首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alkaloid harmaline is known to affect various membrane transport systems. This study examines the action of the drug on the short-circuit current (I0) and on the oxidative metabolism (Jr) in the tracheal epithelium of the cow. In this tissue I0 corresponds to the sum of two active transports: Na+ is absorbed and Cl- is secreted by a process based on the activity of the Na+ pump. A well defined relationship has been previously demonstrated between these active transports and the rate of O2 consumption (Schoenenweid et al., 1984 b). Low concentrations of harmaline (10(-6) to 5.10(-6) M) induced a small stimulation of I0. In contrast, larger concentrations (between 5.10(-5) and 10(-3) M) yielded a dose-related inhibition of I0, with an apparent concentration yielding 50% of maximal effect of 7.1.10(-4) M and maximal effect approaching 100%. The action was fully reversible after removal of the drug. The measurements of the fluxes of 22Na and 36Cl revealed that harmaline at a concentration of 8.10(-4) M, which decreased the I0 by 74 +/- 1% (n = 23), diminished both Na+ and Cl- transports, by 81 and 52%, respectively. The time course of I0 decay following the administration of harmaline was made of three components, with half-times of 0.34, 2.2 and 15.2 min. The time course was not appreciably modified when Cl- secretion was abolished with furosemide. Although harmaline, 10(-3)M, inhibited markedly I0, it did not modify Jr significantly. In contrast, when K+ in the incubation solution was omitted, both Ji and Jr were lowered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of histamine and several H1 and H2 receptor agents on Na+/H+ and Cl-/HCO-3 exchange systems of isolated gastric mucosal surface cells were studied. The cells were acid-loaded by the NH4Cl prepulse technique and the spontaneous Na+- and HCO-3-induced dissipation of the intracellular proton gradient (pHi) was followed using the metachromatic dye acridine orange. Histamine (10(-2-5) M) stimulates HCO-3-induced dissipation of the pHi but has no effect on Na+-induced or spontaneous dissipation. The H1 agonist 2-(2-aminoethyl)pyridine and the H2 agonist dimaprit also have no effect on Na+-induced or spontaneous pHi dissipation. However, both of these agents mimic the effect of histamine on HCO-3-induced dissipation, but only at a higher concentration (10(-3) M). The combination of 2-(2-aminoethyl)pyridine and dimaprit produces a histamine-like effect at lower concentrations (10(-5) and 10(-4) M). The effects of histamine are blocked by either the H1 antagonists diphenhydramine and pyrilamine or the H2 antagonists cimetidine and SKF 93479. The results suggest that the effect of histamine on HCO-3-induced dissipation of a pHi in gastric mucosal surface cells is mediated through a coordinated mechanism involving both H1 and H2 receptor sites.  相似文献   

3.
Histamine inhibited the production of interferon-gamma and interleukin 2 (IL-2) induced in human peripheral blood mononuclear cells by Staphylococcal Enterotoxin A (SEA) but had no effect on the expression of IL-2 receptors. The effects on lymphokine production were dose dependent with maximal inhibition occurring at histamine concentrations of 10(-4) to 10(-6) M. The H2-agonist 4-methylhistamine but not the H1-agonist 2-methylhistamine modulated lymphokine production in a similar manner as histamine. Histamine at concentrations of 10(-3) to 10(-8) M had no inhibitory effect directly on the activity of admixed IL-2 containing medium. The inhibitory effects of histamine could be reversed by the H2-antagonist cimetidine but not by the H1-antagonist diphenhydramine. This indicates that the inhibitory effects of histamine on lymphokine production are mediated through H2-receptors on mononuclear cells.  相似文献   

4.
We have investigated Cl- transport mechanism(s) located in the basolateral membranes of the frog skin epithelium and in particular activation of Cl-/HCO3- exchange following an alkaline load. We found that 87% of the total 36Cl uptake by the epithelial cells occurs across the basolateral membranes (JbCl-) and submitting the epithelium to an alkaline load (HCO3(-)-Ringer solution, pH 8.1) increased JbCl-. Intracellular Cl- activity (aiCl-), measured with ion-sensitive microelectrodes, increased when the Ringer solution bathing the basolateral membranes was changed from a Ringer solution equilibrated in air (pH 7.4) to one containing CO2/HCO3- (pH 7.4). pHi recovery following an alkaline load was dependent on Cl- since it did not occur in serosal Cl(-)-free media, indicating the presence of a Cl(-)-dependent regulatory mechanism. Acid loading of the epithelial cells (5% CO2, HCO3(-)-free Ringer) produced no change in JbCl- but stimulated an amiloride-sensitive 22Na uptake across the basolateral membranes of the epithelium, compatible with an activation of a Na+/H+ exchanger, previously described in this tissue. JbCl- was partially blocked by SITS (5 x 10(-4) mmol/I), niflumic acid (5 x 10(-5) mmol/I), furosemide or bumetanide. Simultaneous addition of furosemide and niflumic acid produced an inhibition of JbCl- which was not different with furosemide alone. Substitution of Na+ by choline had no effect on JbCl- and furosemide did not block the 22Na+ uptake, suggesting that JbCl- is not a Na(+)-dependent process (cotransport). We conclude that a significant Cl- permeability at the basolateral membranes of the epithelial cells is due to the presence of a Cl-/HCO3- exchanger which is essential for the recovery of pHi following an alkaline load.  相似文献   

5.
1. The short-circuit current (I0) across monolayers of bovine tracheal epithelial cells is the sum of Na+ absorption and Cl- secretion. 2. Diphenylamine-2-carboxylate (DPC), added to the mucosal side of the native tissue or monolayers induced a rapid, dose-dependent and fully reversible reduction in I0, which reached zero with 3 mM DPC. 3. The blocking effect of DPC was examined during incubation (1) in standard, (2) in Cl(-)-free and (3) in Na+-free solution. Dose response curves revealed that the IC50 was not altered following ion substitution: it was approximately 0.7 mM DPC. 4. Thus, in bovine tracheal epithelium, DPC was an effective blocking agent of both Na+ and Cl- transport.  相似文献   

6.
Paths of ion transport across canine fetal tracheal epithelium   总被引:1,自引:0,他引:1  
Fluid secretion by the fetal sheep lung is thought to be driven by secretion of Cl- by the pulmonary epithelium. We previously demonstrated Cl- secretion by tracheal epithelium excised from fetal dogs and sheep. In this study we characterized the ion transport pathways across fetal canine tracheal epithelium. The transport of Na+ and Cl- across trachea excised from fetal dogs was evaluated from transepithelial electrical properties and isotope fluxes. Under basal conditions the tissues were characterized by a lumen-negative potential difference (PD) of 11 mV and conductance of 5.2 mS/cm2. The short-circuit current (Isc) was 43 microA/cm2 (1.6 mueq.cm-2.h-1). Basal Na+ flows were symmetrical, but net Na+ absorption (1.1 mueq.cm-2.h-1) could be induced by exposure of the luminal surface to amphotericin B (10(-6) M). Bilateral replacement of Na+ reduced Isc by 85%. Replacement of submucosal Na+ or exposure to submucosal furosemide (10(-4) M) reduced net Cl- secretion by 60-70%. Luminal exposure to indomethacin (10(-6) M) induced a 50% decrease in Isc, whereas isoproterenol (10(-6) M) increased Isc by 120%. The properties of the Cl- secretory pathway across fetal dog trachea are consistent with the model proposed for Cl- secretion across adult dog trachea and other Cl- -secreting tissues (e.g., bullfrog cornea and shark rectal gland). The absence of basal Na+ absorption by fetal dog trachea probably reflects limited apical membrane Na+ permeability.  相似文献   

7.
The purpose of these experiments was to study the temporal relationship between tension development in incubated guinea pig tracheal smooth muscle and changes in tissue levels of cAMP and cGMP, and isotopic Ca. Dose-response studies were performed with increasing concentrations of histamine both in the absence and presence of H1 receptor blockade using 10(-5) M diphenhydramine. The time course of tension development was subsequently determined in the presence of three concentrations of histamine shown to cause 50% (3 X 10(-6) M), 85% (9 X 10(-6) M), and 100% (5 X 10(-5) M) of maximal contraction. Tissue cyclic nucleotide and 45Ca levels were measured 20 sec, 1 min, and 6 min after the onset of contraction. For comparison, the influence of carbachol was also studied. Our findings demonstrate that there were no detectable alterations in tissue cAMP or cGMP levels during the initial phases of contractile change. In contrast, tissue isotopic Ca uptake increased early in histamine-induced contraction and was blocked by the H1 antagonist.  相似文献   

8.
1. The diuretic furosemide, when added to the outside solution at a concentration of 5-10-4 M, increases the electrical potential difference (PD) across the isolated frog skin, but the short-circuit current (Isc) is unchanged. Lower concentrations had no significant effect on these electrical parameters. 2. When SO42- or NO3- are substituted for Cl- in the Ringer's solution furosemide has no effect on the PD or Isc. 3. Simultaneous unidirectional fluxes of Na+ and Cl- show that furosemide (5-10-4 M outside) reduces both the influx and outflux of Cl-, while the Na+ fluxes are not altered. 4. Furosemide (5-10-4 M) on the corium side of the frog skin had no significant effect on either PD, Isc or undirectional fluxes of Cl-. 5. It is suggested that furosemide reduces passive Cl- transfer, possibly by interacting with the Cl-/Cl- exchange diffusion mechanism which has been observed in this tissue. These observations further suggest that perhaps the diuretic action of furosemide may be mediated by such an effect on passive Cl- permeability which is linked to the active Cl- transport mechanism in the renal tubule.  相似文献   

9.
We have studied the movements of H+ from the in vitro frog skin into the outside solution because it has been suggested that the movement of sodium from the outside solution into the skin may result from the forced exchange of Na+ by H+. Our main observations can be summarized as follows: (a) Hydrogen moves from the skin into the outside solution at a rate of 0.04 muequiv-cm-2-h-1 while Na+ influx had a value of 0.49 muequiv-cm-2-h-1. (b) The rate of H+ secretion is not significantly affected by substituting the Na+ in the outside solution by K+ nor by inhibiting Na+ influx with amiloride (5-10(-5) M). (c) Acetazolamide (5-10(-3) M) blocked H+ secretion without altering the potential difference across the skin. (d) The rate of H+ production is not underestimated because it may have been neutralized by HCO3- secreted into the outside solution in exchange for Cl-. Substituting all the Cl- by SO4(2-) in the outside solutions does not result in an increase in the rate of H+ production. (e) The steady-state rate of H+ secretion is not affected by large changes in electrochemical potential gradients for H+. Neither abolishing the potential difference across the skin nor a 10-fold change in H+ concentration in the outside solution affected significantly the steady-state rate of H+ secretion. (f) The H+ secretion was abolished by the metabolic inhibitors dinitrophenol (1-10(-4) M) and Antimycin A (1.5-10(-6) M) which also markedly reduced the potential difference across the skin. Observations (a), (b), and (c) suggest that H+ and Na+ movements across the outer border of the isolated frog skin are not coupled. The ratio of Na+ to H+ movements is very different from unity and Na+ movements can be abolished without any effects on H+ secretion and conversely H+ movements can be abolished without interruption of Na+ uptake. A second conclusion suggested by these results is that the H+ secretion does not result from movement of H+ following its electrochemical potential gradient since that rate of secretion is not affected by marked changes in either potential or [H+]. Furthermore, the effects of metabolic inhibitors suggest that H+ secretion requires the expenditure of energy by the cell.  相似文献   

10.
Transepithelial fluid transport (Jv) and intracellular Na+ and Cl- activities (aNai, aCli) were measured in isolated Necturus gallbladders to establish the contribution of different proposed apical membrane entry mechanisms to transepithelial salt transport. In 10 mM HCO3- Ringer's, Jv was 13.5 +/- 1.1 microliter X cm-2 X h-1, and was significantly reduced by a low bicarbonate medium and by addition of amiloride (10(-3)M) or SITS (0.5 X 10(-3)M) to the mucosal bathing solution. Bumetanide (10(-5)M) was ineffective. Bilateral Na+ removal abolished Jv. The hypothesis of NaCl cotransport was rejected on the basis of the following results, all obtained during mucosal bathing solution changes: during Na+ removal, aNai fell 4.3 times faster than aCli; during Cl- removal, aCli fell 7.5 times faster than aNai; amiloride (10(-3) M) reduced aNai at a rate of 2.4 +/- 0.3 mM/min, whereas aCli was not changed; bumetanide (10(-5) M) had no significant effects on Jv or aCli. The hypothesis of Na-K-Cl cotransport was rejected for the same reasons; in addition, K+ removal from the mucosal bathing solution (with concomitant Ba2+ addition) did not alter aNai or aCli. The average rate of NaCl entry under normal transporting conditions, estimated from Jv, assuming that the transported fluid is an isosmotic NaCl solution, was 22.5 nmol X cm-2 X min-1. Upon sudden cessation of NaCl entry, assuming no cell volume changes, aNai and aCli should fall at an average rate of 4.8 mM/min. To compare this rate with the rates of Na+ and Cl- entry by ion exchange, the Na+ or Cl- concentration in the mucosal bathing solution was reduced rapidly to levels such that electroneutral cation or anion exchange, respectively, should cease. The rate of Na+ or Cl- entry before this maneuver was estimated from the initial rate of fall of the respective intracellular ionic activity upon the mucosal solution substitution. aNai and aCli decreased at initial rates of 3.7 +/- 0.4 and 5.9 +/- 0.8 mM/min, respectively. The rate of fall of aNai upon reduction of external [Na] was not affected by amiloride (10(-3) M), and the rate of fall of aCli upon reduction of external [Cl] was unchanged by SITS (0.5 X 10(-3) M), which indicates that net cation or anion exchange was, in fact, abolished by the changes in Na+ and Cl- gradients, respectively. I conclude that double exchange (Na+/H+ and Cl-/HCO-3) is the predominant or sole mechanism of apical membrane NaCl entry in this epithelium.  相似文献   

11.
Effects of histamine (10(-9)--5 x 10(-5) M) on the phase and tonic contractile activity of capsular smooth muscles of isolated bovine mesentery lymph node were investigated. Dual dose-depended effect of histamine was found. Low concentrations of histamine less than 10(-7) M caused a decrease of contractile activity, whereas higher concentrations of histamine (more than 5 x 10(-7) M) resulted in increase of the phase and tonic contractions. Both H1- and H2-receptors of smooth muscle cells are involved in the response. Much of the relaxing histamine-induced response is produced by the stimulation of the endothelial cells. We believe that activating effect of histamine is due to the excitation of H1-receptors located on the membrane of myocytes, whereas its inhibitory effect occurs in two ways: 1) via excitation of H2-receptors located on the membrane of myocytes; 2) via stimulation of the NO production by the endothelial cells of lymph node sinus.  相似文献   

12.
A Elgavish  D J Pillion  E Meezan 《Life sciences》1989,44(15):1037-1042
[125I]VIP (vasoactive intestinal peptide) bound to apical membranes isolated from the bovine tracheal epithelium with a half maximal inhibition by unlabeled VIP (IC50) of 0.6 x 10(-9)M and binding was reversible. Glucagon did not affect [125I]VIP binding to the membranes. [125I]VIP was covalently cross-linked to tracheal membrane proteins using disuccinimidyl suberate. SDS-polyacrylamide gel electrophoresis of labeled tracheal membranes revealed one major [125I]-receptor complex of Mr = 71,000 to which binding of [125I]VIP was inhibited by 10 microM unlabeled VIP. These results are consistent with the presence of a specific, high-affinity receptor for VIP, with a Mr = 71,000, in apical membrane vesicles isolated from the bovine tracheal epithelium.  相似文献   

13.
A simple derivative of histamine, alpha-methylhistamine i.e. 4-(2-aminopropyl)-imidazole, was shown to potently inhibit the K+-induced release of [3H] histamine from slices of rat cerebral cortex previously incubated in the presence of [3H] histidine. The maximal inhibition elicited by alpha-methylhistamine was of about 60% i.e. similar to that elicited by exogenous histamine. The effect occurred with an EC50 value of 4.3 +/- 1.1 X 10(-9) M about 10 times lower than that of histamine and was reversed by a H3-receptor antagonist. Since alpha-methylhistamine is known to display negligible potency at H1- and H2-receptors, this compound appears to be the first highly potent and selective H3-receptor agonist to be identified.  相似文献   

14.
H+ extrusion by the isolated skins of two amphibia, Rana ridibunda and Bufo bufo, was studied in order to test for the presence of exchange mechanisms of the type Na+/H+ and Cl-/HCO3-, which have been described in several epithelial structures. The preparations were mounted in chambers of the Ussing type, so that the short-circuit current could be used as a function of Na+ transport and the pH-stat techinique was utilize to determine the rates of H+ extrusion under different experimental conditions. The conditions were either the withdrawal of the ions intervening the mentioned exchanges (Cl- or Na+), or the addition of drugs with well-known effects on Na+ up-take and transport (antidiuretic hormone and amiloride). In the frog skin, H+ excretion was detected in solutions containing either Cl- or SO4-2-, with identical rates. Again, Na+ substitution by Mg-2+ had no effect on H+ excretion rates, neither did the suppression of Na+ influx by amiloride or its stimulation by antidiuretic hormone. These experiments were repeated with similar results in gland-free preparations of the epidermis of frog skin separated from the corion by the action of collagenase. Experiments in toad skin that H+ excretion could not be detected whan Cl- was present in the outer medium, but became apparent if an impermant anion, SO4-2-, was used. This observation is compatible with the existence of an exchange mechanism of the type Cl-/HCO3-. Secondly, in these preparations H+ extrusion increased after stimulation with antidiuretic hormone and decreased when amiloride was used or when Na+ was substituted by Mg+, suggesting that a least a fraction of the total H+ efflux is linked to Na+ influx. In the isolated frog skin this mechanism does not seem to be operative.  相似文献   

15.
Transepithelial fluid transport was measured gravimetrically in rabbit gallbladder (and net Na+ transport was calculated from it), at 27 degrees C, in HCO(3-)-free bathing media containing 10(-4) M acetazolamide. Whereas luminal 10(-4) M bumetanide or 10(-4) M 4-acetamido-4'-iso-thiocyanostilbene-2,2'-disulfonate (SITS) did not affect fluid absorption, 25 mM SCN- abolished it; hydrochlorothiazide (HCTZ) in the luminal medium reduced fluid absorption from 28.3 +/- 1.6 (n = 21) to 8.6 +/- 1.6 microliters cm-2 hr-1 (n = 10), i.e., to about 30%. This maximum effect was already obtained at 10(-3) M concentration; the apparent IC50 was about 2 x 10(-4) M. The residual fluid absorption, again insensitive to SITS, was completely inhibited by SCN- or bumetanide. Cl- influx at the luminal border of the epithelium, measured under the same conditions and corrected for the extracellular space and paracellular influx, proved insensitive to 10(-4) M bumetanide, but was slowly inhibited by 10(-3) M HCTZ, with maximum inhibition (about 54%) reached after a 10-min treatment; it subsequently rose again, in spite of the presence of HCTZ. However, if the epithelium, treated with HCTZ, was exposed to 10(-4) M bumetanide during the measuring time (45 sec), inhibition was completed and the subsequent rise of Cl- influx eliminated. Intracellular Cl- accumulation with respect to the predicted activity value at equilibrium decreased significantly upon exposure to 10(-3) M HCTZ, reached a minimum within 15-30 min of treatment, then rose again significantly at 60 min. Simultaneous exposure to HCTZ and bumetanide decreased the accumulation to a significantly larger extent as compared to HCTZ alone, already in 15 min, and impeded the subsequent rise. Intracellular K+ activity rose significantly within 30 min treatment with HCTZ; the increase proved bumetanide dependent. The results obtained show that Na(+)-Cl- symport, previously detected under control conditions, is the HCTZ-sensitive type; its inhibition elicits bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport. Thus, the three forms of neutral Na(+)-Cl(-)-coupled transport so far evidenced in epithelia, Na+/H+, Cl-/HCO3- double exchange (in the presence of exogenous bicarbonate), HCTZ-sensitive Na(+)-Cl- symport and bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport, are all present in the apical membrane of rabbit gallbladder.  相似文献   

16.
Bioelectric properties and ion transport of excised human segmental/subsegmental bronchi were measured in specimens from 40 patients. Transepithelial electric potential difference (PD), short-circuit current (Isc), and conductance (G), averaged 5.8 mV (lumen negative), 51 microA X cm-2, and 9 mS X cm-2, respectively. Na+ was absorbed from lumen to interstitium under open- and short-circuit conditions. Cl- flows were symmetrical under short-circuit conditions. Isc was abolished by 10(-4) M ouabain. Amiloride inhibited Isc (the concentration necessary to achieve 50% of the maximal effect = 7 X 10(-7) M) and abolished net Na+ transport. PD and Isc were not reduced to zero by amiloride because a net Cl- secretion was induced that reflected a reduction in Cl- flow in the absorptive direction (Jm----sCl-). Acetylcholine (10(-4) M) induced an electrically silent, matched flow of Na+ (1.7 mueq X cm-1 X h-1) and Cl- (1.9 mueq X cm-12 X h-1) toward the lumen. This response was blocked by atropine. Phenylephrine (10(-5) M) did not affect bioelectric properties or unidirectional ion flows, whereas isoproterenol (10(-5) M) induced a small increase in Isc (10%) without changing net ion flows significantly. We conclude that 1) Na+ absorption is the major active ion transport across excised human bronchi, 2) Na+ absorption is both amiloride and ouabain sensitive, 3) Cl- secretion can be induced by inhibition of the entry of luminal Na+ into the epithelia, and 4) cholinergic more than adrenergic agents modulate basal ion flow, probably by affecting gland output.  相似文献   

17.
Under short-circuit conditions, vasoactive intestinal peptide (VIP) did not alter net Na+ movement but selectively stimulated net Cl- secretion across dog tracheal epithelium with a high affinity (Km congruent to 10(-8) M). The increase in Cl- secretion was not different from the rise in short-circuit current (Isc). However, stimulation of Cl- secretion was not maximal, because the addition of isoproterenol (10(-6) M) to VIP-treated tissues further increased the Isc by 54%. The effect of exogenous VIP was not blocked by a combination of atropine, phentolamine, propranolol (10(-5) or 10(-6) M), or tetrodotoxin (10(-6) M). Under open-circuit conditions, VIP caused an increase in the net secretion of Cl- and Na+, but the changes did not reach statistical significance. We conclude that VIP acts directly on receptors on the surface of epithelial cells to stimulate active Cl- secretion. The abundance of VIP nerves in the submucosa suggests that VIP may be important in regulation of fluid movement across the epithelium.  相似文献   

18.
Binding of [3H]ouabain by the dog's tracheal epithelium shows a nonspecific component depending linearly on ouabain concentration, and a specific saturable component with a Km of 10(-7) M. Control experiments showed that the tracer taken up was not trapped within the extracellular space nor bound to tissue collagen. Inhibition of the saturable uptake by high K, metabolic inhibition, low Na, and low temperature indicated that binding was to Na/K ATPase. One-sided exposures of tissue sheets to tracer showed that the submucosal side took up 10 X as much tracer as the luminal. Autoradiography localized tracer uptake under all conditions to the cells' basolateral membranes.  相似文献   

19.
The effects of histamine on [3H]inositol phosphate ([3H]IP) accumulation was examined in the presence of lithium in [3H]inositol-prelabelled human umbilical vein endothelial cells. Histamine stimulated total [3H]IP formation in a dose-dependent manner with a half-maximal value (EC50) of around 1-2 X 10(-6) M. Mepyramine, but not cimetidine, completely abolished the histamine response indicating that activation of phosphoinositide hydrolysis is mediated via H1-receptors. These data are the first to suggest that activation of inositol lipid hydrolysis is the underlying transmembrane signalling mechanism histamine H1-receptors employ in mediating various endothelial cell functions.  相似文献   

20.
The possible existence of transepithelial bicarbonate transport across the isolated bovine ciliary body was investigated by employing a chamber that allows for the measurement of unidirectional, radiolabeled fluxes of CO2 + HCO. No net flux of HCO was detected. However, acetazolamide (0.1 mM) reduced the simultaneously measured short-circuit current (I(sc)). In other experiments in which (36)Cl- was used, a net Cl- flux of 1.12 microeq. h(-1). cm(-2) (30 microA/cm(2)) in the blood-to-aqueous direction was detected. Acetazolamide, as well as removal of HCO from the aqueous bathing solution, inhibited the net Cl- flux and I(sc). Because such removal should increase HCO diffusion toward the aqueous compartment and increase the I(sc), this paradoxical effect could result from cell acidification and partial closure of Cl- channels. The acetazolamide effect on Cl- fluxes can be explained by a reduction of cellular H+ and HCO (generated from metabolic CO2 production), which exchange with Na+ and Cl- via Na+/H+ and Cl-/HCO exchangers, contributing to the net Cl- transport. The fact that the net Cl- flux is about three times larger than the I(sc) is explained with a vectorial model in which there is a secretion of Na+ and K+ into the aqueous humor that partially subtracts from the net Cl- flux. These transport characteristics of the bovine ciliary epithelium suggest how acetazolamide reduces intraocular pressure in the absence of HCO transport as a driving force for fluid secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号