首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tightly linked markers for the neurofibromatosis type 1 gene   总被引:15,自引:0,他引:15  
Relationships among genetic markers in the region of the neurofibromatosis type 1 (NF1) gene on chromosome 17 were investigated by linkage studies in a large sample set of affected families and in a panel of 58 normal families. A new marker, pHHH202 (D17S33), was included along with two markers known to be closely linked to NF. The maximum likelihood estimate of the recombination rate between the pHHH202 and NF1 loci was found to be O. Multilocus analysis suggested the following marker order: pA10-41-(p3-6, pHHH202); the NF1 gene fell with equal likelihood between either pA10-41-p3-6 or p3-6-pHHH202. The odds against NF1 being outside this cluster of tightly linked markers were greater than 15:1.  相似文献   

2.
A centromere-based genetic map of the short arm of human chromosome 6   总被引:2,自引:0,他引:2  
A genetic map of the short arm of chromosomes 6 (6p) has been constructed with 20 genetic markers that define 16 loci, including a locus at the centromere. The 40 CEPH families and, for 4 loci, 13 additional Utah families were genotyped. All 16 loci form a single linkage group extending from near the telomeric region to the centromere, covering 159 cM (Haldane) on the female map and 94 cM on the male map. Sex differences in recombination frequencies are noted for the 6p map, with an excess occurring in males at the distal end. The genetic order of loci is consistent with their physical localization on 6p. Proximal to the three most distal loci on the map, markers are especially dense, providing an extended region on 6p useful for localizing genes of interest.  相似文献   

3.
Genotype data from the Illumina Linkage III SNP panel (n = 4,720 SNPs) and the Affymetrix 10 k mapping array (n = 11,120 SNPs) were used to test the effects of linkage disequilibrium (LD) between SNPs in a linkage analysis in the Collaborative Study on the Genetics of Alcoholism pedigree collection (143 pedigrees; 1,614 individuals). The average r2 between adjacent markers across the genetic map was 0.099 +/- 0.003 in the Illumina III panel and 0.17 +/- 0.003 in the Affymetrix 10 k array. In order to determine the effect of LD between marker loci in a nonparametric multipoint linkage analysis, markers in strong LD with another marker (r2 > 0.40) were removed (n = 471 loci in the Illumina panel; n = 1,804 loci in the Affymetrix panel) and the linkage analysis results were compared to the results using the entire marker sets. In all analyses using the ALDX1 phenotype, 8 linkage regions on 5 chromosomes (2, 7, 10, 11, X) were detected (peak markers p < 0.01), and the Illumina panel detected an additional region on chromosome 6. Analysis of the same pedigree set and ALDX1 phenotype using short tandem repeat markers (STRs) resulted in 3 linkage regions on 3 chromosomes (peak markers p < 0.01). These results suggest that in this pedigree set, LD between loci with spacing similar to the SNP panels tested may not significantly affect the overall detection of linkage regions in a genome scan. Moreover, since the data quality and information content are greatly improved in the SNP panels over STR genotyping methods, new linkage regions may be identified due to higher information content and data quality in a dense SNP linkage panel.  相似文献   

4.
The gene for Batten disease (CLN3) has been mapped to human chromosome 16 by demonstration of linkage to the haptoglobin locus, and its localization has been further refined using a panel of DNA markers. The aim of this work was to refine the genetic and physical mapping of this disease locus. Genetic linkage analysis was carried out in a larger group of families by using markers for five linked loci. Multipoint analysis indicated a most likely location for CLN3 in the interval between D16S67 and D16S148 (Z = 12.5). Physical mapping of linked markers was carried out using somatic cell hybrid analysis and in situ hybridization. A mouse/human hybrid cell panel containing various segments of chromosome 16 has been constructed. The relative order and physical location of breakpoints in the proximal portion of 16p were determined. Physical mapping in this panel of the markers for the loci flanking CLN3 positioned them to the bands 16p12.1----16p12.3. Fluorescent in situ hybridization of metaphase chromosomes by using these markers positioned them to the region 16p11.2-16p12.1. These results localize CLN3 to an interval of about 2 cM in the region 16p12.  相似文献   

5.
J Ahn  T W Won  A Zia  H Reutter  D E Kaplan  R Sparks  J R Gruen 《Genomics》2001,78(1-2):19-29
A gene for reading disability has been localized by nonparametric linkage to 6p21.3-p22 in several published reports. However, the lack of an uninterrupted genomic clone contig has made it difficult to determine accurate intermarker distances, precise marker order, and genetic boundaries and hinders direct comparisons of linkage. The search and discovery of the hemochromatosis gene (HFE) led to the creation of a bacterial artificial chromosome (BAC) and P-1 derived artificial chromosome (PAC) contig that extended physical maps 4 Mb from the MHC toward pter and localized new markers in that region [10-12]. Using this contig, we localized 124 sequence tagged sites, expressed sequence tags, and short tandem repeats including most of the markers in linkage with reading disability phenotypes, succinic semialdehyde dehydrogenase, GPLD1, prolactin, and 18 uncharacterized genes. This new contig joins and extends previously published physical maps to span the entire chromosome 6 reading disability genetic locus. Physical mapping data from the complete contig show overlap of the published linkage peaks for reading disability, provide accurate intermarker distances and order, and offer resources for generating additional markers and candidate genes for high resolution genetic studies in this region.  相似文献   

6.
Linkage analysis was performed in 19 families segregating for the Wiskott-Aldrich syndrome (WAS) and in 1 family with X-linked thrombocytopenia using nine polymorphic DNA markers spanning the interval DXS7-DXS14. The results confirm close linkage of WAS to the DXS7, TIMP, OATL1, DXS255, DXS146, and DXS14 loci and reveal three additional marker loci, DXS426, SYP, and TFE3, to be closely linked to WAS. The linkage data are also consistent with the localization of X-linked thrombocytopenia to the same chromosomal region as WAS and support localization of the WAS gene between the TIMP and DXS 146 loci. However, the data were insufficient for positioning these disease genes with respect to the four marker loci that map within this latter interval. Analysis of recombination events between the marker loci place the TFE3 gene distal to DXS255 and favor the marker loci order Xpter-DXS7-(DXS426, TIMP)-(OATL1, SYP, TFE3)-DXS255-DXS146-DXS14.  相似文献   

7.
We have performed linkage analysis in a large French-Acadian kindred segregating one form of autosomal dominant Charcot-Marie-Tooth disease (CMTD) (type IA) using 17 polymorphic DNA markers spanning human chromosome 17 and demonstrate linkage to several markers in the pericentromeric region, including DNA probes pA10-41, EW301, S12-30, pTH17.19, c11-2B, and p11-2c11.5. Linkage of markers pA10-41 and EW301 to CMTD type IA has been reported elsewhere. Four new markers, 1516, 1517, 1541, and LL101, which map to chromosome 17 have been identified. The marker 1516 appears to be closely linked to the CMTD locus on chromosome 17 as demonstrated by a maximum lod score of 3.42 at theta (recombination fraction) = 0. This marker has been mapped to 17p11.2 using a somatic cell hybrid constructed from a patient with Smith-Magenis syndrome [46,XY, del(17)(p11.2p11.2)]. A lod score of 6.16 has been obtained by multipoint linkage analysis with 1516 and two markers from 17q11.2, pTH17.19, and c11-2B. The markers 1517 and 1541 have been mapped to 17p12-17q11.2 and demonstrate maximum lod scores of 2.35 and 0.63 at recombination values of .1 and .2, respectively. The marker LL101 has been mapped to 17p13.105-17p13.100 and demonstrates a maximum lod score of 1.56 at a recombination value of .1. Our study confirms the localization of CMTD type IA to the pericentromeric region of chromosome 17.  相似文献   

8.
Twelve loci form a continuous linkage map for human chromosome 18   总被引:7,自引:0,他引:7  
We have constructed a primary genetic map of human chromosome 18 consisting of 11 DNA markers and one serological marker (JK). Two of these loci define highly polymorphic VNTR systems. The markers define a continuous genetic linkage map of 97 cM in males and 205 cM in females; female genetic distances in a panel of 59 three-generation families were consistently about twice those observed in males. The high odds in support of the linear order of the markers on this recombination map, and the extent of coverage of chromosome 18, indicate that this map will permit efficient linkage studies of human genetic diseases that may be segregating on chromosome 18 and will provide anchor points for development of high-resolution maps for this chromosome.  相似文献   

9.
Eight chromosome 6p markers (MUT, D6S4, D6S5, D6S19, D6S29, PIM, HLA, and F13A) were regionally mapped using somatic cell hybrid deletion cell lines that retained different regions of chromosome 6p. New restriction fragment length polymorphisms were identified at the D6S5 and PIM loci using newly isolated genomic clones at these loci. Genetic linkage among the eight loci was determined using the 40 CEPH reference families. Linkage analyses showed that these loci are in one linkage group spanning 48 cM in males and 128 cM in females. Using both the deletion mapping data and multipoint linkage analyses, chromosomal order for these loci was determined as centromere-(MUT, D6S4)-(D6S5, D6S19)-(D6S29, PIM)-HLA-F13-A-telomere. Analyses of sex-specific recombination frequencies revealed a higher rate of recombination in females in the region between D6S4 and D6S29, while the recombination rate in males was higher for the interval between D6S29 and the HLA loci.  相似文献   

10.
Utilizing the CEPH reference panel and genotypic data for 53 markers, we have constructed a 20-locus multipoint genetic map of human chromosome 4. New RFLPs are reported for four loci. The map integrates a high-resolution genetic map of 4p16 into a continuous map extending to 4q31 and an unlinked cluster of three loci at 4q35. The 20 linked markers form a continuous linkage group of 152 cM in males and 202 cM in females. Likely genetic locations are provided for 25 polymorphic anonymous sequences and 28 gene-specific RFLPs. The map was constructed employing the LINKAGE and CRIMAP computational methodologies to build the multipoint map via a stepwise algorithm. A detailed 10-point map of the 4p16 region constructed from the CEPH panel provides evidence for heterogeneity in the linkage maps constructed from families segregating for Huntington disease (HD). It additionally provides evidence for position-specific recombination frequencies in the telomeric region of 4p.  相似文献   

11.
A linkage group of five DNA markers on human chromosome 10   总被引:3,自引:0,他引:3  
Five chromosome 10 DNA markers (D10S1, D10S3, D10S4, D10S5, and RBP3) were typed in five large pedigrees with multiple endocrine neoplasia type 2A (MEN-2A) and in five non-MEN-2A pedigrees. Linkage analyses showed that these loci and the locus for MEN-2A (MEN2A) are in one linkage group spanning at least 70 cM. The order of the marker loci is RBP3-D10S5-D10S3-D10S1-D10S4, with interlocus recombination frequencies of 7, 13-19, 19, and 19%, respectively, all on the same side of MEN2A. Analyses of sex-specific recombination frequencies indicated no significant differences between males and females for any of the map intervals studied. Previous localization of D10S5 and RBP3 to the proximal region of the long arm and the pericentric region, respectively, comparison of results with other studies, and our preliminary results with other chromosome 10 markers suggest that the D10S4 end of the map extends into the long arm. Our linkage map has been constructed using only two- and three-locus analyses. It will be possible to combine our results with those of other groups to construct a more detailed and accurate genetic map of chromosome 10.  相似文献   

12.
A resource family of pigs has been constructed by using a boar of Göttingen miniature pig and two sows of Meishan pig as parents. In the construction of the family, two F1 males and 18 F1 females were intercrossed to generate 143 F2 offspring. The members of the family were genotyped using 243 genetic markers including 26 markers developed in our laboratory in order to generate a linkage map of markers for use in detecting quantitative trait loci (QTLs) in the family. The markers consisted of 237 microsatellites, five PRE-1 markers, and one RFLP marker. The linkage map was revealed to cover all 18 autosomes and the X chromosome; and the total length of the sex-averaged linkage map was calculated to be 2561 ·9 c m . Four out of the 26 markers developed in our laboratory ex-ended the current linkage map at the termini of chromosomes 1p, 5p, 11p, and Xq. The linkage maps of all the chromosomes except for chromosome 1 were found to be longer in females than in males. Concerning chromosome 1, the length of the linkage map showed no difference between females and males, which was attributed to low recombination rates between markers localized in the centromeric region in females. The average ratio of female-to-male recombination was calculated to be 1 ·55.  相似文献   

13.
To facilitate the identification of the gene responsible for Clouston hidrotic ectodermal dysplasia (HED), we used a chromosome 13-specific radiation hybrid panel to map 54 loci in the HED candidate region. The marker retention data were analyzed using RHMAP version 3. The 54 markers have an average retention frequency of 31.6% with decreasing retention as a function of distance from the centromere. Two-point analysis identified three linkage groups with a threshold lod score of 4.00; one linkage group consisted of 49 loci including the centromeric marker D13Z1 and the telomeric flanking marker for the HED candidate region D13S143. Assuming a centromeric retention model, multipoint maximum likelihood analysis of these 49 loci except D13Z1 provided a 1000:1 framework map ordering 29 loci with 21 unique map positions and approximately 2000 times more likely than the next order. Loci that could not be ordered with this level of support were positioned within a range of adjacent intervals. This map spans 347 cR9000, has an average resolution of 17.3 cR9000, and includes 3 genes (TUBA2, GJbeta2, and FGF-9), 18 ESTs, 19 polymorphic loci, and 8 single-copy DNA segments. Comparison of our RH map to a YAC contig showed an inconsistency in order involving a reversed interval of 6 loci. Fiber-FISH and FISH on interphase nuclei analyses with PACs isolated from this region supported our order. We also describe the isolation of 8 new chromosome 13q polymorphic (CA)n markers that have an average PIC value of 0.67. These data and mapping reagents will facilitate the isolation of disease genes from this region.  相似文献   

14.
The genetic defect causing Huntington disease (HD) has been mapped to 4p16.3 by linkage analysis using DNA markers. Two apparently contradictory classes of recombination events in HD kindreds preclude precise targeting of efforts to clone the disease gene. Here, we report a new recombination event that increases support for an internal candidate region of 2.5 Mb between D4S10 and D4S168. Analysis of 23 DNA polymorphisms in 4p16.3 revealed a complex pattern of association with the disease gene that failed to narrow the size of the candidate region. The degree of linkage disequilibrium did not show a continuous increase across the physical map, nor was a region of extreme disequilibrium identified. Markers displaying no association with the disorder were interspersed with and, in many cases, close to markers displaying significant disequilibrium. Comparison of closely spaced marker pairs on normal and HD chromosomes, as well as analysis of haplotypes across the HD region, suggest that simple recombination subsequent to a single original HD mutation cannot easily explain the pool of HD chromosomes seen today. A number of different mechanisms could contribute to the diversity of haplotypes observed on HD chromosomes, but it is likely that there has been more than one and possibly several independent origins of the HD mutation.  相似文献   

15.
Construction of genetic linkage maps for nonhuman primate species provides information and tools that are useful for comparative analysis of chromosome structure and evolution and facilitates comparative analysis of meiotic recombination mechanisms. Most importantly, nonhuman primate genome linkage maps provide the means to conduct whole genome linkage screens for localization and identification of quantitative trait loci that influence phenotypic variation in primate models of common complex human diseases such as atherosclerosis, hypertension, and diabetes. In this study we improved a previously published baboon whole genome linkage map by adding more loci. New loci were added in chromosomal regions that did not have sufficient marker density in the initial map. Relatively low heterozygosity loci from the original map were replaced with higher heterozygosity loci. We report in detail on baboon chromosomes 5, 12, and 18 for which the linkage maps are now substantially improved due to addition of new informative markers.  相似文献   

16.
We recently reported the localization of a gene for late-onset autosomal dominant retinitis pigmentosa (adRP; RP6), on the short arm of chromosome 6, by linkage analysis in a large family of Irish origin. It is notable that the gene encoding peripherin-RDS, a photoreceptor-specific protein, recently has been physically mapped on 6p. In our own analysis, an intrageneic marker derived from this gene cosegregated with the adRP disease locus with zero recombination (lod score 5.46 at q = .00). Using the CEPH reference panel, we now report the mapping of the peripherin-RDS gene relative to other 6p markers in the CEPH data base. Incorporation of these data into a multipoint analysis produced a lod score for adRP of 8.21, maximizing at the peripherin-RDS locus. This study provides strong evidence suggesting a role for peripherin-RDS in the etiology of one form of adRP.  相似文献   

17.
The gene responsible for multiple endocrine neoplasia type 2A (MEN 2A) has been localized to the pericentromeric region of chromosome 10. Several markers that fail to recombine with MEN2A have been identified, including D10Z1, D10S94, D10S97, and D10S102. Meiotic mapping in the MEN2A region is limited by the paucity of critical crossovers identified and by the dramatically reduced rates of recombination in males. Additional approaches to mapping loci in the pericentromeric region of chromosome 10 are required. We have undertaken the generation of a detailed physical map by radiation hybrid mapping. Here we report the development of a radiation hybrid panel and its use in the mapping of new DNA markers in pericentromeric chromosome 10. The radiation-reduced hybrids used for mapping studies all retain small subchromosomal fragments that include both D10S94 and D10Z1. One hybrid was selected as the source of DNA for cloning. One hundred five human recombinant clones were isolated from a lambda library made with pp11A DNA. We have completed regional mapping of 22 of those clones using our radiation hybrid mapping panel. Seven markers have been identified and, when taken together with previously meiotically mapped markers, define eight radiation hybrid map intervals between D10S34 and RBP3. The identical order is found for a number of these using either the radiation hybrid mapping panel or the meiotic mapping panel. We believe that this combination cloning and mapping approach will facilitate the precise positioning of new markers in pericentromeric chromosome 10 and will help in refining further the localization of MEN2A.  相似文献   

18.
We have ordered nine polymorphic DNA markers within detailed map of the proximal part of the human X chromosome long arm, extending from band q11 to q22, by use of both physical mapping with a panel of rodent-human somatic hybrids and multipoint linkage analysis. Analysis of 44 families (including 17 families from the Centre d'Etude du Polymorphisme Humain) provided highly significant linkage data for both order and estimation of map distances between loci. We have obtained the following order: DXS1-DXS159-DXYS1-DXYS12-DXS3-(DXS94 , DXS178)-DXYS17. The most probable location of DXYS2 is between DXS159 and DXS3, close to DXYS1 and DXYS12. The high density of markers (nine loci within 30 recombination units) and the improvement in the estimation of recombination frequencies should be very useful for multipoint mapping of disease loci in this region and for diagnostic applications.  相似文献   

19.
Chen C  Yu Q  Hou S  Li Y  Eustice M  Skelton RL  Veatch O  Herdes RE  Diebold L  Saw J  Feng Y  Qian W  Bynum L  Wang L  Moore PH  Paull RE  Alam M  Ming R 《Genetics》2007,177(4):2481-2491
A high-density genetic map of papaya (Carica papaya L.) was constructed using microsatellite markers derived from BAC end sequences and whole-genome shot gun sequences. Fifty-four F(2) plants derived from varieties AU9 and SunUp were used for linkage mapping. A total of 707 markers, including 706 microsatellite loci and the morphological marker fruit flesh color, were mapped into nine major and three minor linkage groups. The resulting map spanned 1069.9 cM with an average distance of 1.5 cM between adjacent markers. This sequence-based microsatellite map resolved the very large linkage group 2 (LG 2) of the previous high-density map using amplified fragment length polymorphism markers. The nine major LGs of our map represent papaya's haploid nine chromosomes with LG 1 of the sex chromosome being the largest. This map validates the suppression of recombination at the male-specific region of the Y chromosome (MSY) mapped on LG 1 and at potential centromeric regions of other LGs. Segregation distortion was detected in a large region on LG 1 surrounding the MSY region due to the abortion of the YY genotype and in a region of LG6 due to an unknown cause. This high-density sequence-tagged genetic map is being used to integrate genetic and physical maps and to assign genome sequence scaffolds to papaya chromosomes. It provides a framework for comparative structural and evolutional genomic research in the order Brassicales.  相似文献   

20.
A primary genetic map of chromosome 13q.   总被引:23,自引:9,他引:14       下载免费PDF全文
We have constructed a primary genetic map spanning most of human chromosome 13. A total of 14 polymorphic DNA sequences and one protein polymorphism provided, after construction of haplotypes, seven markers for the long arm of this chromosome. A panel of cell lines from 30 three-generation families with large sibship size served as the sample set. Pairwise cross analysis of the inheritance patterns of the marker loci established that six of the seven loci constituted a single linkage group; the seventh was localized by physical means. Significantly higher recombination rates were found in female than in male meioses in several intervals. The six closely linked loci were arranged, based on the two-point data, in three clusters, and a number of alternate gene orders were excluded by three-point linkage tests. The order and spacing of the individual loci were refined by linkage analyses that considered five loci jointly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号