首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The VanX protein is a D-alanyl-D-alanine (D-Ala-D-Ala) dipeptidase essential for resistance to the glycopeptide antibiotic vancomycin. While this enzymatic activity has been typically associated with vancomycin- and teicoplainin-resistant enterococci, we now report the identification of a D-Ala-D-Ala dipeptidase in the gram-negative species Salmonella enterica. The Salmonella enzyme is only 36% identical to VanX but exhibits a similar substrate specificity: it hydrolyzes D-Ala-D-Ala, DL-Ala-DL-Phe, and D-Ala-Gly but not the tripeptides D-Ala-D-Ala-D-Ala and DL-Ala-DL-Lys-Gly or the dipeptides L-Ala-L-Ala, N-acetyl-D-Ala-D-Ala, and L-Leu-Pro. The Salmonella dipeptidase gene, designated pcgL, appears to have been acquired by horizontal gene transfer because pcgL-hybridizing sequences were not detected in related bacterial species and the G+C content of the pcgL-containing region (41%) is much lower than the overall G+C content of the Salmonella chromosome (52%). In contrast to wild-type Salmonella, a pcgL mutant was unable to use D-Ala-D-Ala as a sole carbon source. The pcgL gene conferred D-Ala-D-Ala dipeptidase activity upon Escherichia coli K-12 but did not allow growth on D-Ala-D-Ala. The PcgL protein localizes to the periplasmic space of Salmonella, suggesting that this dipeptidase participates in peptidoglycan metabolism.  相似文献   

2.
Wild-type Citrobacter freundii cannot grow on melibiose as a sole source of carbon. The melibiose transporter gene melB was cloned from a C. freundii mutant M4 that could utilize melibiose as a sole carbon source. Although the cloned melB gene is closely similar to the melB genes of other bacteria, it is cryptic because of a frameshift mutation. Site-directed mutagenesis was used to construct a functional melB gene by deleting one nucleotide, resulting in the production of an active melibiose transporter. The active MelB transporter could utilize Na(+) and H(+) as coupling cations to melibiose transport. The amino acid sequence of the C. freundii MelB was found to be most similar to those of Salmonella typhimurium and Escherichia coli MelB. These facts are consistent with the phylogenetic relationship of bacteria and the cation coupling properties of the melibiose transporters.  相似文献   

3.
The strain Saccharomyces cerevisiae W303-1a, able to grow in a medium containing acetic acid as the sole carbon and energy source, was subjected to mutagenesis in order to obtain mutants deficient in monocarboxylate permeases. Two mutant clones exhibiting growth in ethanol, but unable to grow in a medium with acetic acid as the sole carbon and energy source, were isolated (mutants Ace12 and Ace8). In both mutants, the activity for the acetate carrier was strongly affected. The mutant Ace8 revealed not to be affected in the transport of lactate, while the mutant Ace12 did not display activity for that carrier. These results reinforced those previously found in the strain IGC 4072, where two distinct transport systems for monocarboxylates have been described, depending on the growth carbon source. It is tempting to postulate that the Ace8 mutant seems to be affected in the gene coding for an acetate permease. In contrast, the absence of activity for both monocarboxylate permeases in mutant Ace12 could be attributed to a mutation in a gene coding for a regulatory protein not detected before.  相似文献   

4.
5.
Role and control of isocitrate lyase in Candida lipolytica.   总被引:2,自引:2,他引:0       下载免费PDF全文
M Matsuoka  Y Ueda    S Aiba 《Journal of bacteriology》1980,144(2):692-697
Mutants of Candida lipolytica that were unable to grow on acetate but able to utilize succinate or glycerol as a sole carbon source were isolated. Amongst the mutants isolated, one strain (Icl-) was specifically deficient in isocitrate lyase activity, whereas another strain (Acos-) was deficient in acetyl coenzyme A synthetase activity. Since the Icl- mutant could not grow either on n-alkane or its derivatives, such as fatty acid and long-chain dicarboxylic acid, any anaplerotic route other than the glyoxylate pathway was inconceivable as far as growth on these carbon sources was concerned. Acetyl coenzyme A is most likely a metabolic inducer of isocitrate lyase and malate synthase, because the Acos- mutant was characterized by the least susceptibility to induction of these enzymes by acetate. The structural gene for isocitrate lyase was most probably impaired in the Icl- mutant, since revertants (Icl-) produced thermolabile isocitrate lyase. The production of isocitrate from n-alkane by the revertants was enhanced in comparison with the parental strain.  相似文献   

6.
Neurospora crassa wild-type is almost unable to grow on glutamine as sole nitrogen and carbon source but a GDH-; GS +/- double mutant strain, lacking NADP-dependent glutamate dehydrogenase and partially lacking glutamine synthetase did grow. Under these conditions, the double mutant had a higher chemical energy content than the wild-type. Enzyme assays and labelling experiments with glutamine indicated that in the double mutant glutamine was degraded to ammonium and to carbon skeletons by glutamate synthase, the catabolic (NADH-dependent) glutamate dehydrogenase and the glutamine transaminase-omega-amidase pathway.  相似文献   

7.
Escherichia coli has many periplasmic phosphatase activities. To test whether it can take up and excrete purine nucleotides, we attempted to completely disrupt periplasmic 5'-nucleotidase activity. A 5'-nucleotidase activity was induced in ushA knockout mutant cells, which lack major 5'-nucleotidase activity, when they were grown with purine nucleotides as the sole carbon source. Using DNA macroarrays to compare global gene expression in wild-type and ushA knockout mutant cells cultured with IMP or GMP as the sole carbon source, we identified two genes that were induced in the ushA knockout mutant cells and encoded signal sequence needed for secretion. One of the genes, aphA, encoded a 5'-nucleotidase activity and was induced by IMP or inosine. An ushA aphA double knockout mutant was shown to be unable to grow on purine nucleotides as the sole carbon source. To investigate the excretion of purine nucleotides, we constructed an ushAaphA double knockout mutant of an inosine-producing strain and found that it accumulated IMP in the medium. In addition, when the guaBA operon was introduced into the ushAaphA double knockout IMP producer, GMP was released into the medium. These observations imply the existence of efflux activity for purine nucleotides in E. coli.  相似文献   

8.
Mutant Strains of Escherichia coli K-12 Unable to Form Ubiquinone   总被引:13,自引:7,他引:6       下载免费PDF全文
A strain of Escherichia coli was isolated which was unable to form ubiquinone. This mutant was obtained by selecting strains unable to grow on malate as sole source of carbon. Such strains were further screened by examination of the quinone content of cells grown on a glucose medium. A mutant unable to form vitamin K was also isolated by this procedure. A genetic analysis of the ubiquinoneless strain showed that it possessed two mutations affecting ubiquinone biosynthesis.  相似文献   

9.
The utilization of ethanol via acetate by the yeast Saccharomyces cerevisiae requires the presence of the enzyme acetyl-coenzyme A synthetase (acetyl-CoA synthetase), which catalyzes the activation of acetate to acetyl-coenzyme A (acetyl-CoA). We have isolated a mutant, termed acr1, defective for this activity by screening for mutants unable to utilize ethanol as a sole carbon source. Genetic and biochemical characterization show that, in this mutant, the structural gene for acetyl-CoA synthetase is not affected. Cloning and sequencing demonstrated that the ACR1 gene encodes a protein of 321 amino acids with a molecular mass of 35 370 Da. Computer analysis suggested that the ACR1 gene product (ACR1) is an integral membrane protein related to the family of mitochondrial carriers. The expression of the gene is induced by growing yeast cells in media containing ethanol or acetate as sole carbon sources and is repressed by glucose. ACR1 is essential for the utilization of ethanol and acetate since a mutant carrying a disruption in this gene is unable to grow on these compounds.  相似文献   

10.
The utilization of ethanol via acetate by the yeast Saccharomyces cerevisiae requires the presence of the enzyme acetyl-coenzyme A synthetase (acetyl-CoA synthetase), which catalyzes the activation of acetate to acetyl-coenzyme A (acetyl-CoA). We have isolated a mutant, termed acr1, defective for this activity by screening for mutants unable to utilize ethanol as a sole carbon source. Genetic and biochemical characterization show that, in this mutant, the structural gene for acetyl-CoA synthetase is not affected. Cloning and sequencing demonstrated that the ACR1 gene encodes a protein of 321 amino acids with a molecular mass of 35 370 Da. Computer analysis suggested that the ACR1 gene product (ACR1) is an integral membrane protein related to the family of mitochondrial carriers. The expression of the gene is induced by growing yeast cells in media containing ethanol or acetate as sole carbon sources and is repressed by glucose. ACR1 is essential for the utilization of ethanol and acetate since a mutant carrying a disruption in this gene is unable to grow on these compounds.  相似文献   

11.
Evidence documenting the requirement for a functional DNA polymerase I when Salmonella typhimurium LT2 uses ethanolamine (EA), 1,2-propanediol (1,2-PDL), or propionate (PRP) as the sole carbon and energy source is presented. Providing rat polymerase beta in trans demonstrated that the growth phenotypes observed were due exclusively to the lack of DNA polymerase I functions. The location of the mutation (a MudI1734 insertion) that rendered cells unable to grow on EA, 1,2-PDL, or PRP was determined by DNA sequencing to be within the polA gene. polA mutants of this bacterium may be unable to repair the damage caused by reactive aldehydes generated during the catabolism of EA, 1,2-PDL, or PRP. Consistent with this hypothesis, the inhibitory effects of acetaldehyde and propionaldehyde on the growth of this polA mutant were demonstrated. A derivative of the polA mutant unable to synthesize glutathione (GSH) was markedly more sensitive to acetaldehyde and propionaldehyde than was the polA mutant proficient in GSH synthesis. This finding was in agreement with the recently proposed role of GSH as a mechanism for quenching reactive aldehydes generated during the catabolism of these compounds (M. R. Rondon, R. Kazmierczack, and J. C. Escalante-Semerena, J. Bacteriol. 177:5434-5439, 1995).  相似文献   

12.
The coenzyme B(12)-dependent isobutyryl coenzyme A (CoA) mutase (ICM) and methylmalonyl-CoA mutase (MCM) catalyze the isomerization of n-butyryl-CoA to isobutyryl-CoA and of methylmalonyl-CoA to succinyl-CoA, respectively. The influence that both mutases have on the conversion of n- and isobutyryl-CoA to methylmalonyl-CoA and the use of the latter in polyketide biosynthesis have been investigated with the polyether antibiotic (monensin) producer Streptomyces cinnamonensis. Mutants prepared by inserting a hygromycin resistance gene (hygB) into either icmA or mutB, encoding the large subunits of ICM and MCM, respectively, have been characterized. The icmA::hygB mutant was unable to grow on valine or isobutyrate as the sole carbon source but grew normally on butyrate, indicating a key role for ICM in valine and isobutyrate metabolism in minimal medium. The mutB::hygB mutant was unable to grow on propionate and grew only weakly on butyrate and isobutyrate as sole carbon sources. (13)C-labeling experiments show that in both mutants butyrate and acetoacetate may be incorporated into the propionate units in monensin A without cleavage to acetate units. Hence, n-butyryl-CoA may be converted into methylmalonyl-CoA through a carbon skeleton rearrangement for which neither ICM nor MCM alone is essential.  相似文献   

13.
Benzoate was established as the inducer of a unique 3-hydroxybenzoate 2-hydroxylase activity found in a Pseudomonas testosteroni mutant which is unable to grow on m-hydroxybenzoate as its sole source of carbon and energy.  相似文献   

14.
Phagocytic cells form the first line of defense against infections by the human fungal pathogen Candida albicans. Recent in vitro gene expression data suggest that upon phagocytosis by macrophages, C. albicans reprograms its metabolism to convert fatty acids into glucose by inducing the enzymes of the glyoxylate cycle and fatty acid beta-oxidation pathway. Here, we asked whether fatty acid beta-oxidation, a metabolic pathway localized to peroxisomes, is essential for fungal virulence by constructing two C. albicans double deletion strains: a pex5Delta/pex5Delta mutant, which is disturbed in the import of most peroxisomal enzymes, and a fox2Delta/fox2Delta mutant, which lacks the second enzyme of the beta-oxidation pathway. Both mutant strains had strongly reduced beta-oxidation activity and, accordingly, were unable to grow on media with fatty acids as a sole carbon source. Surprisingly, only the fox2Delta/fox2Delta mutant, and not the pex5Delta/pex5Delta mutant, displayed strong growth defects on nonfermentable carbon sources other than fatty acids (e.g., acetate, ethanol, or lactate) and showed attenuated virulence in a mouse model for systemic candidiasis. The degree of virulence attenuation of the fox2Delta/fox2Delta mutant was comparable to that of the icl1Delta/icl1Delta mutant, which lacks a functional glyoxylate cycle and also fails to grow on nonfermentable carbon sources. Together, our data suggest that peroxisomal fatty acid beta-oxidation is not essential for virulence of C. albicans, implying that the attenuated virulence of the fox2Delta/fox2Delta mutant is largely due to a dysfunctional glyoxylate cycle.  相似文献   

15.
Dipeptidyl carboxypeptidase-deficient mutants of Salmonella typhimurium.   总被引:11,自引:10,他引:1  
Mutants of Salmonella typhimurium deficient in dipeptidyl carboxypeptidase have been isolated by screening for clones unable to use N-acetyl-L-alanyl-L-alanyl-L-alanine (AcAla3) as the sole nitrogen source. An insertion of the transposable element Tn10 near dcp (the locus coding for dipeptidyl carboxypeptidase) has been isolated and used to map the locus in the interval between purB and trp, an otherwise genetically silent region of the S. typhimurium map. All dcp mutants could still grow using N-acetyl-L-alanyl-L-alanyl-L-alanyl-L-alanine (AcAla4) as the sole nitrogen source. Crude extracts from the dcp mutants failed to hydrolyze AcAla3 but retained approximately 80% of the wild-type activity toward AcAla4. Several lines of evidence indicate that hydrolysis of AcAla4 in the dcp mutant results from the action of a new peptidase distinct from dipeptidyl carboxypeptidase. A mutant strain lacking dipeptidyl carboxypeptidase in addition to peptidases N, A, B, and D showed reduced protein breakdown during carbon starvation compared with a strain lacking only peptidases N, A, B, and D.  相似文献   

16.
Nineteen different steroid-degrading bacteria were isolated from soil samples by using selective media containing either cholesterol or deoxycholate as sole carbon source. Strains that assimilated cholesterol (17 COL strains) were gram-positive, belonging to the genera Gordonia, Tsukamurella, and Rhodococcus, and grew on media containing other steroids but were unable to use deoxycholate as sole carbon source. Surprisingly, some of the COL strains unable to grow using deoxycholate as sole carbon source were able to catabolize other bile salts (e.g., cholate). Conversely, strains able to grow using deoxycholate as the sole carbon source (two DOC isolates) were gram-negative, belonging to the genus Pseudomonas, and were unable to catabolize cholesterol and other sterols. COL and DOC were included into the corresponding taxonomic groups based on their morphology (cells and colonies), metabolic properties (kind of substrates that support bacterial growth), and genetic sequences (16S rDNA and rpoB). Additionally, different DOC21 Tn5 insertion mutants have been obtained. These mutants have been classified into two different groups: (1) those affected in the catabolism of bile salts but that, as wild type, can grow in other steroids and (2) those unable to grow in media containing any of the steroids tested. The identification of the insertion point of Tn5 in one of the mutants belonging to the second group (DOC21 Mut1) revealed that the gene knocked-out encodes an A-ring meta-cleavage dioxygenase needed for steroid catabolism.  相似文献   

17.
Mutants in Aspergillus niger unable to grow on acetate as a sole carbon source were previously isolated by resistance to 1.2% propionate medium containing 0.1% glucose. AcuA mutants lacked acetyl-CoA synthetase (ACS) activity and acuB mutants lacked both ACS and isocitrate lyase activity. An acuA mutant was transformed to the acu+ phenotype with a clone of ACS (facA) from Aspergillus nidulans. The acuB mutant was transformed with the A. niger facB clone which has been identified by cross-hybridisation of an A. nidulans facB clone. These results confirm that acuA in A. niger is the gene for ACS and acuB is analogous to the A. nidulans facB regulatory gene.  相似文献   

18.
Pseudomonas MS can grow on methylamine and a number of other compounds containing C1 units as a sole source of carbon and energy. Assimilation of carbon into cell material occurs via the "serine pathway" since enzymes of this pathway are induced after growth on methylamine, but not malate or acetate. A mutant has been isolated which is unable to grow on methylamine or any other related substrate providing C1 units. This mutant is also unable to grow on acetate. Measurment of enzyme activities in cell-free extracts of wild-type cells showed that growth on methylamine caused induction of isocitrate lyase, a key enzyme in the glyoxylate cycle. The mutant organism lacks malate lyase, a key enzyme of the serine pathway, and isocitrate lyase as well. These results suggest that utilization of C1 units by Pseudomonas MS results in the net accumulation of acetate which is then assimilated into cell material via the glyoxylate cycle.  相似文献   

19.
Yarrowia lipolytica is a yeast which can utilize n-alkane as a sole carbon source. We isolated a Y. lipolytica peroxisomal acetoacetyl-CoA thiolase gene, PAT1, by complementation of a mutant that cannot utilize n-decane as a sole carbon source. We found that the putative PAT1 product had conserved features of peroxisomal acetoacetyl-CoA thiolase. We showed that the PAT1 disruptant was not able to grow on n-decane, and that n-decane-inducible acetoacetyl-CoA thiolase activity largely depended on PAT1. The original mutant carried a mutation involving the replacement of Gly382 with Glu. This mutation inactivated the ability of PAT1 to complement the defective n-decane utilization of the disruptant. These results indicate that PAT1 encodes peroxisomal acetoacetyl-CoA thiolase and is essential for n-decane utilization in Y. lipolytica.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号