首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphorylation state of the alpha subunit of initiation factor 2 (eIF-2 alpha) in Saccharomyces cerevisiae has been determined by two-dimensional gel electrophoresis and autoradiography of lysates from cultures grown under a variety of conditions. The alpha subunit was maintained in a phosphorylated state during logarithmic growth on fermentable and nonfermentable carbon sources, during starvation for an essential amino acid, during heat shock, during stationary phase, and during sporulation. Only when cells were starved for a carbon source for 2 h in 1 M sorbitol was eIF-2 alpha isolated in the nonphosphorylated state. This is in contrast with the studies in rabbit reticulocyte lysates, in which arrested protein synthesis was correlated with a relative increase in the extent of phosphorylation of eIF-2 alpha.  相似文献   

2.
Protein synthesis initiation factors in purified preparations and in crude lysates of HeLa cells were fractionated by two-dimensional polyacrylamide gel electrophoresis in order to characterize their molecular forms. Specific spots in the complex cytoplasmic protein gel pattern which corresponded to the initiation factor proteins were identified by co-migration of purified initiation factors with 35S-labeled cell lysates, partial proteolytic digestion mapping, and immunoblotting analysis using antisera or affinity-purified antibodies to the initiation factors. Spots identified as eukaryotic initiation factor (eIF) 2 alpha, eIF-2 beta, eIF-2 gamma, eIF-4A, and four eIF-3 proteins of less than 50,000 Da corresponded to moderately abundant lysate proteins. Minor isoelectric variant forms of eIF-2 beta, eIF-2 gamma, and eIF-4A were detected by immunoblot analysis of lysate proteins, suggesting either covalent modification of these factor proteins or contaminating antibodies. eIF-2 beta and eIF-4B were present in at least two isoelectric forms, confirming covalent modification of these proteins. The cellular levels of the initiation factor proteins were measured by excising and counting radioactivity in gel-resolved spots corresponding to factors in lysates labeled in vivo. The individual factor protein abundancies span nearly a 10-fold range, from 1.1 to 9.8 million molecules/cell. The factor to ribosome ratio for eIF-2 was 0.8, for the average eIF-3 protein about 0.6, and for eIF-4A it was significantly higher at 3.0.  相似文献   

3.
The effect of interferon (IFN) treatment and virus infection on the phosphorylation both in vitro and in vivo of the alpha subunit of protein synthesis initiation factor eIF-2 (eIF-2 alpha) was examined in mouse fibroblast L929 cells. The [gamma-32P]ATP-mediated in vitro phosphorylation of eIF-2 alpha catalyzed by cell-free extracts prepared from IFN-treated, uninfected cells was dependent upon exogenously added double-stranded RNA (dsRNA). However, the dsRNA requirement for eIF-2 alpha phosphorylation in vitro was eliminated by prior infection of cells with reovirus Dearing strain virions but not with defective top component particles. The enhanced phosphorylation in vitro of eIF-2 alpha and ribosome-associated protein P1 depended in a similar manner upon the multiplicity of virus infection. The extent of phosphorylation in vivo of eIF-2 alpha prepared from L929 cells was also examined by utilizing two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting techniques. About 5-10% of the eIF-2 alpha was typically phosphorylated in vivo in untreated, mock-infected cells, whereas 25-30% was phosphorylated in IFN-treated, reovirus-infected cells. An intermediate extent of eIF-2 alpha phosphorylation, routinely between 15 and 20%, was observed with either IFN treatment or reovirus infection alone. The integrity of eIF-4A and eIF-4B was also examined by two-dimensional electrophoresis and immunoblotting, and no significant alterations in molecular size or charge heterogeneity were detected when these factors were prepared from IFN-treated, reovirus-infected cells as compared to untreated, uninfected cells.  相似文献   

4.
When cultures of the temperature-sensitive Chinese hamster ovary cell mutant tsH1 are shifted from 34 degrees C (permissive temperature) to 39.5 degrees C (nonpermissive temperature), protein synthesis is inhibited by more than 80%. This is due principally to a block in activity of polypeptide chain initiation factor eIF-2. In this paper we show that there is impairment of the ability of the guanine nucleotide exchange factor (GEF) to displace GDP from eIF-2 X GDP complexes in extracts from cells incubated at the nonpermissive temperature. Addition of GEF or of high concentrations of eIF-2 stimulates protein synthesis to the level observed in control cell extracts, suggesting that GEF is rate-limiting for eIF-2 activity and overall protein synthesis at the nonpermissive temperature. Analysis of eIF-2 by two-dimensional gel electrophoresis and immunoblotting reveals an increase in the proportion of the alpha subunit in the phosphorylated form from 5.5 +/- 2.4% to 17.2 +/- 3.9% on shifting tsH1 cells from 34 to 39.5 degrees C. No such effect is seen in wild-type cells, which do not exhibit temperature-sensitive protein synthetic activity. Since the primary lesion in tsH1 cells is in their leucyl-tRNA synthetase, these results suggest a role for eIF-2 phosphorylation and GEF activity in coupling the rate of polypeptide chain initiation to the activity of the chain elongation machinery.  相似文献   

5.
We have purified seven protein factors from rabbit reticulocytes, all of which are presumed to be involved in the initiation of mammalian protein synthesis. They are termed eIF-1, eIF-2, eIF-3, eIF4A, eIF-4B, eIF-4C and e-IF-5. The purification from the KCl wash of crude ribosomes involves fractionation with ammonium sulphate, ion-exchange chromatography and separation by size. The operational definition of an initiation factor was its requirement for translation of natural messenger RNA (globin mRNA) in a highly purified and fractionated system using completely defined elongation components, i.e. aminoacyl-tRNA, the two elongation factors EF-1 and EF-2, and GTP. By the same criterion ATP was also shown to be required for initiation. The initiation factors were purified to homogeneity with the exception of eIF-4B, which was 60% to 70% pure. They were characterized physically by sucrose gradient centrifugation and by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. With the exception of eIF-2 and eIF-3, they consist of single polypeptide chains ranging in molecular weight from 15,000 (eIF-1) to about 160,000 (eIF-5). The factor eIF-2 has three subunits of about 35,000, 50,000 and 55,000 molecular weight. The factor eIF-3 appears to be homogeneous as judged by gel electrophoresis in non-dissociating conditions and sedimentation analysis. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, however, reveals at least nine subunits ranging in molecular weight from about 35,000 to 160,000. Initiation complexes (mRNA · Met-tRNAf · 80 S ribosome), made in the presence of the seven initiation factors, ATP and GTP were isolated on a sucrose gradient and shown to be fully active in polypeptide chain elongation when supplied with aminoacyl-tRNA, the two elongation factors and GTP.  相似文献   

6.
Eukaryotic initiation factor 5 (eIF-5) has been purified from the ribosomal salt-wash proteins of rabbit reticulocyte lysates. The purified factor migrates as a single polypeptide upon sodium dodecyl sulfate-gel electrophoresis with an apparent Mr of about 58,000-62,000. In contrast, less pure preparations of reticulocyte eIF-5 behave in gel filtration columns and in glycerol gradient centrifugation in buffers containing 75-100 mM KCl as a protein of apparent Mr = 140,000-160,000. Presumably, this is due to association of the factor with other proteins, since eIF-5 activity present in such preparations can also be shown by (a) glycerol gradient centrifugation in buffers containing 500 mM KCl or (b) gel electrophoresis under denaturing conditions, to be associated with a 58,000-62,000-dalton protein. Furthermore, eIF-5 purified from rabbit reticulocyte lysates in the absence or presence of protease inhibitors is indistinguishable with regard to molecular weight and final specific activity. It can be calculated that 1 pmol of the purified eIF-5 catalyzes the formation of nearly 50 pmol of 80 S initiation complex under in vitro initiation reaction conditions. Because of the highly catalytic activity of eIF-5 in initiation reactions, the presence of even low levels of eIF-5 in eIF-2 preparations causes hydrolysis of GTP bound to the 40 S initiation complex. This results in destabilization of Met-tRNA(f) bound to the 40 S complex in sucrose gradient centrifugation.  相似文献   

7.
We have identified two isoforms of initiation factor 4A (eIF-4A) in maize root tips, with distinct isoelectric points and similar molecular mass (approximately 50 kDa). Both isoforms of maize eIF-4A cross-react with antibodies raised against wheat germ eIF-4A, and one of the maize proteins (higher pI isoform) comigrates with purified wheat germ eIF-4A on two-dimensional gels. The two maize eIF-4As were indistinguishable by comparative peptide fingerprint analysis, which also showed a very strong similarity between eIF-4A in maize roots and wheat germ. Maize eIF-4As copurify with eIF-4F and eIF-(iso)4F on a 7-methyl-GTP-Sepharose affinity column, indicating that they are part of the 5'-cap-binding complex. Two-dimensional gel electrophoresis and immunoblotting of proteins from 32P-labeled maize root tips revealed that the lower pI isoform of eIF-4A is phosphorylated. Two-dimensional phosphopeptide maps of trypsin-digested eIF-4A contained one principal phosphorylated fragment; phosphoamino acid analysis indicated phosphorylation of threonine. In oxygenated maize root tips, the ratio of phosphorylated to nonphosphorylated eIF-4A is approximately 0.2. This ratio increases to approximately 1 within 20 min following the onset of hypoxia, due to interconversion between the two maize eIF-4A isoforms. The hypoxia-induced phosphorylation of eIF-4A is discussed with respect to metabolic responses, and the translational control of gene expression, in hypoxic plant tissues.  相似文献   

8.
One to 2 h after transfer of HeLa cells into fresh serum-containing medium, when translation rates are maximal, the initiation factor proteins were examined on immunoblots of two-dimensional gels. Eukaryotic initiation factor (eIF)-2 alpha, eIF-2 beta, and eIF-4A each formed a single immunoreactive spot; eIF-2 gamma formed 2 spots; and eIF-4B formed a complex array of 12-20 spots. After 4 days of growth in unreplenished medium, when translation rates have dropped 4-6-fold, several alterations in the isoelectric forms were observed: eIF-2 alpha now occurred in 2 forms, eIF-2 beta was present in 3-4 forms, and the most acidic cluster of eIF-4B variants was decreased or absent while a new isoelectric variant appeared at the basic end of the array. No changes were observed for eIF-2 gamma or eIF-4A. The 35-50-kDa subunits of the multiprotein initiation factor eIF-3 also showed no changes when the aforementioned growth states were compared. Resolution of 32P-labeled lysates by isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the eIF-2 alpha modification and the loss of eIF-4B variants reflected changes in phosphorylation states. Stimulation of 4-day grown cells with fresh serum-containing medium caused a reversal of the initiation factor modifications back to the forms prevailing shortly after replating. This analysis indicates that covalent modifications appear concurrently with decreasing initiation rates and suggests that they may be causative.  相似文献   

9.
Abstract: We used in vitro translation and antibodies against phosphoserine and the eukaryotic initiation factors eIF-4E, eIF-4G, and eIF-2α to examine the effects of global brain ischemia and reperfusion on translation initiation and its regulation in a rat model of 10 min of cardiac arrest followed by resuscitation and 90 min of reperfusion. Translation reactions were performed on postmitochondrial supernatants from brain homogenates with and without aurintricarboxylic acid to separate incorporation due to run-off from incorporation due to peptide synthesis initiated in vitro. The rate of leucine incorporation due to in vitro-initiated protein synthesis in normal forebrain homogenates was ∼0.4 fmol of leucine/min/µg of protein and was unaffected by 10 min of cardiac arrest, but 90 min of reperfusion reduced this rate 83%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blots of these homogenates showed that neither 10 min of global brain ischemia nor 90 min of reperfusion induced significant alterations in the quantity or serine phosphorylation of eIF-4E. However, we observed in all 90-min-reperfused samples eIF-4G fragments that also bound eIF-4E. The amount of eIF-2α was not altered by ischemia or reperfusion, and immunoblotting after isoelectric focusing did not detect serine-phosphorylated eIF-2α in normal samples or in those obtained after ischemia without reperfusion. However, serine-phosphorylated eIF-2α was uniformly present after 90 min of reperfusion and represented 24 ± 3% of the eIF-2α in these samples. The serine phosphorylation of eIF-2α and partial fragmentation of eIF-4G observed after 90 min of reperfusion offer an explanation for the inhibition of protein synthesis.  相似文献   

10.
[14C]Eukaryotic initiation factor 2 (eIF-2), obtained by reductive methylation of the purified initiation factor, was shown to be active in the unfractionated reticulocyte lysate. This allowed a direct measurement of the endogenous pool size of eIF-2 in rabbit reticulocyte lysate according to the principle of isotope dilution. A value of 20 to 30 pmol/ml of lysate was obtained. Although translational inhibition resulting from hemin deficiency appears to be characterized by a change from catalytic to stoichiometric utilization of eIF-2, the pool size of eIF-2 is too small to account for the normal period of protein synthesis before the onset of translation inhibition. This suggests, therefore, that additional events to eIF-2 alpha phosphorylation may be required for translational inhibition.  相似文献   

11.
《Seminars in Virology》1993,4(4):201-207
Regulation of gene expression frequently involves translational controls that operate at the level of the initiation phase. Initiation of protein synthesis in eukaryotes is promoted by greater than 10 initiation factors. Important among these are initiation factors eIF-2 and eIF-2B, which stimulate methionyl-tRNA binding to 40S ribosomal subunits, and eIF-4A, eIF-4B and eIF-4F, which stimulate mRNA binding. Many of the initiation factors are phosphorylated in vivo, and phosphorylation has been shown to regulate rates of global protein synthesis. Phosphorylation of eIF-2 on its α-subunit results in repression of translation by interfering with the recycling of the factor. Phosphorylation of eIF-4F on its α- and γ-subunits activates this limiting initiation factor and stimulates protein synthesis. Other initiation factor activities may also be regulated by phosphorylation, but these have not yet been characterized in detail. Regulating the translational activity of the cell by phosphorylation appears to be important in virus-infected cells and in the control of cell proliferation.  相似文献   

12.
The double-stranded RNA (dsRNA)-dependent protein kinase which catalyzes the phosphorylation of ribosome-associated protein P1 and the alpha subunit of eukaryotic protein synthesis initiation factor 2 (eIF-2) was purified and characterized from mouse fibroblast L929 cells treated with either natural or recombinant interferon and from untreated cells. The dsRNA-dependent P1/eIF-2 alpha kinase was purified at least 1,500-fold from interferon-treated cells; the kinase activity that catalyzed the phosphorylation of eIF-2 alpha copurified with protein P1. The yield of P1/eIF-2 alpha protein kinase activity obtained following purification from cells treated with interferon was about 5-10 times greater than the yield from an equivalent number of untreated cells. The purified protein kinase remained dsRNA dependent. When P1 kinase was activated by dsRNA, a major phosphopeptide designated Xds was phosphorylated; Xds was not phosphorylated from P1 which had not been activated by dsRNA. The apparent native molecular weight of the purified mouse L929 dsRNA-dependent kinase as determined by sedimentation analysis was about 62,000, comparable to the molecular weight of 67,000 determined for denatured L929 phosphoprotein P1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified protein kinase was highly selective for the alpha subunit of protein synthesis initiation factor eIF-2 and endogenous protein P1. Kinase activity was dependent upon Mg2+, and the Km for ATP was determined to be 5 X 10(-6) M. Histones (H1, H2A-B, H3, and H4) and protein synthesis initiation factors other than eIF-2 (eIF-3, eIF-4A, eIF-4B, and eIF-5) were not substrates or were very poor substrates for the purified dsRNA-dependent protein kinase. N-Ethylmaleimide, ethylenediaminetetraacetic acid, AMP, pyrophosphate, spermine, spermidine, and high concentrations of potassium inhibited both P1 and eIF-2 alpha phosphorylation by the purified kinase, whereas ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and phenanthroline did not significantly affect the phosphorylation of either protein P1 or eIF-2 alpha.  相似文献   

13.
Infection of HeLa cells by poliovirus results in the inhibition of translation of capped cellular mRNA. A plausible mechanism for this inhibition is that the structure of one or more initiation factors involved in the recognition of capped mRNA is altered. Eukaryotic initiation factor (eIF) 4A and eIF-4B are implicated in mRNA binding to 40 S ribosomal subunits and can be cross-linked to oxidized capped mRNA. We examined these factors in HeLa cell lysates by two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. No alterations in the number of molecules/cell, in the molecular size, or in extents of covalent modification were detected when lysates from infected and mock-infected cells were compared. The integrity of eIF-2 and several eIF-3 polypeptides was also examined and likewise no alterations were detected. The failure of the translational machinery to recognize capped mRNA therefore is not due to a change in the structure of these initiation factors.  相似文献   

14.
15.
Eukaryotic initiation factor (eIF)-5, isolated from rabbit reticulocyte lysates, is a monomeric protein of Mr = 58,000-62,000. Immunochemical methods were employed to identify eIF-5 in crude cell lysates. Antisera against purified denatured eIF-5 were prepared in rabbits and characterized by immunoblotting and immunoprecipitation techniques using native and denatured eIF-5 as antigens. Monospecific antibodies to denatured eIF-5 were affinity-purified using eIF-5 blotted onto aminophenylthioether paper. Rabbit reticulocytes, HeLa cells and mouse L cells were lysed directly into a denaturing buffer containing 3% sodium dodecyl sulfate. The denatured proteins were analyzed by polyacrylamide gel electrophoresis followed by immunoblotting with anti-eIF-5 antibodies. With each lysate, one major immunoreactive polypeptide was observed whose molecular weight corresponded to that of purified eIF-5 (Mr = 58,000-62,000). No degradation products or precursor forms of molecular weight higher than 62,000 were detected in any lysate. These results indicate that isolated eIF-5 is the same size as that found in crude lysates. Additional characterization of eIF-5 indicates that purified eIF-5 can be phosphorylated at serine residues in vitro by casein kinase II. Furthermore, in vitro phosphorylated eIF-5 retains full biological activity in catalyzing the joining of 60 S ribosomal subunits to a preformed 40 S ribosomal initiation complex to form an 80 S initiation complex. Based on its specific activity, we demonstrate that 1 pmol of rabbit reticulocyte eIF-5 mediates the formation of approximately 180 pmol of 80 S initiation complex under the conditions of in vitro initiation reactions.  相似文献   

16.
The ability of the initiation factor eIF-2 in skeletal muscle extracts to form ternary initiation complexes ([Met-tRNA(f).eIF-2.GDP]) is decreased by either starvation or diabetes. These conditions also impair the ability of muscle extracts to dissociate [eIF-2.GDP], suggesting inhibition of the guanine nucleotide exchange reaction essential for eIF-2 recycling. We could not, however, detect any change in the phosphorylation state of the alpha subunit of eIF-2. This suggests that eIF-2 activity may be regulated in this system by a mechanism not involving its phosphorylation.  相似文献   

17.
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2) is a major mechanism regulating protein synthesis in rabbit reticulocytes. To determine whether phosphorylation of eIF-2 alpha is a likely regulatory mechanism in the Ehrlich cell, we have measured the percent of cellular eIF-2 alpha which is phosphorylated in cells exposed to heat shock, 2-deoxyglucose, or amino acid deprivation, conditions which rapidly decrease the concentration of 40 S initiation complexes and inhibit protein synthesis. eIF-2 alpha and eIf-2 alpha (P) were separated by isoelectric focusing and were detected by immunoblotting with a monoclonal antibody we developed for this purpose. Under the above three inhibitory conditions, phosphorylation of eIF-2 alpha increased rapidly, and this increase correlated in time with the rapid inhibition of protein synthesis. In heat-shocked cells which were returned to 37 degrees C, both phosphorylation and protein synthesis remained unchanged for 10 min and then returned toward control values slowly and in parallel. The close temporal correspondence between changes in protein synthesis and phosphorylation supports an important regulatory role for phosphorylation in protein synthesis. An increase of 25-35 percentage points, to 50-60% phosphorylation from control levels of 20-30% phosphorylation, correlated with an 80-100% inhibition of protein synthesis. This steep curve of inhibition is consistent with a mechanism in which eIF-2 alpha (P) saturates and inhibits the guanine-nucleotide exchange factor.  相似文献   

18.
Eukaryotic initiation factor 5 (eIF-5), which specifically catalyzes the joining of a 60 S ribosomal subunit to a 40 S initiation complex to form a functional 80 S initiation complex, has been purified from ribosomal salt wash proteins of calf liver. The purified factor exhibits only one polypeptide band of Mr = 62,000 following electrophoresis in 10% polyacrylamide gels in the presence of sodium dodecyl sulfate. The native protein has a sedimentation coefficient of 4.2 S and a Stokes radius of 33 A which is consistent with eIF-5 being a monomeric protein of Mr = 58,000-62,000. Less pure preparations of eIF-5 elute in gel filtration columns with an apparent Mr of 160,000-180,000 presumably due to association of eIF-5 with other high molecular weight proteins since eIF-5 activity present in such preparations can also be shown by gel electrophoretic separation under denaturing conditions to be associated with a 62,000-dalton protein. Furthermore, eIF-5 purified from calf liver extracts with or without a number of protease inhibitors is indistinguishable with regard to molecular weight and final specific activity of purified preparations. The purified factor catalyzes the hydrolysis of GTP present in 40 S initiation complexes in the absence of 60 S ribosomal subunits. The presence of 60 S ribosomal subunits neither stimulates nor inhibits the hydrolysis of GTP. However, the factor cannot mediate 40 S or 40 + 60 S ribosome-dependent hydrolysis of GTP in the absence of Met-tRNAf or other components required for 40 S initiation complex formation. It can be calculated that 1 pmol of eIF-5 protein can catalyze the formation of at least 10 pmol of 80 S initiation complex under the conditions of in vitro initiation reactions.  相似文献   

19.
The role of eukaryotic initiation factor 2 (eIF-2) phosphorylation in translational control has been demonstrated in vivo by overexpressing variant forms of eIF-2 alpha that are not phosphorylated. COS-1 cells transiently transfected with expression vectors for human eIF-2 alpha contain 10-20-fold more eIF-2 alpha subunit than the endogenous COS cell eIF-2 trimeric complex. Expression of the variant form of eIF-2 alpha, Ser51Asp, where Asp replaces Ser51, causes inhibition of protein synthesis, whereas the Ser48Asp variant does not. When either Ser48 or Ser51 is replaced by Ala, the variants stimulate dihydrofolate reductase synthesis when the eIF-2 alpha kinase, DAI, is activated. In order to elucidate these mechanisms, we have separated eIF-2 trimeric complexes from free overexpressed eIF-2 alpha subunits by fast protein liquid chromatography Superose chromatography. Pulse-labeled cells transfected with wild-type or variant DNAs produced eIF-2 preparations with greater than 10-fold higher specific radioactivity in the alpha-subunit compared to the gamma-subunit, thus demonstrating that the human eIF-2 alpha produced from the plasmids readily exchanges into COS cell eIF-2 complexes. Both wild-type and Ser48Ala variant forms of the free 2 alpha-subunit, further purified by MonoQ chromatography, are poor substrates for the heme-regulated eIF-2 alpha kinase, HRI, but are good substrates for double-stranded RNA-activated inhibitor in vitro; the Ser51Ala variant subunit is not phosphorylated by either kinase. None of the purified free eIF-2 alpha subunits inhibits phosphorylation of eIF-2 in vitro, even at up to 8-fold molar excess. Examination of the extent of eIF-2 alpha phosphorylation in the COS cell eIF-2 complexes by two-dimensional polyacrylamide gel electrophoresis shows that the stimulation of dihydrofolate reductase synthesis by the Ser51Ala variant is most readily explained by failure of eIF-2 to be phosphorylated. Stimulation by the Ser48Ala variant appears to occur by mitigation of the effect of phosphorylation at Ser51 since the double variant, Ser48Ala-Ser51Asp, inhibits protein synthesis less than the single variant Ser51Asp. The evidence argues strongly against there being a second site of phosphorylation involved in translational repression.  相似文献   

20.
In previous studies, initiation of protein synthesis was shown to be inhibited in perfused rat livers deprived of single essential amino acids. In the present study, histidinol, a competitive inhibitor of histidinyl-tRNA synthetase, was used to amplify the effects of histidine deprivation on protein synthesis in perfused liver to facilitate investigation of mechanisms involved in the inhibition of peptide chain initiation. Protein synthesis was reduced to 77% of the control rate in livers deprived of histidine and to 13% of the control rate in livers deprived of histidine and exposed to 2.0 mM histidinol. The inhibition of protein synthesis caused by histidine deprivation alone was accompanied by a 2-fold increase in the number of free ribosomal particles, a 29% decrease in Met-tRNA(i) binding to 43 S preinitiation complexes, and a 31% reduction in activity of eukaryotic initiation factor 2B (eIF-2B). By comparison, histidine deprivation combined with histidinol addition resulted in a 3-fold increase in free ribosomal particles, a 66% decrease in Met-tRNAi binding, and a 78% reduction in eIF-2B activity. The proportion of the alpha-subunit of eukaryotic initiation factor two (eIF-2) in the phosphorylated form increased from 8.9 +/- 0.8% in control livers to 52.4 +/- 5.5% in response to histidinol. The increase in the amount of eIF-2 alpha in the phosphorylated form apparently was not due to an increase in kinase activity, because there was no change in eIF-2 alpha kinase activity in extracts of liver perfused with medium containing histidinol compared to controls. Instead, the increased phosphorylation of eIF-2 alpha was associated with an inhibition of eIF-2 alpha phosphatase activity. Thus, in contrast to other systems that have been examined, the mechanism involved in the increase in the phosphorylation state of eIF-2 alpha appears to involve an inhibition of eIF-2 alpha phosphatase activity rather than activation of an eIF-2 alpha kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号