首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Survival is a key fitness component and the evolution of age- and stage-specific patterns in survival is a central question in evolutionary biology. In variable environments, favouring chances of survival at the expense of other fitness components could increase fitness by spreading risk across uncertain conditions, especially if environmental conditions improve in the future. Both the magnitude of environmental variation and temporal autocorrelation in the environment might therefore affect the evolution of survival patterns. Despite this, the influence of temporal autocorrelation on the evolution of survival patterns has not been addressed. Here, we use a trade-off structure which reflects the empirically inspired paradigm of acquisition and allocation of resources to investigate how the evolutionarily stable survival probability is shaped in variable, density-dependent environments. We show that temporal autocorrelation is likely to be an important aspect of environmental variability that contributes to shaping age- and stage-specific patterns of survival probabilities in nature.  相似文献   

2.
Strategies are needed for reconciling competing demands at the regional level when areas are to be selected for protection and there are associated costs, possibly equivalent to forgone development opportunties. As an alternative to the fixed scaling (or weighting) of costs and benefits required by cost-benefit analysis, multi-criteria analyses allow the exploration of alternative weightings and a summary trade-off curve to determine preferred solutions. For alternative sets of areas, total cost could be plotted against total represented biodiversity, but a more consistent approach should look at trade-off space at the level of individual areas. For a given weighting, an area is assigned protection if and only if its contribution to total biodiversity, CB, exceeds its equivalent cost, EC (in biodiversity units). Because CB for a given area depends on which other areas are also protected, it can be more or less than EC. Here we develop an iterative strategy for selecting areas, such that, for a given weighting, an area is in the final protected set if and only if its final CB value is greater than its EC value. Sensitivity analysis is used to identify those areas that: (1) are assigned protection even when low weight is given to biodiversity, or (2) are not assigned protection even when high weight is given to biodiversity. This approach is applicable in principle to any surrogate measure for biodiversity; here examples are presented in which environmental data are summarized as an environmental space.  相似文献   

3.
We link two-allele population models by Haldane and Fisher with Kimura's diffusion approximations of the Wright-Fisher model, by considering continuous-state branching (CB) processes which are either independent (model I) or conditioned to have constant sum (model II). Recent works by the author allow us to further include logistic density-dependence (model III), which is ubiquitous in ecology. In all models, each allele (mutant or resident) is then characterized by a triple demographic trait: intrinsic growth rate r, reproduction variance sigma and competition sensitivity c. Generally, the fixation probability u of the mutant depends on its initial proportion p, the total initial population size z, and the six demographic traits. Under weak selection, we can linearize u in all models thanks to the same master formula u = p + p(1 - p)[g(r)s(r) + g(sigma)s(sigma) + g(c)s(c)] + o(s(r),s(sigma),s(c), where s(r) = r' - r, s(sigma) = sigma-sigma' and s(c) = c - c' are selection coefficients, and g(r), g(sigma), g(c) are invasibility coefficients (' refers to the mutant traits), which are positive and do not depend on p. In particular, increased reproduction variance is always deleterious. We prove that in all three models g(sigma) = 1/sigma and g(r) = z/sigma for small initial population sizes z. In model II, g(r) = z/sigma for all z, and we display invasion isoclines of the 'mean vs variance' type. A slight departure from the isocline is shown to be more beneficial to alleles with low sigma than with high r. In model III, g(c) increases with z like ln(z)/c, and g(r)(z) converges to a finite limit L > K/sigma, where K = r/c is the carrying capacity. For r > 0 the growth invasibility is above z/sigma when z < K, and below z/sigma when z > K, showing that classical models I and II underestimate the fixation probabilities in growing populations, and overestimate them in declining populations.  相似文献   

4.
    
Limited dispersal may favor the evolution of helping behaviors between relatives as it increases their relatedness, and it may inhibit such evolution as it increases local competition between these relatives. Here, we explore one way out of this dilemma: if the helping behavior allows groups to expand in size, then the kin-competition pressure opposing its evolution can be greatly reduced. We explore the effects of two kinds of stochasticity allowing for such deme expansion. First, we study the evolution of helping under environmental stochasticity that may induce complete patch extinction. Helping evolves if it results in a decrease in the probability of extinction or if it enhances the rate of patch recolonization through propagules formed by fission of nonextinct groups. This mode of dispersal is indeed commonly found in social species. Second, we consider the evolution of helping in the presence of demographic stochasticity. When fecundity is below its value maximizing deme size (undersaturation), helping evolves, but under stringent conditions unless positive density dependence (Allee effect) interferes with demographic stochasticity. When fecundity is above its value maximizing deme size (oversaturation), helping may also evolve, but only if it reduces negative density-dependent competition.  相似文献   

5.
    
Four types of laboratory populations of the bean weevil (Acanthoscelides obtectus) have been developed to study the effects of density-dependent and age-specific selection. These populations have been selected at high (K) and low larval densities (r) as well as for reproduction early (Y) and late (O) in life. The results presented here suggest that the r- and K-populations (density-dependent selection regimes) have differentiated from each other with respect to the following life-history traits: egg-to-adult viability at high larval density (K > r), preadult developmental time (r > K), body weight (r > K), late fecundity (K > r), total realized fecundity (r > K), and longevity of males (r > K). It was also found that the following traits responded in statistically significant manner in populations subjected to different age-specific selection regimes: egg-to-adult viability (O > Y), body weight (O > Y), early fecundity (Y > O), late fecundity (O > Y), and longevity of females and males (O > Y). Although several life-history traits (viability, body weight, late fecundity) responded in similar manner to both density-dependent and age-specific selection regimes, it appears that underlying genetic and physiological mechanisms responsible for differentiation of the r/K and Y/O populations are different. We have also tested quantitative genetic basis of the bean weevil life-history traits in the populations experiencing density-dependent and age-specific selection. Among the traits traded-off within age-specific selection regimes, only early fecundity showed directional dominance, whereas late fecundity and longevity data indicated additive inheritance. In contrast to age-specific selecton regimes, three life-history traits (developmental time, body size, total fecundity) in the density-sependent regimes exhibited significant dominance effects. Lastly, we have tested the congruence between short-term and long-term effects of larval densities. The comparisons of the outcomes of the r/K selection regimes and those obtained from the low- and high-larval densities revealed that there is no congruence between the selection results and phenotypic plasticity for the analyzed life-history traits in the bean weevil.  相似文献   

6.
There is a considerable body of literature describing the causative agents of many diseases of crustaceans. Given that many of these crustaceans support commercially important fisheries, it is somewhat surprising that comparatively little information is available regarding the natural transmission pathways and reservoirs of many of the disease-causing agents. In this paper we review what is known about reservoirs and alternate hosts for several important diseases of commercially important crustaceans and provide recommendations on future areas of research.  相似文献   

7.
    
Empirical knowledge of diversity–stability relationships is mostly based on the analysis of temporal variability. Variability, however, often depends on external factors that act as disturbances, which makes comparisons across systems difficult to interpret. Here, we show how variability can reveal inherent stability properties of ecological communities. This requires that we abandon one‐dimensional representations, in which a single variability measurement is taken as a proxy for how stable a system is, and instead consider the whole set of variability values generated by all possible stochastic perturbations. Despite this complexity, in species‐rich systems, a generic pattern emerges from community assembly, relating variability to the abundance of perturbed species. Strikingly, the contrasting contributions of different species abundance classes to variability, driven by different types of perturbations, can lead to opposite diversity–stability patterns. We conclude that a multidimensional perspective on variability helps reveal the dynamical richness of ecological systems and the underlying meaning of their stability patterns.  相似文献   

8.
    
Population genetics is often taught in introductory biology classes, starting with the Hardy-Weinberg principle (HWP) and genetic drift. Here I argue that teaching these two topics first aligns neither with current expert knowledge, nor with good pedagogy. Student difficulties with mathematics in general, and probability in particular, make population genetics difficult to teach and learn. I recommend an alternative, historically inspired ordering of population genetics topics, based on progressively increasing mathematical difficulty. This progression can facilitate just-in-time math instruction. This alternative ordering includes, but does not privilege, the HWP and genetic drift. Stochastic events whose consequences are felt within a single generation, and the deterministic accumulation of the effects of selection across multiple generations, are both taught before tackling the stochastic accumulation of the effects of accidents of sampling.  相似文献   

9.
    
Traditional models of disease evolution are based upon the deterministic competition between strains that confer complete cross-immunity, and predict the selection of strains with higher basic reproductive ratios ( R 0). In contrast, evolution in a stochastic setting is determined by a complex mixture of influences. Here, to isolate the impact of stochasticity, we constrain all competing strains to have an equal basic reproductive ratio – thereby eliminating deterministic selection. The resulting stochastic models predict an evolutionary unstable strategy, which separates a region favouring the evolution of rapid-transmission (acute) strains from one favouring persistent (chronic) strains. We find this to be a generic phenomenon with strain evolution consistently driven towards extremes of epidemiological behaviour. Even in the absence of an equal R 0 constraint, such stochastic selective pressures operate in addition to standard deterministic selection and will therefore influence the evolutionary behaviour of disease in all scenarios.  相似文献   

10.
Because of the ubiquity of genetic variation for quantitative traits, virtually all populations have some capacity to respond evolutionarily to selective challenges. However, natural selection imposes demographic costs on a population, and if these costs are sufficiently large, the likelihood of extinction will be high. We consider how the mean time to extinction depends on selective pressures (rate and stochasticity of environmental change, and strength of selection), population parameters (carrying capacity, and reproductive capacity), and genetics (rate of polygenic mutation). We assume that in a randomly mating, finite population subject to density-dependent population growth, individual fitness is determined by a single quantitative-genetic character under Gaussian stabilizing selection with the optimum phenotype exhibiting directional change, or random fluctuations, or both. The quantitative trait is determined by a finite number of freely recombining, mutationally equivalent, additive loci. The dynamics of evolution and extinction are investigated, assuming that the population is initially under mutation-selection-drift balance. Under this model, in a directionally changing environment, the mean phenotype lags behind the optimum, but on the average evolves parallel to it. The magnitude of the lag determines the vulnerability to extinction. In finite populations, stochastic variation in the genetic variance can be quite pronounced, and bottlenecks in the genetic variance temporarily can impair the population's adaptive capacity enough to cause extinction when it would otherwise be unlikely in an effectively infinite population. We find that maximum sustainable rates of evolution or, equivalently, critical rates of environmental change, may be considerably less than 10% of a phenotypic standard deviation per generation.  相似文献   

11.
Summary A common assumption in mathematical models of parasitism is that the susceptibility to parasitism of an individual host increases both with host density and the degree of host spatial aggregation. To determine whether this assumption is correct in nature, we developed a factorial field experiment with the parasitic marine isopod Hemioniscus balani and its barnacle host Chthamalus dalli. Our factorial design enabled evaluation of the separate effects on parasitism of the two factors (host density and host spatial pattern) and also to assess the host density-spatial pattern interaction effect. Both host density and spatial aggregation were found to lead to increased parasitism, and the interaction effect was nonsignificant. These findings are the first experimental field demonstration that these processes occur in nature, as widely assumed in ecological theory.  相似文献   

12.
    
Abstract.  If host seeds are absent, females of the seed beetle Callosobruchus maculatus sometimes 'dump' eggs on unsuitable substrates, which causes complete larval mortality and decreases female lifespan. To understand the possible function of this behaviour, the present study examines genetic variation in dumping behaviour between and within populations. When deprived of hosts, females from an African population are much more prone to dump eggs than Asian females, most of which dump no eggs over their lifetimes. Egg dumping therefore cannot be explained as a simple, species-wide constraint imposed by the accumulation of mature oocytes. A transfer experiment tested the hypothesis that dumping eggs improves a female's ability to exploit the subsequent availability of seeds, perhaps by preventing a disruption of oocyte maturation. Contrary to prediction, the number of eggs laid after females are transferred to seeds is inversely related to the number dumped during deprivation. Two bidirectional selection experiments revealed heritable variation in egg-dumping behaviour within the African population. Deprived females from the dumper line dump more than twice as many eggs as do females from the nondumper line. Pre-adult development time is significantly longer in the nondumper line, which suggests that trade-offs with other fitness components could maintain variation in egg-laying behaviour within populations. The divergent responses to host availability by African and Asian females may represent a pleiotropic effect of similarly divergent responses to host quality.  相似文献   

13.
14.
Increased transmission of parasites and diseases is generally considered as a major cost of social life. In this study we tested the hypothesis regarding ectoparasites as a cost of living in crowded habitats in the common lizard (Lacerta vivipara). We used two approaches to explore this question. First, we tested if ectoparasite load and prevalence are positively correlated with host density in the field. Second, we experimentally tested if lizards avoid parasitized conspecifics. Contrary to expectation, we found that (1) ectoparasite load is negatively correlated with lizard density; (2) prevalence does not significantly increase with density; (3) unparasitized lizards do not avoid parasitized conspecifics but are attracted by them whatever their parasite load. These findings suggest that ectoparasites cannot be considered as a cost of living at high density in the common lizard, in spite of the potential negative impact mites may have on lizard fitness. Received: 18 August 1996 / Accepted: 7 February 1997  相似文献   

15.
    
Life history traits are used to predict asymptotic odds of extinction from dynamic conditions. Less is known about how life history traits interact with stochasticity and population structure of finite populations to predict near-term odds of extinction. Through empirically parameterized matrix population models, we study the impact of life history (reproduction, pace), stochasticity (environmental, demographic), and population history (existing, novel) on the transient population dynamics of finite populations of plant species. Among fast and slow pace and either a uniform or increasing reproductive intensity or short or long reproductive lifespan, slow, semelparous species are at the greatest risk of extinction. Long reproductive lifespans buffer existing populations from extinction while the odds of extinction of novel populations decrease when the reproductive effort is uniformly spread across the reproductive lifespan. Our study highlights the importance of population structure, pace, and two distinct aspects of parity for predicting near-term odds of extinction.  相似文献   

16.
This study presents a continuous-time model for the sylvatic transmission dynamics of two strains of Trypanosoma cruzi enzootic in North America, in order to study the role that adaptations of each strain to distinct modes of transmission (classical stercorarian transmission on the one hand, and vertical and oral transmission on the other) may play in the competition between the two strains. A deterministic model incorporating contact process saturation predicts competitive exclusion, and reproductive numbers for the infection provide a framework for evaluating the competition in terms of adaptive trade-off between distinct transmission modes. Results highlight the importance of oral transmission in mediating the competition between horizontal (stercorarian) and vertical transmission; its presence as a competing contact process advantages vertical transmission even without adaptation to oral transmission, but such adaptation appears necessary to explain the persistence of (vertically-adapted) T. cruzi IV in raccoons and woodrats in the southeastern United States.  相似文献   

17.
Preferences by parasites for particular hosts may have important implications for the functioning of host–parasite systems, however, this parasitic life-history trait remains little studied. No detrimental effect of Louse Fly Crataerina pallida parasitism has been found on Common Swift Apus apus nestling hosts. Host selection choices may be mediating the effect this parasite has and account for this apparent avirulence. Two aspects of parasite host selection were studied at a breeding colony of Common Swifts during 2008; (1) intra-brood differences in C. pallida parasitism were studied to determine the influence of nestling rank, (2) differences in male and female C. pallida parasitism were investigated, as they may result in varying costs of parasitism to hosts. C. pallida populations were found to preferentially parasitize higher rather than lower ranking nestlings within broods of both two and three chicks. Greater proportions of females were seen upon nestlings than at the nest, and upon higher ranking than lower ranking nestlings within broods. These results indicate that host selection occurs and this may thus account for the lack of parasitic virulence reported within this host–parasite system.  相似文献   

18.
Martens  Koen 《Hydrobiologia》2000,419(1):83-101
Specific Mate Recognition Systems (SMRS) consist of a set of morphological, behavioural and physiological traits which allow mate recognition. The Limnocytherinae, a lineage of non-marine podocopid Ostracoda, have a relatively wide diversity of copulatory modules, a concept largely congruent with the morphological part of the SMRS. The present paper describes the various copulatory modules in some detail and discusses potential mechanisms responsible for the divergence of these modules. Although none of the processes was thus far demonstrated directly, resulting patterns provide indirect evidence that four different mechanisms contribute. Stochastic processes (chance) as well as developmental and other phylogenetic constraints are involved in the initial selection (choice) of modified structures. Subsequent (positive) directional sexual selection on traits of the recognition systems causes radiative speciation within lineages. At all times, natural selection acts on the development of these structures, either stabilising or negative directional. A number of potential tests for these hypotheses are suggested.  相似文献   

19.
    
We analyze the stochastic components of the Robertson–Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity.  相似文献   

20.
    
We applied QTL mapping to fitness variation of Avena barbata under well-watered greenhouse conditions. One hundred eighty recombinant inbred lines were assayed for flowering time, total size, mass allocation, and fitness. Composite Interval Mapping identified two to five loci affecting these traits. These were well supported in more powerful Multiple and Bayesian interval mapping analyses that indicated that additional QTL, as well as epistatic interactions also affect the traits. The posterior distribution of the number of QTL peaked at five to eight additive loci and one to two interactions, but the specific locations of the additional loci could not be determined with certainty. In most cases in which loci for separate traits mapped to similar locations, explicit tests supported pleiotropy over close linkage of separate loci. Alleles that hastened first flowering generally reduced vegetative mass, increased reproductive mass, and were associated with high fitness. Because effects on mass allocation generally cancelled one another, few loci affected total plant size. Only one QTL affected vegetative mass independent of reproductive mass and this locus had little effect on fitness. Thus selection acts to shift the mass allocation toward greater reproductive allocation, because the correlated decrease in vegetative mass poses only a minor fitness cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号