首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This study investigated the expression pattern of genes encoding for a basic PR-1 protein, a basic beta-1,3-glucanase, a peroxidase, and a sesquiterpene cyclase involved in defense responses in three pepper cultivars with different levels of resistance to Phytophthora capsici. All genes were up-regulated in infected stems of the pepper cultivars, with expression being detected 8h post-inoculation. mRNA levels of these genes increased markedly by 24h post-inoculation, and maximal induction levels were observed for the PR-1 and sesquiterpene cyclase genes. PR-1, peroxidase, and sesquiterpene genes were always expressed at higher levels in resistant cultivars than in the susceptible cultivar, although up-regulation was observed in both, suggesting that the differences between these pepper genotypes in susceptibility and resistance are a matter of the timing and magnitude of the defense response.  相似文献   

3.
 The coding region of the eighth largest segment (S8) of the rice dwarf virus (RDV) was obtained from a RDV Fujian isolate. It was then cloned into pTrcHisA for expression in E. coli and into vector pE3 for plant transformation. By using callus derived from mature rice embryos as the target tissue, we obtained regenerated rice plants after bombardment of the former with plasmid pE3R8 containing the RDV S8 gene and the marker gene neomycin phosphotransferase (NPT II). Southern blotting confirmed the integration of the RDV S8 gene into the rice genome. The expression of the outer coat protein in both E. coli and rice plants was confirmed by western blotting. The recovery of transgenic rice plants expressing S8 gene is an important step towards studying the function of the RDV genes and obtaining RDV-resistant rice plants. Received: 1 March 1996 / Accepted: 2 August 1996  相似文献   

4.
Trichoderma species produce trichothecenes, most notably trichodermin and harzianum A (HA), by a biosynthetic pathway in which several of the involved proteins have significant differences in functionality compared to their Fusarium orthologues. In addition, the genes encoding these proteins show a genomic organization differing from that of the Fusarium tri clusters. Here we describe the isolation of Trichoderma arundinaceum IBT 40837 transformants which have a disrupted or silenced tri4 gene, a gene encoding a cytochrome P450 monooxygenase that oxygenates trichodiene to give rise to isotrichodiol, and the effect of tri4 gene disruption and silencing on the expression of other tri genes. Our results indicate that the tri4 gene disruption resulted in a reduced antifungal activity against Botrytis cinerea and Rhizoctonia solani and also in a reduced ability to induce the expression of tomato plant defense-related genes belonging to the salicylic acid (SA) and jasmonate (JA) pathways against B. cinerea, in comparison to the wild-type strain, indicating that HA plays an important function in the sensitization of Trichoderma-pretreated plants against this fungal pathogen. Additionally, the effect of the interaction of T. arundinaceum with B. cinerea or R. solani and with tomato seedlings on the expressions of the tri genes was studied.  相似文献   

5.
Wheat dwarf virus (WDV) is a geminivirus that infects monocotyledonous plants. To exploit the potential of WDV as a replicative gene vector, we developed a transient replication and expression system based on the transfection of protoplasts derived from Triticum monococcum suspension culture cells. Cloned genomic copies of various WDV isolates as well as mutants constructed in vitro were introduced into the protoplasts and assayed for their ability to replicate. As a result, regions of the WDV genome necessary or dispensable for the viral DNA replication could be defined. In addition, the gene encoding the viral capsid protein was replaced by three different bacterial marker genes, neomycin phosphotransferase, chloramphenicol acetyltransferase, and beta-galactosidase. The beta-galactosidase gene doubled the size of the WDV genome. The replication of the recombinant WDV genomes and the expression of these genes were monitored in suspension culture cells of T. monococcum. The potential of replicative expression vectors based on the WDV genome is discussed.  相似文献   

6.
7.
8.
Zhu S  Gao F  Cao X  Chen M  Ye G  Wei C  Li Y 《Plant physiology》2005,139(4):1935-1945
The mechanisms of viral diseases are a major focus of biology. Despite intensive investigations, how a plant virus interacts with host factors to cause diseases remains poorly understood. The Rice dwarf virus (RDV), a member of the genus Phytoreovirus, causes dwarfed growth phenotypes in infected rice (Oryza sativa) plants. The outer capsid protein P2 is essential during RDV infection of insects and thus influences transmission of RDV by the insect vector. However, its role during RDV infection within the rice host is unknown. By yeast two-hybrid and coimmunoprecipitation assays, we report that P2 of RDV interacts with ent-kaurene oxidases, which play a key role in the biosynthesis of plant growth hormones gibberellins, in infected plants. Furthermore, the expression of ent-kaurene oxidases was reduced in the infected plants. The level of endogenous GA1 (a major active gibberellin in rice vegetative tissues) in the RDV-infected plants was lower than that in healthy plants. Exogenous application of GA3 to RDV-infected rice plants restored the normal growth phenotypes. These results provide evidence that the P2 protein of RDV interferes with the function of a cellular factor, through direct physical interactions, that is important for the biosynthesis of a growth hormone leading to symptom expression. In addition, the interaction between P2 and rice ent-kaurene oxidase-like proteins may decrease phytoalexin biosynthesis and make plants more competent for virus replication. Moreover, P2 may provide a novel tool to investigate the regulation of GA metabolism for plant growth and development.  相似文献   

9.
10.
Hu  Kui  Qiu  Lin  Ding  Wenbing  He  Hualiang  Li  Youzhi 《Molecular biology reports》2019,46(4):3945-3953
Molecular Biology Reports - The Southern rice black-streaked dwarf virus (SRBSDV), a novel Fijivirus, poses a major threat to rice production in East Asia. Analysis of the gene expression of...  相似文献   

11.
Graham MY 《Plant physiology》2005,139(4):1784-1794
Lactofen belongs to the diphenylether class of herbicides, which targets protoporphyrinogen oxidase, which in turn causes singlet oxygen generation. In tolerant plants like soybean (Glycine max), the chemical nonetheless causes necrotic patches called bronzing in contact areas. Here it is shown that such bronzing is accompanied by cell death, which was quantified from digital microscopic images using Assess Software. Cellular autofluorescence accompanied cell death, and a homolog of the cell death marker gene, Hsr203j, was induced by lactofen in treated soybean tissues. Thus, this form of chemically induced cell death shares some hallmarks of certain types of programmed cell death. In addition to the cell death phenotype, lactofen caused enhanced expressions of chalcone synthase and chalcone reductase genes, mainly in the exposed and immediately adjacent (proximal) cells. Furthermore, isoflavone synthase genes, which are wound inducible in soybean, were up-regulated by lactofen in both proximal and distal cell zones in minimally wounded cotyledons and further enhanced in wounded tissues. Moreover, if the wall glucan elicitor from Phytophthora sojae was present during lactofen treatment, the induction of isoflavone synthase was even more rapid. These results are consistent with the fact that lactofen triggers massive isoflavone accumulations and activates the capacity for glyceollin elicitation competency. In addition, lactofen induces late expression of a selective set of pathogenesis-related (PR) protein genes, including PR-1a, PR-5, and PR-10, mainly in treated proximal tissues. These various results are discussed in the context of singlet oxygen-induced responses and lactofen's potential as a disease resistance-inducing agent.  相似文献   

12.
13.
14.
15.
Rice dwarf virus (RDV) is a double-shelled icosahedral virus.Using electron cryomicroscopy and computer reconstruction techniques, we have determined a 3.3 nm resolution three-dimensional (3D) structure of the inner shell capsid without the outer shell and viral RNA. The results show that the inner shell is a thin, densely packed, smooth structure, which provides a scaffold for the full virus. A total of 120 copies of the major inner shell capsid protein P3 forms 60 dimers arranged in a T=1 icosahedral lattice. A close examination on the subunit packing of the T=1 inner core P3 with that of the T=13l outer shell P8 indicated that P8 trimers connect with P3 through completely non-equivalent, yet highly specific, intermolecular interactions.  相似文献   

16.
The nonstructural Pns9 protein of Rice gall dwarf virus (RGDV) accumulates in viroplasm inclusions, which are structures that appear to play an important role in viral morphogenesis and are commonly found in host cells infected by viruses in the family Reoviridae. An RNA interference construct was designed to target the gene for Pns9 of RGDV, namely Trigger_G9. The resultant transgenic plants accumulated short interfering RNAs specific for the construct. All progenies from self-fertilized transgenic plants had strong and heritable resistance to RGDV infection and did not allow the propagation of RGDV. By contrast, our transgenic plants remained susceptible to Rice dwarf virus, another phytoreovirus. There were no significant changes in the morphology of our transgenic plants compared with non-inoculated wild-type rice plants, suggesting that genes critical for the growth of rice plants were unaffected. Our results demonstrate that the resistance to RGDV of our transgenic rice plants is not due to resistance to the vector insects but to specific inhibition of RGDV replication and that the designed trigger sequence is functioning normally. Thus, our strategy to target a gene for viroplasm matrix protein should be applicable to plant viruses that belong to the family Reoviridae.  相似文献   

17.
Rice dwarf virus (RDV), with 12 double-stranded RNA (dsRNA) genome segments (S1 to S12), replicates in and is transmitted by vector insects. The RDV-plant host-vector insect system allows us to examine the evolution, adaptation, and population genetics of a plant virus. We compared the effects of long-term maintenance of RDV on population structures in its two hosts. The maintenance of RDV in rice plants for several years resulted in gradual accumulation of nonsense mutations in S2 and S10, absence of expression of the encoded proteins, and complete loss of transmissibility. RDV maintained in cultured insect cells for 6 years retained an intact protein-encoding genome. Thus, the structural P2 protein encoded by S2 and the nonstructural Pns10 protein encoded by S10 of RDV are subject to different selective pressures in the two hosts, and mutations accumulating in the host plant are detrimental in vector insects. However, one round of propagation in insect cells or individuals purged the populations of RDV that had accumulated deleterious mutations in host plants, with exclusive survival of fully competent RDV. Our results suggest that during the course of evolution, an ancestral form of RDV, of insect virus origin, might have acquired the ability to replicate in a host plant, given its reproducible mutations in the host plant that abolish vector transmissibility and viability in nature.  相似文献   

18.
Although 109 WRKY genes have been identified in the rice genome, the functions of most are unknown. Here, we show that OsWRKY13 plays a pivotal role in rice disease resistance. Overexpression of OsWRKY13 can enhance rice resistance to bacterial blight and fungal blast, two of the most devastating diseases of rice worldwide, at both the seedling and adult stages, and shows no influence on the fertility. This overexpression was accompanied by the activation of salicylic acid (SA) synthesis-related genes and SA-responsive genes and the suppression of jasmonic acid (JA) synthesis-related genes and JA-responsive genes. OsWRKY13 bound to the promoters of its own and at least three other genes in SA- and JA-dependent signaling pathways. Its DNA-binding activity was influenced by pathogen infection. These results suggest that OsWRKY13, as an activator of the SA-dependent pathway and a suppressor of JA-dependent pathways, mediates rice resistance by directly or indirectly regulating the expression of a subset of genes acting both upstream and downstream of SA and JA. Furthermore, OsWRKY13 will provide a transgenic tool for engineering wider-spectrum and whole-growth-stage resistance rice in breeding programs.  相似文献   

19.
The hypersensitive response and the induction of cell death in plants   总被引:11,自引:0,他引:11  
The hypersensitive response, or HR, is a form of cell death often associated with plant resistance to pathogen infection. Reactive oxygen intermediates and ion fluxes are proximal responses probably required for the HR. Apoptosis as defined in animal systems is, thus far, not a strict paradigm for the HR. The diversity observed in plant cell death morphologies suggests that there may be multiple pathways through which the HR can be triggered. Signals from pathogens appear to interfere with these pathways. HR may play in plants the same role as certain programmed cell deaths in animals with respect to restricting pathogen growth. In addition, the HR could regulate the defense responses of the plant in both local and distant tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号