首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Calmodulin-dependent guanylate cyclase from Tetrahymena plasma membranes was solubilized in about a 22% yield by using digitonin in the presence of 0.2 mM CaCl2 and 20% glycerol. The detergent, when present in the assay at concentrations above 0.05%, diminished the basal and calmodulin-stimulated activity of the enzyme. Guanylate cyclase solubilized with digitonin was eluted from DEAE-cellulose with 200 mM KCl in a yield of 50%. Properties of the solubilized enzyme were similar to those of the native membrane-bound enzyme. The Kms for Mg-GTP and Mn-GTP were 140 and 30 microM, respectively. The enzyme required Mn2+ for maximum activity, the relative activity in the presence of Mg2+ being 30% of the activity with Mn2+. The solubilized enzyme retained the ability to be activated by calmodulin, with its extent being reduced as compared to the membrane-bound enzyme. The presence of a Ca2+-dependent calmodulin-binding site on the solubilized enzyme was shown by the Ca2+-dependent retention of the enzyme on a calmodulin-Sepharose-4B column.  相似文献   

2.
In the presence of Mg-GTP, the rat liver guanylate cyclase, in either intact membranes or trypsin solubilized form, was stimulated by protoporphyrin IX 6 to 10-fold. However, when Mn-GTP was the substrate, protoporphyrin IX activated the membrane-bound guanylate cyclase only 50%, in contrast to the marked activation reported for the cytosolic enzyme. Meso- and deuteroporphyrin IX, hematoporphyrin and coproporphyrin III also activated membrane guanylate cyclase while uroporphyrin III, and hemin had no effect. Basal, Mg2+-dependent activity exhibited two classes of catalytic sites with apparent Km values of 2 mM and 0.12 mM. Activation by protoporphyrin resulted in the disappearance of the low affinity sites. The activated enzyme exhibited Michaelis-Menten kinetics and no alteration in its requirement for excess Mg2+. These data indicate that, in the presence of Mg2+, a heme-like structure can interact with the membrane-bound guanylate cyclase and regulate its activity.  相似文献   

3.
Membrane-bound guanylate cyclase activity was detected by ultracytochemistry at the electron microscope level in several mammalian tissues. The technique used in these studies allows the detection of active enzyme at the membrane site where it is located. In a few cases, such as normal and regenerating peripheral nerves and placenta, membrane-bound guanylate cyclase could be detected in the absence of stimulators of enzyme activity. However, in the majority of these studies membrane-bound guanylate cyclase was investigated following stimulation with natriuretic peptides, guanylin, or the Ca2+ sensor proteins, S100B and S100A1. In general, membrane-bound guanylate cyclase was localized to plasma membranes, in accordance with the functional role of this enzyme. Yet, in secretory cells the enzyme activity was localized on intracellular membranes, suggesting a role of membrane-bound guanylate cyclase in secretory processes. Finally, S100B and S100A1 were found to colocalize with membrane-bound guanylate cyclase on photoreceptor disc membranes and to stimulate enzyme activity at these sites in dark-adapted retinas in a Ca2+-dependent manner. The results of these analyses are discussed in relation to the proposed functional role(s) of this enzyme.  相似文献   

4.
We have previously reported that treatment of rat liver plasma membranes with various proteases led to activation and solubilization of membrane-bound guanylate cyclase. We report here that the guanylate cyclase solubilized by proteolysis differed from the cytosolic cyclase and rather was similar to the membrane-bound form of the enzyme in that it exhibited a sigmoidal MnGTP concentration dependence and was not activated by an excess Mn2+ or by nitrosocompounds. Also, whereas the cytosolic guanylate cyclase activity was completely abolished by 10 to 100 microM Cd2+, a dithiol reagent, no inhibitory effect was observed on the trypsin-solubilized enzyme. Therefore, the differences in kinetic properties between cytosolic and membrane-bound rat liver guanylate cyclase reside in structural differences between both forms of the enzyme rather than in differences in their environment.  相似文献   

5.
1. Rat isolated fat-cells were coated with rabbit anti-(rat erythrocyte) antibody and incubated with fresh guinea-pig serum for 25 min at 37 degrees C, which resulted in a more than 95% release of the cytosolic enzyme lactate dehydrogenase. 2. Under these conditions fragmentation of the plasma membrane was examined by following the plasma-membrane markers 5'-nucleotidase, adrenaline-sensitive adenylate cyclase and membrane-bound rabbit immunoglobulin G through a differential-centrifugation fractionation procedure. 3. Approx. 50% of the plasma-membrane markers remained associated with triacylglycerol. Of the remainder more than half was pelleted by centrifugation at 10 000 g for 30 min. 4. The 10 000 g supernatant was fractionated by centrifugation on a sucrose density gradient (15-50%, w/w). This procedure resulted in the production of two visible white bands on the density gradient. The bands consisted of vesicles derived from the plasma membrane, since they coincided with peaks of 5'-nucleotidase activity, contained membrane-bound immunoglobulin G and the denser one had adenylate cyclase activity. The phospholipid and protein contents of the vesicles were determined and compared with those in purified plasma membrane. 5. It is suggested that complement-mediated lysis of rat fat-cells caused the production of plasma-membrane vesicles that differ in composition from the whole plasma membrane.  相似文献   

6.
The purified membrane-bound form of guanylate cyclase was incorporated into artificial unilamellar phospholipid vesicles. The rate and extent of enzyme incorporation into the vesicles was dependent upon the phospholipid concentration and the time period of incubation. The enzyme was incorporated at a significantly faster rate after removal of carbohydrate with endoglycosidase H. The incorporation of the enzyme led to a 10-fold decrease in the apparent maximal velocity and a 2-fold increase in the apparent Michaelis constant for MnGTP. Extraction of liposomes containing guanylate cyclase with 0.2% Lubrol PX resulted in the recovery of 85% of the original amount of added activity, suggesting that the decrease in maximal velocity was not due to enzyme denaturation. Phosphatidylcholine liposomes differentially effected the activity of the membrane-form of guanylate cyclase, dependent on the nature of the fatty acid present on the phospholipid. Specific activities ranged between 458 nmol/min per mg and 2.6 mumol/min per mg, dependent upon the fatty acids present. Liposomes containing the membrane-bound form of guanylate cyclase were subsequently fused with erythrocytes using poly(ethylene glycol) 4000 in attempts to introduce the enzyme into intact cells. The enzyme was successfully introduced into the erythrocytes; greater than 90% of the enzyme activity was subsequently shown to be associated with erythrocyte membranes. Cyclic GMP concentrations of erythrocytes increased from essentially nondetectable to 4 pmol/10(9) cells after introduction of the enzyme. These results demonstrate that guanylate cyclase can be incorporated into liposomes in an active state and that such liposomes can be used to introduce the enzyme into cells where it can subsequently function to generate cyclic GMP.  相似文献   

7.
A general feature of membrane-bound adenylate cyclase systems is the “lability” of the basal enzyme to dispersion by detergents. A stable form of the detergentsolubilized enzyme is obtained only if the membrane-bound enzyme is first pretreated with fluoride or Gpp(NH)p. However, we have found with the basal hepatic enzyme that the lability is evident primarily when MgATP is used as substrate; substitution of MnATP for MgATP reveals that substantial basal activity survives detergent treatment. This effect is independent of the detergent; it is seen with either Lubrol PX or with deoxycholate. In addition to the altered substrate requirement, the membrane-bound and solubilized forms of the basal enzyme exhibit other differences. In contrast to the membrane-bound form, the solubilized enzyme shows (1) weak stimulation by Gpp(NH)p; (2) little inhibition by adenosine, (3) strong inhibition by Pi or PPi, and (4) and apparent loss of the Me2+-reactive regulatory site. Such dissimilarities between membranebound and solubilized cyclase are not seen if the membranes are pretreated with Gpp(NH)p prior to exposure to detergents. The characteristics of the solubilized basal hepatic enzyme are similar to those of the naturally occurring soluble adenylate cyclase found in mature rat testes. It would appear that separation of adenylate cyclase from components that confer regulation by divalent cation and guanine nucleotides produces a form of the enzyme that will turnover only MnATP; this may represent the free catalytic moiety. Such preparations could be useful in reconstructing some of the regulatory functions of adenylate cyclase seen in its membrane-bound form.  相似文献   

8.
1. Adenylate cyclase (EC 4.6.1.1) from rat testis mitochondria has been solubilized by treatment with the non-ionic detergent Lubrol PX. The soluble enzyme was further purified by DEAE-cellulose chromatography. 2. The specific activity of the adenylate cyclase eluted from the DEAE-cellulose column was found to be four times higher than that of an intact mitochondrial preparation. At this step the enzyme shows a sedimentation coefficient of 4.2 S and a diffusion coefficient (D) of 3.12 - 10- minus 7 cm-2/sec. 3. Solubilization of the adenylate cyclase resulted in loss of responsiveness to gonadotrophic hormones. Addition of phosphatidylserine to the soluble preparation partially restored the activation of adenylate cyclase by human chorionic gonadotrophin. 4. The results of this study suggest that the activity of the adenylate cyclase may be dependent on the membrane-bound phospholipids and that the enzyme attached to the mitochondrial membranes has some properties which are similar to the adenylate cyclase found to be associated with other membrane systems of the cell.?  相似文献   

9.
10.
1. The local anaesthetic benzyl alcohol progressively activated glucagon-stimulated adenylate cyclase activity up to a maximum at 50 mM-benzyl alcohol. Further increases in benzyl alcohol concentration inhibited the activity. The fluoride-stimulated adenylate cyclase activity was similarly affected except for an inhibition of activity occurring at low benzyl alcohol concentrations (approx. 10 mM. 2. The fluoride-stimulated adenylate cyclase activity of a solubilized enzyme preparation was unaffected by any of the benzyl alcohol concentrations tested. 3. Increases in 3-phenylpropan-1-ol and 5-phenylpentan-1-ol concentrations progressively activated both the fluoride- and glucagon-stimulated adenylate cyclase activities up to a maximum, above which further increases in alcohol concentration inhibited the activities. 4. The 'break' points in Arrhenius plots of glucagon-stimulated adenylate cyclase activity in native plasma membranes, and in plasma membranes fused with synthetic dimyristoyl phosphatidylcholine so as to constitute 60% of the total lipid pool, were decreased by approx. 6 degrees C by addition of 40 mM-benzyl alcohol. This was accompanied by a fall in the associated activation energies. 6. Arrhenius plots of fluoride-stimulated adenylate cyclase activity in the presence and absence of 40 mM-benzyl alcohol were linear, although addition of benzyl alcohol caused a dramatic decrease in the associated activation energy of the reaction. 7. 5'-Nucleotidase activity was stimulated by benzyl alcohol, and the 'break' point in the Arrhenius plot of its activity was decreased by about 6 degrees C by addition of 40 mM-benzyl alcohol to the assay. 8. It is suggested that benzyl alcohol effects a fluidization of the bilayer, which is clearly demonstrated by its ability to lower the temperature of a lipid phase separation occurring at 28 degrees C in the outer half of the bilayer to around 22 degrees C. The increase in bilayer fluidity relieves a physical constraint on the membrane-bound adenylate cyclase, activating the enzyme. 9. The various inhibition phenomena are discussed in detail, together with the suggestion that the interaction between the uncoupled catalytic unit of adenylate cyclase and the lipids of the bilayer is altered on its physical coupling to the glucagon receptor.  相似文献   

11.
Prilocaine can increase the fluidity of rat liver plasma membranes, as indicated by a fatty acid spin-probe. This led to the activation of the membrane-bound fluoride-stimulated adenylate cyclase activity, but not the Lubrol-solubilized activity, suggesting that increased lipid fluidity can activate the enzyme. With increasing prilocaine concentrations above 10 mM, the membrane-bound fluoride-stimulated activity was progressively inhibited, even though bilayer fluidity continued to increase and the activity of the solubilized enzyme remained unaffected. Glucagon-stimulated adenylate cyclase was progressively inhibited by increasing prilocaine concentrations. Prilocaine (10 mM) had no effect on the lipid phase separation occurring at 28 degrees C and attributed to those lipids in the external half of the bilayer, as indicated by Arrhenius plots of both glucagon-stimulated adenylate cyclase activity and the order parameter of a fatty acid spin-probe. However, 10 mM-prilocaine induced a lipid phase separation at around 11 degrees C that was attributed to the lipids of the internal (cytosol-facing) half of the bilayer. It is suggested that prilocaine (10 mM) can selectively perturb the inner half of the bilayer of rat liver plasma membranes owing to its preferential interaction with the acidic phospholipids residing there.  相似文献   

12.
1. The localisation and some of the properties of rabbit kidney cortex guanylate cyclase (GTP pyrophosphatase lyase (cyclizing) EC 4.6.1.2) have been studied. Upon fractionation of dissociated renal cortex, guanylate cyclase activity was preferentially enriched in fractions of pure glomeruli, where its specific activity was 44.5 times that measured in tubular fragments. Most, if not all, of the glomerular activity was found to be firmly membrane-bound, whereas the guanylate cyclase activity of the tubules was mainly soluble. Therefore, particulate guanylate cyclase activity could serve as marker enzyme for kidney glomeruli. 2. All hormones or hormone-like agents tested were without effect on kidney guanylate cyclase activity. Triton X-100 stimulated both glomerular and tubular activity. 3. Considering the high cyclic GMP forming capacity of kidney glomeruli, part of the cyclic GMP found in urine might be synthetized locally in these structures.  相似文献   

13.
1. The activities of the enzymes involved in the metabolism of cyclic nucleotides were studied in sarcolemma prepared front guinea-pig heart ventricle; the enzyme activities reported here were linear under the assay conditions. 2. Adenylate cyclase was maximally activated by 3mM-NaF; NaF increased the Km for ATP (from 0.042 to 0.19 mM) but decreased the Ka for Mg2+ (from 2.33 to 0.9 mM). In the presence of saturating Mg2+ (15 mM), Mn2+ enhanced adenylate cyclase, whereas Co2+ was inhibitory. beta-Adrenergic amines (10-50 muM) stimulated adenylate cyclase (38+/-2%). When added to the assay mixture, guanyl nucleotides (GTP and its analogue, guanylyl imidophosphate) stimulated basal enzyme activity and enhanced the stimulation by isoproterenol. By contrast, preincubation of sarcolemma with guanylyl imidodiphosphate stimulated the formation of an 'activated' form of the enzyme, which did not reveal increased hormonal sensitivity. 3. The guanylate cyclase present in the membranes as well as in the Triton X-100-solubilized extract of membranes exhibited a Ka for Mn 2+ of 0.3 mM; Mn2+ in excess of GTP was required for maximal activity. Solubilized guanylate cyclase was activated by Mg2+ only in the presence of low Mn2+ concentrations; Ca2+ was inhibitory both in the absence and presence of low Mn2+. Acetylcholine as well as carbamolycholine stimulated membrane-bound guanylate cyclase. 4. Cylic nucleotide phosphodiesterase activities of sarcolemma exhibited both high-and low-Km forms with cyclic AMP and with cyclic GMP as substrate. Ca2+ ions increased the Vmax. of the cyclic GMP-dependent enzyme.  相似文献   

14.
The effects of three cationic amphiphilic drugs on rat brain cytosolic phosphatidate phosphohydrolase and their mechanisms of action were studied utilizing membrane-bound, emulsified, and emulsified sonicated phosphatidate as substrates. With the membrane-bound substrate, chlorpromazine, desmethylimipramine, and propranolol inhibited the activity in a dose-dependent fashion with an IC50 of 30-50 microM. In the presence of the emulsified substrate, chlorpromazine was a more potent inhibitor than desmethylimipramine or propranolol but 200 microM was needed for 50% inhibition of activity. Addition of heat-inactivated microsomes to the emulsified substrate, to simulate the conditions with the membrane-bound substrate, did not alter this value. Both Mg2+ and Ca2+ stimulated the enzyme activity but only Ca2+ counteracted the effect of chlorpromazine. Kinetic studies indicate that chlorpromazine acts as a noncompetitive inhibitor of the enzyme. Emulsified sonicated phosphatidate was a good substrate at low (less than 10 microM) concentrations. It was a poor substrate at 1 mM, but at this concentration chlorpromazine stimulated the activity instead of inhibiting. This drug altered the integrity of phosphatidate vesicle membranes as visualized by electron microscopy. The different results obtained with the three types of substrate indicate the importance of the configuration of phosphatidate for the expression of enzyme activity and for its susceptibility to the action of cationic amphiphilic drugs.  相似文献   

15.
H Kurose  T Inagami  M Ui 《FEBS letters》1987,219(2):375-379
The addition of ANF to Percoll-purified liver plasma membranes produced a slight activation of guanylate cyclase; the ANF-stimulated cyclase activity was further increased upon the addition of ATP to the enzyme assay mixture. The effect of ATP to potentiate the cyclase activation was concentration-dependent, required Mg2+ as a divalent cation, and was seen with membranes from various tissues and cells. ATP increased the maximal velocity of the cyclase without a change in the affinity for GTP or ANF. Phosphorylation by ATP might not be involved since ANF-stimulated guanylate cyclase was enhanced by non-phosphorylating ATP analogues as well. Thus, an allosteric ATP binding site is suggested to participate in ANF-induced regulation of membrane-bound guanylate cyclase.  相似文献   

16.
When Arbacia punctulata spermatozoa are incubated in seawater containing ammonium hydroxide (pH 8.8), the sperm plasma membrane-bound guanylate cyclase is dephosphorylated, its electrophoretic mobility increases (from an apparent molecular mass of 160 to 150 kD), and its enzymatic activity decreases 3.5-fold. Transfer of these cells into ammonium-free seawater (pH 7.4) results in the rephosphorylation of the cyclase, its reconversion to 160 kD, and recovery of the enzymatic activity lost upon dephosphorylation. This is the first direct demonstration that the activity of membrane-bound guanylate cyclase can be regulated by phosphorylation. A plasma membrane preparation is described that specifically supports the in vitro phosphorylation of the guanylate cyclase. This preparation will be useful in more detailed studies on the relationship between phosphorylation state and enzymatic activity of membrane-bound guanylate cyclase.  相似文献   

17.
Chromatography of soluble human platelet guanylate cyclase (105,000 g supernatant) on DEAE-cellulose in a linear gradient of NaCl (0-0.5 M) in 50 mM Tris-HCl buffer pH 7.6 gave two protein peaks, I and II, of which only peak II possessed the guanylate cyclase activity (0.18-0.22 M NaCl). The protein fraction I was found to possess an inhibiting activity; its addition to the partially purified enzyme decreased the guanylate cyclase activity by 60-70% in the presence of Mg2+ with no effect on the enzyme activity in the presence of Mn2+. The isolated enzyme lost (by approximately 80%) its ability to be activated by sodium nitroprusside; the latter was reconstituted after addition of the inhibiting fraction. The data obtained testify to the heme origin of the endogenous inhibitor of human platelet guanylate cyclase.  相似文献   

18.
Addition of 10 microM guanyl-5'-ylimidodiphosphate at 30 degrees or 0 degree to guinea pig brain particulates instantaneously evoked nearly 50% inhibition of adenylate cyclase activity as determined after removal of the GTP analog by washing of the particulates. The inhibitory state, once formed, persisted for at least 60 min as long as the preparation was kept either in a medium devoid of the analog (0-30 degrees) or in its presence at 0 degree. During incubation at 30 degrees in the presence of the analog, however, the inhibited or nontreated enzyme showed a gradual increase in enzyme activity. Both the inhibitory and the activating effects of the analog were saturable, with a half-maximal concentration of about 1.0 microM, and were antagonized by simultaneous addition of GTP, GDP, and GMP (in decreasing order). The persistently inhibited enzyme enabled the detection of marked stimulation by norepinephrine and histamine, whereas these amines showed only marginal stimulation of the enzyme before treatment with the analog. Formation of such a persistent inhibitory state appears to be specific to brain cyclase.  相似文献   

19.
Adenylate cyclase and cyclic AMP (cAMP) phosphodiesterase have been identified and partially characterized in bacteroids of Bradyrhizobium japonicum 3I1b-143. Adenylate cyclase activity was found in the bacteroid membrane fraction, whereas cAMP phosphodiesterase activity was located in both the membrane and the cytosol. In contrast to other microorganisms, B. japonicum adenylate cyclase remained firmly bound to the membrane during treatment with detergents. Adenylate cyclase was activated four- to fivefold by 0.01% sodium dodecyl sulfate (SDS), whereas other detergents gave only slight activation. SDS had no effect on the membrane-bound cAMP phosphodiesterase but strongly inhibited the soluble enzyme, indicating that the two enzymes are different. All three enzymes were characterized by their kinetic constants, pH optima, and divalent metal ion requirements. With increasing nodule age, adenylate cyclase activity increased, the membrane-bound cAMP phosphodiesterase decreased, and the soluble cAMP phosphodiesterase remained largely unchanged. These results suggest that cAMP plays a role in symbiosis.  相似文献   

20.
Three forms of adenylate cyclase have been detected in Y. pestis: membrane-bound, cytoplasmic and extracellular. Extracellular adenylate cyclase has been purified so as to achieve a homogeneous state, and some of its physicochemical parameters have been investigated. In the process of purification the initial preparation of this enzyme has been subjected to heating at 100 degrees C for 15 minutes, fractionation with ammonium sulfate, and gel filtration on Sephadex G-100. The homogeneity of adenylate cyclase has been confirmed by electrophoresis in 7.5% polyacrylamide gel and precipitation by the plague agglutinating serum. The enzyme has been found to have a molecular weight of 30,000 daltons and to show the optimum activity at pH 7.0-7.2 and at a temperature between 37 and 40 degrees C. Monospecific rabbit serum to the homogeneous preparation of adenylate cyclase has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号