to the success of selection, molecular clock and various other analyses that require adequate modelling of shared ancestry and draw increased power from accurately inferred phylogenetic trees. Here, we review various computational approaches to studying recombination and provide guidelines both on how to gain insights into this important evolutionary process and on how it can be properly accounted for during molecular evolution studies.  相似文献   

5.

Background

The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of these extreme characteristics, and to explore the relationship between mitochondrial genome molecular evolution, genome architecture, and molecular function. We sequenced complete mitochondrial genomes from Slowinski's corn snake (Pantherophis slowinskii) and two cottonmouths (Agkistrodon piscivorus) to complement previously existing mitochondrial genomes, and to provide an improved comparative view of how genome architecture affects molecular evolution at contrasting levels of divergence.

Results

We present a Bayesian genetic approach that suggests that the duplicated control region can function as an additional origin of heavy strand replication. The two control regions also appear to have different intra-specific versus inter-specific evolutionary dynamics that may be associated with complex modes of concerted evolution. We find that different genomic regions have experienced substantial accelerated evolution along early branches in snakes, with different genes having experienced dramatic accelerations along specific branches. Some of these accelerations appear to coincide with, or subsequent to, the shortening of various mitochondrial genes and the duplication of the control region and flanking tRNAs.

Conclusion

Fluctuations in the strength and pattern of selection during snake evolution have had widely varying gene-specific effects on substitution rates, and these rate accelerations may have been functionally related to unusual changes in genomic architecture. The among-lineage and among-gene variation in rate dynamics observed in snakes is the most extreme thus far observed in animal genomes, and provides an important study system for further evaluating the biochemical and physiological basis of evolutionary pressures in vertebrate mitochondria.  相似文献   

6.
Recently improved understanding of evolutionary processes suggests that tree-based phylogenetic analyses of evolutionary change cannot adequately explain the divergent evolutionary histories of a great many genes and gene complexes. In particular, genetic diversity in the genomes of prokaryotes, phages, and plasmids cannot be fit into classic tree-like models of evolution. These findings entail the need for fundamental reform of our understanding of molecular evolution and the need to devise alternative apparatus for integrated analysis of these genomes. We advocate the development of integrative phylogenomics for analyzing these genomes and their histories, with tools suited to analyzing the importance of lateral gene transfer (LGT) and of DNA evolution in extra-cellular mobile genetic elements (e.g., viruses, plasmids). These phenomena greatly increase the complexity of relationships among interacting genetic partners, as they exchange functional genetic units. We examine the ontology of functional genetic units, interacting genetic partners, and emergent genetic associations, argue that these three categories of entities are required for a successful integrated phylogenomics. We conclude with arguments to suggest that the proposed new perspective and associated tools are suitable, and perhaps required, as a replacement for the bifurcating trees that have dominated evolutionary thinking for the last 150 years.  相似文献   

7.
Genome evolution in polyploids   总被引:71,自引:0,他引:71  
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.  相似文献   

8.
The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of noncrossover recombination in genomes and for determining the identity and micro‐evolutionary selective pressures on noncoding regulatory elements.  相似文献   

9.
Evolutionary relationships among complex, multicellular eukaryotes are generally interpreted within the framework of molecular sequence-based phylogenies that suggest green plants and animals are only distantly related on the eukaryotic tree. However, important anomalies have been reported in phylogenomic analyses, including several that relate specifically to green plant evolution. In addition, plants and animals share molecular, biochemical and genome-level features that suggest a relatively close relationship between the two groups. This article explores the impacts of plastid endosymbioses on nuclear genomes, how they can explain incongruent phylogenetic signals in molecular data sets and reconcile conflicts among different sources of comparative data. Specifically, I argue that the large influx of plastid DNA into plant and algal nuclear genomes has resulted in tree-building artifacts that obscure a relatively close evolutionary relationship between green plants and animals.  相似文献   

10.
Transposable elements (TEs) are ubiquitous components of all living organisms, and in the course of their coexistence with their respective host geneomes, these parasitc DNAs have played important roles in the evolution of complex genetic networks. The interaction between mobile DNAs and their host genomes are quite diverse, ranging from modifications of gene structure and regulation to alterations in general genome architecture. Thus during evolutionary time these elements can be regarded as natural molecular tools in shaping the organization, structure, and function of eukaryotic genes and genomes. Based on their intrinsic properties and features, mobile DNAs are widely applied at present as a technical “toolbox”, essential for studying a diverse spectrum of biological questions. In this review, we aim to summarize both the evolutionary impact of TEs on geneome evolution and their valuable and diverse methodological applications as molecular tools.  相似文献   

11.
During the last 30 years, a number of alterations to the standard genetic code have been uncovered both in prokaryotes and eukaryotic nuclear and mitochondrial genomes. But, the study of the evolutionary pathways and molecular mechanisms of codon identity redefinition has been largely ignored due to the assumption that non-standard genetic codes can only evolve through neutral evolutionary mechanisms and that they have no functional significance. The recent discovery of a genetic code change in the genus Candida that evolved through an ambiguous messenger RNA decoding mechanism is bringing that naive assumption to an abrupt end by showing, in a rather dramatic way, that genetic code changes have profound physiological and evolutionary consequences for the species that redefine codon identity. In this paper, the recent data on the evolution of the Candida genetic code are reviewed and an experimental framework based on forced evolution, molecular genetics and comparative and functional genomics methodologies is put forward for the study of non-standard genetic codes and genetic code ambiguity in general. Additionally, the importance of using Saccharomyces cerevisiae as a model organism for elucidating the evolutionary pathway of the Candida and other genetic code changes is emphasised.  相似文献   

12.
The origin of translation is critical for understanding the evolution of life, including the origins of life. The canonical genetic code is one of the most dominant aspects of life on this planet, while the origin of heredity is one of the key evolutionary transitions in living world. Why the translation apparatus evolved is one of the enduring mysteries of molecular biology. Assuming the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity, we propose and discuss possible mechanisms, basic aspects of the emergence and subsequent molecular evolution of translation and ribosomes, as well as enzymes as we know them today. It is possible, in this sense, to view the ribosome as a digital-to-analogue information converter. The proposed mechanism is based on the abilities and tendencies of short RNA and polypeptides to fold and to catalyse biochemical reactions. The proposed mechanism is in concordance with the hypothesis of a possible chemical co-evolution of RNA and proteins in the origin of the genetic code or even more generally at the early evolution of life on Earth. The possible abundance and availability of monomers at prebiotic conditions are considered in the mechanism. The hypothesis that early polypeptides were folding on the RNA scaffold is also considered and mutualism in molecular evolutionary development of RNA and peptides is favoured.  相似文献   

13.
To understand how morphological characters change during evolution, we need insight into the evolution of developmental processes. Comparative developmental approaches that make use of our fundamental understanding of development in certain model organisms have been initiated for different animal systems and flowering plants. Nematodes provide a useful experimental system with which to investigate the genetic and molecular alterations underlying evolutionary changes of cell fate specification in development, by comparing different species to the genetic model system Caenorhabditis elegans. In this review, I will first discuss the different types of evolutionary alterations seen at the cellular level by focusing mainly on the analysis of vulva development in different species. The observed alterations involve changes in cell lineage, cell migration and cell death, as well as induction and cell competence. I then describe a genetic approach in the nematode Pristionchus pacificus that might identify those genetic and molecular processes that cause evolutionary changes of cell fate specification.  相似文献   

14.
Most studies of behaviour examine traits whose proximate causes include sensory input and neural decision-making, but conflict and collaboration in biological systems began long before brains or sensory systems evolved. Many behaviours result from non-neural mechanisms such as direct physical contact between recognition proteins or modifications of development that coincide with altered behaviour. These simple molecular mechanisms form the basis of important biological functions and can enact organismal interactions that are as subtle, strategic and interesting as any. The genetic changes that underlie divergent molecular behaviours are often targets of selection, indicating that their functional variation has important fitness consequences. These behaviours evolve by discrete units of quantifiable phenotypic effect (amino acid and regulatory mutations, often by successive mutations of the same gene), so the role of selection in shaping evolutionary change can be evaluated on the scale at which heritable phenotypic variation originates. We describe experimental strategies for finding genes that underlie biochemical and developmental alterations of behaviour, survey the existing literature highlighting cases where the simplicity of molecular behaviours has allowed insight to the evolutionary process and discuss the utility of a genetic knowledge of the sources and spectrum of phenotypic variation for a deeper understanding of how genetic and phenotypic architectures evolve.  相似文献   

15.
During evolution, the genomes of eukaryotic cells have undergone major restructuring to meet the new regulatory challenges associated with compartmentalization of the genetic material in the nucleus and the organelles acquired by endosymbiosis (mitochondria and plastids). Restructuring involved the loss of dispensable or redundant genes and the massive translocation of genes from the ancestral organelles to the nucleus. Genomics and bioinformatic data suggest that the process of DNA transfer from organelles to the nucleus still continues, providing raw material for evolutionary tinkering in the nuclear genome. Recent reconstruction of these events in the laboratory has provided a unique tool to observe genome evolution in real time and to study the molecular mechanisms by which plastid genes are converted into functional nuclear genes. Here, we summarize current knowledge about plastid-to-nuclear gene transfer in the context of genome evolution and discuss new insights gained from experiments that recapitulate endosymbiotic gene transfer in the laboratory.  相似文献   

16.
论述了细菌基因组进化的 4个分子策略 :点突变 ,基因组内重排 ,基因水平转移 ,基因缺失。从经典的达尔文进化论角度探讨了细菌基因组进化与表型进化的关系。  相似文献   

17.
Toward a stoichiometric framework for evolutionary biology   总被引:3,自引:0,他引:3  
Ecological stoichiometry, the study of the balance of energy and materials in living systems, may serve as a useful synthetic framework for evolutionary biology. Here, we review recent work that illustrates the power of a stoichiometric approach to evolution across multiple scales, and then point to important open questions that may chart the way forward in this new field. At the molecular level, stoichiometry links hereditary changes in the molecular composition of organisms to key phenotypic functions. At the level of evolutionary ecology, a simultaneous focus on the energetic and material underpinnings of evolutionary tradeoffs and transactions highlights the relationship between the cost of resource acquisition and the functional consequences of biochemical composition. At the macroevolutionary level, a stoichiometric perspective can better operationalize models of adaptive radiation and escalation, and elucidate links between evolutionary innovation and the development of global biogeochemical cycles. Because ecological stoichiometry focuses on the interaction of energetic and multiple material currencies, it should provide new opportunities for coupling evolutionary dynamics across scales from genomes to the biosphere.  相似文献   

18.
Tremendous advances in genetic and genomic techniques have resulted in the capacity to identify genes involved in adaptive evolution across numerous biological systems. One of the next major steps in evolutionary biology will be to determine how landscape-level geographical and environmental features are involved in the distribution of this functional adaptive genetic variation. Here, I outline how an emerging synthesis of multiple disciplines has and will continue to facilitate a deeper understanding of the ways in which heterogeneity of the natural landscapes mould the genomes of organisms.  相似文献   

19.
Rotifers, both as individuals and as a phylogenetic group, are particularly worthwhile subjects for the study of evolution. Over the past decade molecular and experimental work on rotifers has facilitated major progress in three lines of evolutionary research. First, we continue to reveal the phylogentic relationships within the taxon Rotifera and its placement within the tree of life. Second, we have gained a better understanding of how macroevolutionary transitions occur and how evolutionary strategies can be maintained over millions of years. In the case of rotifers, we are challenged to explain the evolution of obligate asexuality (in the bdelloids) as mode of reproduction and how speciation occurs in the absence of sex. Recent research with bdelloid rotifers has identified novel mechanisms such as horizontal gene transfer and resistance to radiation as factors potentially affecting macroevolutionary change. Third, we are finding that microevolutionary change can be sufficiently rapid to interact with ecological dynamics. Rotifers can be easily cultured, reproduce quickly, and occur at high levels of clonal, genetic diversity in nature. These features make them excellent eukaryotic model systems for the study of eco-evolutionary dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号