共查询到20条相似文献,搜索用时 15 毫秒
1.
The alkaloid harmaline is known to affect various membrane transport systems. This study examines the action of the drug on the short-circuit current (I0) and on the oxidative metabolism (Jr) in the tracheal epithelium of the cow. In this tissue I0 corresponds to the sum of two active transports: Na+ is absorbed and Cl- is secreted by a process based on the activity of the Na+ pump. A well defined relationship has been previously demonstrated between these active transports and the rate of O2 consumption (Schoenenweid et al., 1984 b). Low concentrations of harmaline (10(-6) to 5.10(-6) M) induced a small stimulation of I0. In contrast, larger concentrations (between 5.10(-5) and 10(-3) M) yielded a dose-related inhibition of I0, with an apparent concentration yielding 50% of maximal effect of 7.1.10(-4) M and maximal effect approaching 100%. The action was fully reversible after removal of the drug. The measurements of the fluxes of 22Na and 36Cl revealed that harmaline at a concentration of 8.10(-4) M, which decreased the I0 by 74 +/- 1% (n = 23), diminished both Na+ and Cl- transports, by 81 and 52%, respectively. The time course of I0 decay following the administration of harmaline was made of three components, with half-times of 0.34, 2.2 and 15.2 min. The time course was not appreciably modified when Cl- secretion was abolished with furosemide. Although harmaline, 10(-3)M, inhibited markedly I0, it did not modify Jr significantly. In contrast, when K+ in the incubation solution was omitted, both Ji and Jr were lowered.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
Ouabain on active transepithelial sodium transport in frog skin: studies with microelectrodes
下载免费PDF全文

Studies were done with isolated frog skin to determine the effects of 10(-4) M ouabain on the electrophysiological parameters of outer and inner barriers of the Na-transporting cells. Microelectrodes were used to impale the skins from the outer surface to determine the intracellular voltages (Vsco) under conditions of short-circuiting and under conditions where a voltage clamp was used to vary the transepithelial voltage, VT. From this, the electrical resistances of outer (Rfo) and inner (RI) barriers were estimated. In addition, the driving force for active transepithelial Na transport (ENa = E'1) was estimated from the values of VT when the Vo = 0 mV (Helman and Fisher. 1977. J. Gen. Physiol. 69: 571-604). Studies were done with skins bathed with the usual 2.4 meq/liter [K]i in the inner solution as well as with reduced [K]i of 0.5 and 0 meq/liter. Characteristically, the responses to ouabain could be described by an initial rapid phase (5-10 min) during which time the Ri was increased markedly and the E'1 was decreased from control values. Thereafter, during the slow phases of the response, the resistances of both outer and inner barriers increased continuously and markedly with time leading ultimately to essentially complete inhibition of the short-circuit current. Similar studies were done with skins exposed to 10(-4) M amiloride in the outer solution. Although estimates of Ri could not be obtained under these conditions, the effects on the Vsco and E'1 were similar to those observed for the Na-transporting skins. However, the magnitudes of the effects were less and relatively slower than observed for the Na-transporting skins. The results of these studies were analyzed within the context of a proposed electrical model that takes into account the observation that the magnitude of the voltage at the inner barrier appears to exceed the equilibrium potential for K especially when transepithelial Na transport is inhibited at the apical barrier of the cells. 相似文献
3.
Benzodiazepine binding sites are present in a variety of non-neuronal tissues including the kidney where they are localized to distal nephron segments. It is postulated that renal binding sites are involved in modulating ion transport. This study examined the effects of two benzodiazepines on sodium transport in frog skin epithelium, a model system for sodium transport in renal collecting duct. Treatment of short-circuited frog skin with diazepam (a non-selective benzodiazepine agonist) stimulated amiloride-sensitive short-circuit current, reflecting stimulation of active sodium transport. The diazepam response was equally effective with either serosal or mucosal application of the drug. Maximal stimulation of the current (42 +/- 8%) was achieved with 10 microM diazepam (serosal). Short-circuit current was similarly augmented by serosal or mucosal addition of Ro5-4864, a benzodiazepine agonist with selective activity at peripheral (non-neuronal) receptors. The natriferic response to diazepam was additive to that of vasopressin or cyclic AMP suggesting that the mode of action of benzodiazepines is probably distinct from the cyclic AMP pathway. Thus, frog skin appears to be a useful model to examine the epithelial effects of benzodiazepines. Whether stimulation of sodium transport, however, involves peripheral-type benzodiazepine receptors in this tissue requires further studies. 相似文献
4.
M. Kondo W. E. Finkbeiner J. H. Widdicombe 《In vitro cellular & developmental biology. Animal》1993,29(1):19-24
Summary Tracheal epithelial cells were grown on Nuclepore filters coated with human placental collagen. When grown immersed in medium containing fetal bovine serum, cells displayed an undifferentiated ultrastructure (no cilia and a cell height of ∼ 10 μm). Short-circuit current (Isc) was approximately 1/10 that of the native epithelium. By contrast, when grown in hormonally defined, serum-free medium with an air interface, cells showed Isc equal to or greater than the original tissue, possessed cilia, and had a cell height of ∼ 50 μm. Responses in Isc to mediators were similar to those of the original tissue, but differed from those of dog or human tracheal epithelium. Given the ready availability and low cost of the native tissues, bovine tracheal cultures grown in serum-free medium with an air interface should prove useful in studies of airway epithelial physiology. 相似文献
5.
Bradley J. Stith 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1984,155(1):97-101
Summary The importance of a mucus layer in the transepithelial movement of ions was examined in frogs by altering the surface charge density while measuring22Na and36Cl fluxes. Cationic dyes such as Alcian Blue and Ruthenium Red titrate surface mucus but did not affect22Na or36Cl influx or efflux. Other agents such as lanthanum, Azure II, calcium and arginine titrate the subcorni-fied space mucus yet did not affect22Na movement through this action. Thus, the mucus layer does not play a role in epithelial sodium or chloride movement across frog skin. 相似文献
6.
The aim of this study was to examine the effect of serotonin and epinephrine on ion transport of isolated frog skin. The addition of serotonin after incubation in Ringer solution (RH), bumetanide (BUME), and after initial incubation in amiloride and subsequently in RH, reduced hyperpolarization and did not effect the mechanosensitivity of frog skin. Following incubation of the frog skin with amiloride (AMI), serotonin did not affect the value of hyperpolarization and increased mechanosensitivity. The addition of epinephrine (EPI) on frog skin incubated in RH and AMI did not affect hyperpolarization, but repeated application of this compound after serotonin increased hyperpolarization. After incubation with bumetanide, addition of EPI before and after application of serotonin did not affect the value of the examined parameters of the frog skin. Initial incubation with AMI and later in RH caused a drop in reaction to EPI and no effect on mechanosensitivity. Repeated addition of epinephrine in this group did not affect the reaction value, while it decreased the reaction value during mechanical stimulation. The experimental data presented in this study indicate that serotonin inhibits the sodium ion current. Epinephrine inhibits the chloride ion current, however, after the application of serotonin, EPI stimulates sodium ion transport. 相似文献
7.
J Durand C Lehmann 《Comparative biochemistry and physiology. A, Comparative physiology》1989,94(1):173-178
1. Diphenylamine-2-carboxylate (DPC), added to the mucosal side of the frog skin, increased reversibly the short-circuit current (I0), even in SO2-(4) Ringer. Amiloride blocked this effect. 2. The maximal stimulation was 140% of the control value and the EC50 was 0.26 mM DPC. 3. The stimulatory effect of DPC was additive to that of oxytocin. 4. The dose-response curves for amiloride determined in the absence and in the presence of 1 mM DPC showed an IC50 of 1.0 microM and 0.8 microM amiloride, respectively. 5. Thus DPC, a blocker of Cl- channels in various Cl-transporting epithelia, exerts a stimulatory effect on the amiloride-sensitive Na+ transport in frog skin. 相似文献
8.
J Durand 《Comparative biochemistry and physiology. A, Comparative physiology》1989,94(3):447-453
1. The short-circuit current (I0) across monolayers of bovine tracheal epithelial cells is the sum of Na+ absorption and Cl- secretion. 2. Diphenylamine-2-carboxylate (DPC), added to the mucosal side of the native tissue or monolayers induced a rapid, dose-dependent and fully reversible reduction in I0, which reached zero with 3 mM DPC. 3. The blocking effect of DPC was examined during incubation (1) in standard, (2) in Cl(-)-free and (3) in Na+-free solution. Dose response curves revealed that the IC50 was not altered following ion substitution: it was approximately 0.7 mM DPC. 4. Thus, in bovine tracheal epithelium, DPC was an effective blocking agent of both Na+ and Cl- transport. 相似文献
9.
Characterization of Na-K-ATPase in dog tracheal epithelium: enzymatic and ion transport measurements
C Westenfelder W R Earnest F Al-Bazzaz 《Journal of applied physiology (Bethesda, Md. : 1985)》1980,48(6):1008-1019
The dog tracheal epithelium actively secretes Cl and absorbs Na. The possible dependency of this electrolyte transport on a Mg-dependent, Na-K-activated adenosine triphosphatase (Na-K-ATPase, EC 3.6.1.3) was examined. The characteristics of this enzyme system were investigated using homogenates of tracheal epithelium. The electrical properties and ion fluxes of this epithelium were determined in tissues mounted in Ussing chambers. Addition of Na and K produced an approximate 50% activation of basal Mg-ATPase activity. The apparent Km values for ATP, Na, K, and Mg were 0.4, 12.7, 1.9, and 1.6 mM, respectively. The total specific ATPase activity was 8.1 +/- 0.4 and that of the Mg-ATPase 4.3 +/- 0.1 mumol Pi. mg protein -1.h-1. Addition of ouabain (1 muM) or omission of K from the submucosal bathing solution reduced potential difference (PD) and short-circuit current (SCC) significantly. Relatively low concentrations (0.1 mM or less) of ethacrynic acid, furosemide, or 2,4-dinitrophenol (2,4-DNP) depressed SCC and PD significantly, i.e., at concentrations that were without effect on the Na-K-ATPase activity. Ethacrynic acid inhibited Cl secretion, whereas 2,4-DNP lowered both Na and Cl transport. These data demonstrate that 1) the tracheal mucosa of dogs contains a Na-K-ATPase at relatively high specific activity, 2) this enzyme is likely contained in the basal aspect of this membrane, 3) it appears to be essential for maintenance of Cl secretion, and 4) Cl secretion can be reduced (by ethacrynic acid, furosemide, and 2,4-DNP) without Na-K-ATPase inhibition. 相似文献
10.
Frog skin has been used as a model epithelial sodium-transporting system to study the effect of ethanol on ion transport. Treatment of the outside of frog skin with ethanol decreased the net sodium transport due to inhibition of 22Na+ influx. Ethanol did not alter sodium outflux when bathing the outside of the skin. The inhibition was in proportion to the concentration of ethanol, 0.25 M resulting in 50% inhibition. The chloride permeability of the skin was increased several-fold when the skin was exposed to ethanol in either bathing solution. With 0.4 M ethanol in the inner bathing solution, all the unidirectional fluxes of Na+ and Cl? were increased. The movement of Cl? was evaluated by comparison of Cl? flux with urea flux, since urea is thought to move passively across frog skin via an extracellular (shunt) pathway. Chloride flux was increased to a greater extent than urea flux. These experiments indicate that ethanol affects chloride permeability beyond an increase in extracellular ion flow and independent of its effect on Na+ transport. 相似文献
11.
C S Tang K Peterson-Yantorno M M Civan 《Biology of the cell / under the auspices of the European Cell Biology Organization》1989,66(1-2):183-190
Whole skins and isolated epithelia were bathed with isotonic media (congruent to 244 mOsm) containing sucrose or glucose. The serosal osmolality was intermittently reduced (congruent to 137 mOsm) by removing the nonelectrolyte. Transepithelial and intracellular electrophysiological parameters were monitored while serosal osmolality was changed. Serosal hypotonicity increased the short-circuit current (ISC) and the basolateral conductance, hyperpolarized the apical membrane (psi mc), and increased the intracellular Na+ concentration. The increases in apical conductance and apical Na+ permeability (measured from Goldman fits of the relationship between amiloride-sensitive current and psi mc) were not statistically significant. To verify that the osmotically induced changes in ISC were mediated primarily at the basolateral membrane, the basolateral membrane potential of the experimental area was clamped close to 0 mV by replacing the serosal Na+ with K+ in Cl--free media. The adjoining control area was exposed to serosal Na+. Serosal hypotonicity produced a sustained stimulation of ISC across the control, but not across the adjoining depolarized tissue area. The current results support the concept that hypotonic cell swelling increases Na+ transport across frog skin epithelium by increasing the basolateral K+ permeability, hyperpolarizing the apical membrane, and increasing the electrical driving force for apical Na+ entry. 相似文献
12.
Thomas U. L. Biber Terry L. Mullen John A. DeSimone 《The Journal of membrane biology》1980,52(2):133-139
Summary The effect of addition of FeCl3 to the media bathing the isolated skin ofRana pipiens was studied by measuring short-circuit current, transepithelial potential, and resistance, and by determining the influx and efflux of sodium (J
13
Na
andJ
31
Na
, respectively) and the influx and efflux of chloride (J
13
Cl
andJ
31
Cl
, respectively) across the epithelium. With normal Ringer's solution on both sides of the skin, addition of 10–3
m FeCl3 to the external medium resulted in nearly complete inhibition of active Na transport (J
13
Na
decreased from 1.30±0.14 to 0.10±0.04 eq/cm2 hr (N=8)) and in appearance of active chloride transport in outward direction due to an 80% increase inJ
31
Cl
. Average (J
31
Cl
–J
13
Cl
) obtained from means of 8 skins in 6 consecutive control and last 3 experimental periods was –0.17±0.04 and 0.38±0.05 eq/cm2 hr, respectively. FeCl3 added to external medium also induced substantial net chloride movement in outward direction when external medium contained Na-free choline chloride Ringer's or low ionic strength solution. Under the latter condition net Na movement was virtually eliminated by external FeCl3. After addition of FeCl3 to serosal medium there was delayed inhibition ofJ
13
Na
but no change in chloride fluxes. Immediate and profound changes in Na and Cl transport systems seen after external application of FeCl3 indicate charge effects of Fe3+ on surface of apical cell membranes, possibly close to or in ion channels. 相似文献
13.
Frog skin has been used as a model epithelial sodium-transporting system to study the effect of ethanol on ion transport. Treatment of the outside of frog skin with ethanol decreased the net sodium transport due to inhibition of 22Na+ influx. Ethanol did not alter sodium outflux when bathin the outside of the skin. The inhibition was in proportion to the concentration of ethanol, 0.25 M resulting in 50% inhibition. The chloride permeability of the skin was increased several-fold when the skin was exposed to ethanol in either bathing solution. With 0.4 M ethanol in the inner bathing solution, all the unidirectional fluxes of Na+ and C1- were increased. The movement of C1- was evaluated by comparison of C1- flux with urea flux, since urea is thought to move passively across frog skin via an extracellular (shunt) pathway. Chloride flux was increased to a greater extent than urea flux. These experiments indicate that ethanol affects chloride permeability beyond an increase in extracellular ion flow and independent of its effect of Na+ transport. 相似文献
14.
15.
I Nathanson J H Widdicombe P J Barnes 《Journal of applied physiology (Bethesda, Md. : 1985)》1983,55(6):1844-1848
Under short-circuit conditions, vasoactive intestinal peptide (VIP) did not alter net Na+ movement but selectively stimulated net Cl- secretion across dog tracheal epithelium with a high affinity (Km congruent to 10(-8) M). The increase in Cl- secretion was not different from the rise in short-circuit current (Isc). However, stimulation of Cl- secretion was not maximal, because the addition of isoproterenol (10(-6) M) to VIP-treated tissues further increased the Isc by 54%. The effect of exogenous VIP was not blocked by a combination of atropine, phentolamine, propranolol (10(-5) or 10(-6) M), or tetrodotoxin (10(-6) M). Under open-circuit conditions, VIP caused an increase in the net secretion of Cl- and Na+, but the changes did not reach statistical significance. We conclude that VIP acts directly on receptors on the surface of epithelial cells to stimulate active Cl- secretion. The abundance of VIP nerves in the submucosa suggests that VIP may be important in regulation of fluid movement across the epithelium. 相似文献
16.
T. C. Cox 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1999,169(4-5):344-350
Ion transport measured as short circuit current (Isc) across the skin of larval frogs is activated by amiloride, acetylcholine,
and ATP. In many epithelia, ATP stimulation of Isc involves an increase in intracellular calcium. To define the role of changes
in intracellular calcium in ATP stimulation of Isc in larval frog skin, epithelial cells were loaded with calcium by adding
5 μM ionomycin to a 2 mM calcium apical Ringer's solution. Calcium loading had no observable effect on baseline Isc or on
stimulation by ATP. Minimizing changes in intracellular calcium by loading the cell with the calcium chelator BAPTA also had
no measurable effect on ATP stimulation of Isc. When the apical side was bathed with Ca2+-free Ringer's solution, ionomycin increased Isc up to 15 μA. This increase was partially blocked by 2 mM Ca2+, 2 mM Mg2+, and 10 μM W-7. Other experiments showed that baseline-stimulated and ATP-stimulated Isc were always larger in 2 mM Mg2+ Ringer's compared to 2 mM Ca2+. In dissociated cells bathed in 2 mM Ca2+ Ringer's, ATP had no effect on intracellular calcium as measured by Fluo-LR fluorescence changes. In conclusion, ATP apparently
stimulates Isc without concomitant changes in intracellular calcium. This is consistent with a directly ligand-gated receptor
at the apical membrane with P2X-like characteristics.
Accepted: 21 April 1999 相似文献
17.
1. Frog skin epithelium has basolateral K+ channels that normally define the basolateral membrane potential between 80 and 100 mV. 2. The membrane mentioned also has almost silent chloride channels and a [Na+, K+, 2Cl-] cotransport, the latter probably maintains the high Cl- in the capital (also called syncytium) cells. 3. If the K+ channels are blocked by Ba2+ (or Li+) it is possible to demonstrate potential gating of the chloride channels of the basolateral membrane. 4. When the normal K+ channels are blocked, a potential-dependent K+ conductance slowly emerges. 5. If Li+ is substituted for outside Na+ the skin shows potential oscillations of about 40 mV at a frequency of about six per hour. 6. The anion channel inhibitor Indacrinone stops these oscillations. 7. The role of Cl- and K+ channels in these oscillations is discussed. 8. The transepithelial inward transport of Li+ requires the presence of Na+ and seems to be due to exchange of cellular Li+ against inside Na+ via the basolateral Na+/H+ exchanger. 相似文献
18.
Addison D. Campbell William D. Seward Thomas E. Gilmer Jr. Ernst G. Huf 《Protoplasma》1961,54(1):163-172
Summary An apparatus for the automatic recording of the bioelectric potential of isolated frog skin and of the short-circuit current, which is a measure of active Na+ transport, is described. The equivalence of the uninterrupted short-circuit current and active Na+ transport has been checked. Current and Na+ transport agreed within 2%.The automatic ion transport recorder is particularly suited in studies where the exact time course of the effects of enzyme inhibitors, drugs and other chemicals on skin is of interest. This is illustrated by showing the effects of fluoroacetate, quinone and hydroquinone on spontaneous skin potential and short-circuit current.Attention is called to characteristic transients in the potential records which are probably related to changes in skin permeability to passively moving chloride ions.Supported by Public Health Grant RG 3545. 相似文献
19.
In frog skin, tachykinins stimulate the ion transport, estimated by measuring the short-circuit current (SCC) value, by interacting with NK1-like receptors. In this paper we show that Kassinin (NK2 preferring in mammals) increases the SCC, while Enterokassinin has no effect. Therefore, either 2 Pro residues or 1 Pro and 1 basic amino acid must be present in the part exceeding the C-terminal pentapeptide. Eledoisin (NK3 preferring in mammals) stimulation of SCC is reduced by CP99994 and SR48968 (NK1 and NK2 antagonists) and not affected by SB222200 (NK3 antagonist). None of the three antagonists affects Kassinin stimulation of SCC. 相似文献
20.
The aim of the study was to evaluate the effect of hibernation on electrophysiological parameters of isolated frog skin under control incubation (Ringer solution) and after inhibition of Na+ and CI- transepithelial transport by application of amiloride and bumetanide. The transepithelial electrical potential difference (PD in mV) was measured before and after mechanical stimulation of isolated frog skin. The tissues were mounted in a modified Ussing chamber. The results revealed a reduced PD of frog skin during hibernation. In February, as compared with November, PD of frog skin incubated in Ringer solution decreased by about 50%. Hibernation also affected hyperpolarization (dPD) of frog skin after mechanical stimulation. In November and December, dPD was about 50% and 30% lower, respectively, compared with the subsequent two months of the experiment. The incubation of frog skin with amiloride, a sodium ion channel blocker, resulted in reduced values of all measured electrophysiological parameters irrespective of the phase of hibernation. After application of chloride ion transport inhibitor (bumetanide), the PD in November and December decreased compared with the control incubation by about 80% and 75%, while in January and February by about 40% and 25%, respectively. In January and February dPD increased by four times and three times as compared with November and December. Hibernation reduces net ion flow in isolated frog skin. During the initial period of hibernation the sensitivity of the skin to mechanical stimulation also decreases. Towards the end of hibernation, on the other hand, excitation of mechanosensitive ion channels takes place. 相似文献