首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study investigates the time-varying control of pituitary hormone secretion over the day and night (D/N). To this end, we implemented an analytical platform designed to reconstruct simultaneously 1) basal (nonpulsatile) secretion, 2) single or dual secretory-burst waveforms, 3) random effects on burst amplitude, 4) stochastic pulse-renewal properties, 5) biexponential elimination kinetics, and 6) experimental uncertainty. The statistical solution is conditioned on a priori pulse-onset times, which are estimated in the first stage. Primary data composed of thyrotropin (TSH) concentrations were monitored over 24 h in 27 healthy adults. According to statistical criteria, 21/27 profiles favored a dual compared with single secretory-burst waveform. An objectively defined waveform change point (D/N boundary) emerged at 2046 (+/-23 min), after which 1) the mass of TSH released per burst increases by 2.1-fold (P < 0.001), 2) TSH secretory-burst frequency rises by 1.2-fold (P < 0.001), 3) the latency to maximal TSH secretion within a burst decreases by 67% (P < 0.001), 4) variability in secretory-burst shape diminishes by 50% (P < 0.001), and 5) basal TSH secretion declines by 17% (P < 0.002). In contrast, the regularity of successive burst times and the slow-phase half-life are stable. In conclusion, nycthemeral mechanisms govern TSH secretory-burst mass, frequency, waveform, and variability but not evidently TSH elimination kinetics or the pulse-timing process. Further studies will be required to assess the generality of the foregoing distinctive control mechanisms in other hypothalamo-pituitary axes.  相似文献   

2.
The secretion of anterior-pituitary hormones is subject to negative feedback. Whether negative feedback evolves dynamically over 24 h is not known. Conventional experimental paradigms to test this concept may induce artifacts due to nonphysiological feedback. These limitations might be overcome by a noninvasive methodology to quantify negative feedback continuously over 24 h without disrupting the axis. The present study exploits a recently validated model-free regularity statistic, approximate entropy (ApEn), which monitors feedback changes with high sensitivity and specificity (both >90%; Pincus SM, Hartman ML, Roelfsema F, Thorner MO, Veldhuis JD. Am J Physiol Endocrinol Metab 273: E948-E957, 1999). A time-incremented moving window of ApEn was applied to LH time series obtained by intensive (10-min) blood sampling for four consecutive days (577 successive measurements) in each of eight healthy men. Analyses unveiled marked 24-h variations in ApEn with daily maxima (lowest feedback) at 1100 +/- 1.7 h (mean +/- SE) and minima (highest feedback) at 0430 +/- 1.9 h. The mean difference between maximal and minimal 24-h LH ApEn was 0.348 +/- 0.018, which differed by P < 0.001 from all three of randomly shuffled versions of the same LH time series, simulated pulsatile data and assay noise. Analyses artificially limited to 24-h rather than 96-h data yielded reproducibility coefficients of 3.7-9.0% for ApEn maxima and minima. In conclusion, a feedback-sensitive regularity statistic unmasks strong and consistent 24-h rhythmicity of the orderliness of unperturbed pituitary-hormone secretion. These outcomes suggest that ApEn may have general utility in probing dynamic mechanisms mediating feedback in other endocrine systems.  相似文献   

3.
Quantification of in vivo pituitary hormone secretion requires simultaneous appraisal of implicit 1) secretory-burst waveform, mass, and stochastic pulse timing; 2) basal secretion; 3) biexponential elimination kinetics; and 4) random experimental error (Keenan DM, Licinio J, and Veldhuis JD. Proc Natl Acad Sci USA 98: 4028-4033, 2001). The present study extends this analytic formalism to allow for time of day-dependent waveform adaptation (burst-shape change) at statistically determinable boundary times. Thereby, we test the hypothesis that diurnal mechanisms and glucocorticoid negative feedback jointly govern distinctive facets of the burstlike secretion of ACTH. To this end, we reanalyzed intensively (10 min) sampled 24-h plasma ACTH concentration profiles collected previously under feedback-intact and drug-induced cortisol depletion in nine healthy adults. Akaiki information criterion-based model comparison favored dual (rather than single) secretory-burst representation of 24-h ACTH release in both the intact and low-cortisol setting in eight of nine subjects. Under feedback-intact conditions, analytically predicted waveform changepoints (median clock times 0611 and 1739) flanked an interval of elevated ACTH secretory-burst mass (P < 10-3). Experimental hypocortisolemia did not alter day/night boundaries, but 1) stimulated day ACTH secretory-burst mass (P < 10-3); 2) accelerated day ACTH secretory-burst frequency (P < 10-3); and 3) forced skewness of day ACTH secretory bursts toward more rapid initial release (P < 0.05). In contrast, the basal ACTH secretion rate and regularity of interpulse-interval lengths were invariant of day/night segmentation and cortisol availability. In conclusion, unknown diurnal factors and systemic cortisol concentrations codetermine ACTH secretory-burst waveform, frequency, and mass, whereas neither mechanism regulates basal ACTH release or regularity of the burst-renewal process.  相似文献   

4.
Evidence suggests that both the arterial baroreflex and vestibulosympathetic reflex contribute to blood pressure regulation, and both autonomic reflexes integrate centrally in the medulla cardiovascular center. A previous report indicated increased sympathetic baroreflex sensitivity during the midluteal (ML) phase of the menstrual cycle compared with the early follicular (EF) phase. On the basis of this finding, we hypothesize an augmented vestibulosympathetic reflex during the ML phase of the menstrual cycle. Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate responses to head-down rotation (HDR) were measured in 10 healthy females during the EF and ML phases of the menstrual cycle. Plasma estradiol (Delta72 +/- 13 pg/ml, P < 0.01) and progesterone (Delta8 +/- 2 ng/ml, P < 0.01) were significantly greater during the ML phase compared with the EF phase. The menstrual cycle did not alter resting MSNA, MAP, and heart rate (EF: 13 +/- 3 bursts/min, 80 +/- 2 mmHg, 65 +/- 2 beats/min vs. ML: 14 +/- 3 bursts/min, 81 +/- 3 mmHg, 64 +/- 3 beats/min). During the EF phase, HDR increased MSNA (Delta3 +/- 1 bursts/min, P < 0.02) but did not change MAP or heart rate (Delta0 +/- 1 mmHg and Delta1 +/- 1 beats/min). During the ML phase, HDR increased both MSNA and MAP (Delta4 +/- 1 bursts/min and Delta3 +/- 1 mmHg, P < 0.04) with no change in heart rate (Delta0 +/- 1 beats/min). MSNA and heart rate responses to HDR were not different between the EF and ML phases, but MAP responses to HDR were augmented during the ML phase (P < 0.03). Our results demonstrate that the menstrual cycle does not influence the vestibulosympathetic reflex but appears to alter MAP responses to HDR during the ML phase.  相似文献   

5.
Eight adult, Yorkshire-Landrace crossbred boars were used to evaluate the effects of the synthetic glucocorticoid, dexamethasone (DXM) on the secretion of luteinizing hormone (LH) and testosterone. Four treatments of 4 d each were administered: 1) 2 ml i.m. of 0.9% (w/v) NaCl solution (control); 2) DXM (2 ml i.m. as a dose of 50 mug/kg body weight, every 12 h); 3) DXM plus gonadotropin releasing hormone (GnRH; 50 mug in 1 ml i.m. every 6 h); 4) 2 ml NaCl solution i.m. plus a single dose of 50 mug i.v. GnRH. Blood samples were collected twice daily from an indwelling jugular vein catheter for 3 d and at 15 min intervals for 12 h on the fourth day. DXM treatment resulted in lower (P M0.01) testosterone values in samples collected twice daily. More frequent sampling on Day 4 revealed that DXM reduced (P<0.01) the number of pulsatile increases of LH in plasma, although the individual mean pulse areas did not fiffer between the NaCl- and DXM-treated groups. This was associated with a decreased pulse frequency of testosterone (P<0.05). GnRH plus DXM treatment caused a significant elevation (P<0.05) in mean values as well as in the mean pulse area and in the total of the individual pulse areas of LH. Pulse area and mean concentrations of testosterone were also increased (P<0.01) when GnRH was given concurrently with DXM. Comparison of a single injection of GnRH when NaCl was being administered (Treatment 4) to one of the injections of GnRH (Day 4, 0800 h, Treatment 3) revealed a subsequently greater (P<0.01) pulse area in LH above base-line during DXM treatment (7.67 +/- 1.17 ng/ml) than during the NaCl (4.17 +/- 0.73 ng/ml) treatment period. This was reflected in a greater (P<0.01) pulse increase of testosterone following the LH pulse in boars treated with DXM. It is concluded that DXM treatment in the boar can reduce the pulse frequency of LH secretion, presumably by affecting GnRH secretion, but it has less effect directly on pituitary LH synthesis and release.  相似文献   

6.
Testosterone (T) secretion declines in the aging male, albeit for unknown reasons. From an ensemble perspective, repeated incremental signaling among gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and T is required to maintain physiological androgen availability. Pattern-regularity statistics, such as univariate approximate entropy (ApEn) and bivariate cross-ApEn, provide specific and sensitive model-free measurement of altered multi-pathway control. The present study exploits partial muting of one pathway (GnRH drive) to appraise adaptive regulation of LH and T secretion in young and aging individuals. Analyses comprised 100 paired 18-h LH and T concentration time series obtained in 25 healthy men ages 20-72 yr each administered placebo and three graded doses of a specific GnRH-receptor antagonist. Graded blockade of GnRH drive increased the individual regularity of LH and T secretion and the synchrony of LH-T feedforward and T-LH feedback in the cohort as a whole (P<0.001 for each). However, age markedly attenuated ganirelix-induced enhancement of univariate T orderliness and bivariate LH-T feedback and T-LH feedback synchrony (P 相似文献   

7.
Because of confounding effects of subject-specific and hormone-specific metabolic clearance, the nature of anterior pituitary secretory events in vivo is difficult to ascertain. We review an approach to this problem, in which deconvolu-tion analysis is used to dissect the underlying secretory behavior of an endocrine gland quantitatively from available serial plasma hormone concentration measurements assuming one- or two-compartment elimination kinetics. This analytical tool allows one to ask the following physiological questions: (a) does the anterior pituitary gland secrete exclusively in randomly dispersed bursts, and/or does a tonic (constitutive) mode of interburst hormone secretion exist? and (b) what secretory mechanisms generate the circadian or nyctohemeral rhythms in blood concentrations of pituitary hormones? Waveform-independent deconvolution analysis of 24-h serum hormone concentration profiles of immunoreactive growth hormone (GH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin, thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), and β-endorphin in normal men sampled every 10 min showed that (a) anterior pituitary gland secretion in vivo occurs in an exclusively burstlike mode for all hormones except TSH and prolactin (for the latter two, a mixed burst and basal mode pertains); (b) significant nyctohemeral regulation of secretory burst frequency alone is not demonstrable for any hormone; (c) prominent 24-h variations in secretory-burst amplitude alone are delineated for ACTH and LH; (d) TSH, GH, and β-endorphin are both frequency and amplitude controlled; (e) prolactin manifests 24-h rhythms in both secretory-burst amplitude and nadir secretory rates; (f) no significant diurnal variations occur in FSH secretory parameters; and (g) a fixed hormone half-life yields good fits of the 24-h serum hormone concentration series, which indicates that there is no need to introduce diurnal variations in hormone half-lives. In summary, the normal human anterior pituitary gland appears to release its various (glyco)protein hormones via intermittent secretory episodes that are apparently unassociated with significant basal hormone secretion, except in the case of TSH and prolactin. Hormone-specific amplitude and/or frequency control of secretory burst activity over 24 h provides the mechanistic basis for the classically recognized nyctohemeral rhythms in plasma concentrations of adenohypophyseal hormones in the human.  相似文献   

8.
Because of confounding effects of subject-specific and hormone-specific metabolic clearance, the nature of anterior pituitary secretory events in vivo is difficult to ascertain. We review an approach to this problem, in which deconvolu-tion analysis is used to dissect the underlying secretory behavior of an endocrine gland quantitatively from available serial plasma hormone concentration measurements assuming one- or two-compartment elimination kinetics. This analytical tool allows one to ask the following physiological questions: (a) does the anterior pituitary gland secrete exclusively in randomly dispersed bursts, and/or does a tonic (constitutive) mode of interburst hormone secretion exist? and (b) what secretory mechanisms generate the circadian or nyctohemeral rhythms in blood concentrations of pituitary hormones? Waveform-independent deconvolution analysis of 24-h serum hormone concentration profiles of immunoreactive growth hormone (GH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin, thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), and β-endorphin in normal men sampled every 10 min showed that (a) anterior pituitary gland secretion in vivo occurs in an exclusively burstlike mode for all hormones except TSH and prolactin (for the latter two, a mixed burst and basal mode pertains); (b) significant nyctohemeral regulation of secretory burst frequency alone is not demonstrable for any hormone; (c) prominent 24-h variations in secretory-burst amplitude alone are delineated for ACTH and LH; (d) TSH, GH, and β-endorphin are both frequency and amplitude controlled; (e) prolactin manifests 24-h rhythms in both secretory-burst amplitude and nadir secretory rates; (f) no significant diurnal variations occur in FSH secretory parameters; and (g) a fixed hormone half-life yields good fits of the 24-h serum hormone concentration series, which indicates that there is no need to introduce diurnal variations in hormone half-lives. In summary, the normal human anterior pituitary gland appears to release its various (glyco)protein hormones via intermittent secretory episodes that are apparently unassociated with significant basal hormone secretion, except in the case of TSH and prolactin. Hormone-specific amplitude and/or frequency control of secretory burst activity over 24 h provides the mechanistic basis for the classically recognized nyctohemeral rhythms in plasma concentrations of adenohypophyseal hormones in the human.  相似文献   

9.
We studied 130 healthy aged women (n = 57) and men (n = 73), age 65-88 yr, with age-related reductions in insulin-like growth factor I and gonadal steroid levels to assess the interrelationships between cortisol and growth hormone (GH) secretion and whether these relationships differ by sex. Blood was sampled every 20 min from 8:00 PM to 8:00 AM; cortisol was measured by RIA and GH by immunoradiometric assay, followed by deconvolution analyses of hormone secretory parameters and assessment of approximate entropy (ApEn) and cross-ApEn. Cortisol mass/burst, cortisol production rate, and mean and integrated serum cortisol concentrations (P < 0.0005), and overnight basal GH secretion (P < 0.05), were elevated in women vs. men. Integrated cortisol concentrations were directly related to most measures of GH secretion in women (P < 0.01) and with mean and integrated GH concentrations in men (P < 0.05). Integrated GH concentrations were directly related to mean and integrated cortisol levels in women (P < 0.005) and men (P < 0.05), with no sex differences. There were no sex differences in cortisol or GH ApEn values; however, the cross-ApEn score was greater in women (P < 0.05), indicating reduced GH-cortisol pattern synchrony in aged women vs. men. There were no significant relationships of integrated cortisol secretion with GH ApEn, or vice versa, in either sex. Thus postmenopausal women appear to maintain elevated cortisol production in patterns that are relatively uncoupled from those of GH, whereas mean hormone outputs remain correlated.  相似文献   

10.
Pituitary and testicular endocrine responses to exogenous gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH), respectively, were assessed for adult rams in an investigation of the regulation of seasonal changes in the patterns of episodic LH and testosterone secretion. Concurrent variations in testis size and in circulating levels of follicle stimulating hormone (FSH) and prolactin (PRL) were also examined. On 10 occasions throughout the year, serum hormone levels were assessed over 6- to 8-h periods during which time rams were left untreated (day 1) or were injected (iv) with single doses of either 10 micrograms synthetic GnRH (day 2) or 30 micrograms NIH-LH-S18 (day 3); blood samples were collected from the jugular vein at 10- to 20-min intervals. Testicular redevelopment during the summer, as indicated by increasing testis diameter measurements, was associated with increases in mean FSH level and was preceded by a springtime rise in mean PRL level; "spontaneously" occurring LH pulses and those produced in response to GnRH treatment were relatively large during this period. Increases in the magnitude of testosterone elevations in response to both endogenously and exogenously produced LH pulses occurred in August. Mean testosterone levels were elevated fourfold in the fall as a consequence of relatively frequent and small LH pulses stimulating a more responsive testis to produce more frequent and larger testosterone elevations; endogenous LH pulses, however, did not appear to stimulate the testes maximally at this time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Before castration, the mean plasma concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) did not differ between FF and ++ Booroola rams. After castration, mean LH and FSH concentrations increased after 8 h, and for the next 14 days the rate of increase in FSH, but not LH, secretion was significantly faster in FF than in ++ rams (P less than 0.05). Mean FSH concentrations over this period were significantly higher in FF than in ++ rams (P less than 0.05). In both genotypes, the ranked FSH values did not significantly change their order over time, i.e. a significant within-ram effect was noted (P less than 0.05). Repeated-measures analysis of variance indicated a significant effect of genotype on mean FSH secretion (P less than 0.05) and a significant effect of sire in the FF (P less than 0.05), but not the ++ (P = 0.76), genotype. From Day 28 to Day 58 after castration, FSH and LH concentrations were variable and no overall increases in concentrations were observed. The mean concentrations of both hormones over this period were not related to genotype. There were no gene-specific differences in pulsatile LH secretion 14 weeks after castration. However, the mean LH, but not FSH, response to a bolus injection of 25 micrograms of gonadotrophin-releasing hormone (GnRH) was significantly higher in FF than in ++ rams (P less than 0.05) and this was not significantly affected by sire. These studies support the hypothesis that the F gene is expressed in adult rams, in terms of pituitary responsiveness to an injection of GnRH and to the removal of the testes, but it is not clear from this study whether the influence of sire is related to or independent of the apparent gene-specific differences.  相似文献   

12.
Concentration of plasma luteinizing hormone (LH) and oestradiol concentrations and responses to a standard challenge with a gonadotrophin-releasing hormone (GnRH) analogue were measured at certain stages of anoestrus during consecutive cycles in five beagle bitches. Blood samples were collected every 20 min for 6h followed immediately by injection of GnRH analogue (0.16 micrograms i.v.) and collection of further samples after 10, 20, 40 and 60 min. Five, 10, 17 and three such sampling sequences were obtained during the luteal phase, transition to anoestrus, anoestrus and pro-oestrus respectively (i.e. 154-71, 114-44, 85-11 and 7-1 days before the preovulatory LH peak, respectively). Pulsatile LH secretion occurred spontaneously at all stages of the luteal phase and anoestrus and there was no effect of cycle stage on mean LH concentration or variability. In contrast, oestradiol could not be detected in most samples from early and mid-anoestrus until approximately one month before the preovulatory LH peak, after which average oestradiol concentration and between sample variability appeared to increase. Mean (+/- SEM) oestradiol concentration for all samples collected from 100-75, 74-50, 49-25, 24-10 and 9-1 days before LH peak was 1.4 +/- 0.1, 1.3 +/- 0.1, 2.4 +/- 0.3, 11.0 +/- 1.4 and 36.0 +/- 3.2 pg ml-1, respectively. Plasma LH concentration increased in all bitches after GnRH analogue injection (2.7 +/- 0.7 ng ml-1 at t = 0, 12.5 +/- 1.0 ng ml-1 at t = 10 min, mean +/- SEM, n = 35) regardless of cycle stage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Thirty-two ovariectomized cows were used to determine the time course for the negative feedback effect of estradiol-17beta (E) on secretion of the luteinizing hormone (LH). The cows were injected with gonadotropin releasing hormone (GnRH; 40 mug) 2.5 or 5 h after pretreatment with E (1 mug/kg body weight) or with a vehicle for control (C). Pretreatment with E resulted in lower serum concentrations of LH at 2.5 h (0.27 vs 0.90 ng/ml; P < 0.01) and at 5 h (0.27 vs 0.67 ng/ml; P < 0.01); less LH was released in response to GnRH at 2.5 h after treatment compared to cows treated with C (10 +/- 4.9 vs 27 +/- 3.8 ng/ml; P < 0.001). However, when GnRH was administered 5 h after E or C, there was no difference in the total amount of LH released (34 +/- 1.8 vs 26 +/- 4.4 ng/ml; P > 0.2). Time to half area (estimate of decay for the induced surge of LH) was longer for cows treated with E when compared to those treated with C (1.3 vs 0.9 h, P < 0.001; 1.5 vs 0.8 h, P < 0.001). Time to half area was not affected by the time of administration of GnRH after E (P > 0.4). These results suggest that E acts in the pituitary to cause the initial decrease in concentrations of LH. Pituitaries in animals pretreated with E regained the capacity to release as much LH at 5 h after treatment as those treated with C at a time when LH concentrations were still suppressed by E. Thus, the hypothalamus or an extra-hypothalamic area may be involved in maintaining the suppression of LH secretion after the initial effect on the pituitary has declined.  相似文献   

14.
The response of serum luteinizing hormone (LH) to morphine, naloxone and gonadotropin-releasing hormone (GnRH) in ovariectomized, suckled (n=4) and nonsuckled (n=3) cows was investigated. Six months after ovariectomy and calf removal, the cows were challenged with 1mg, i.v. naloxone/kg body weight and 1 mg i.v. morphine/kg body weight in a crossover design; blood was collected at 15-minute intervals for 7 hours over a 3-day period. To evaluate LH secretion and pituitary responsiveness, 5 mug of GnRH were administered at Hour 6 on Day 1. On Days 2 and 3, naloxone or morphine was administered at Hour 3, followed by GnRH (5 mug/animal) at Hour 6. Mean preinjection LH concentrations (3.6 +/- 0.2 and 4.7 +/- 0.2 ng/ml), LH pulse frequency (0.6 +/- 0.1 and 0.8 +/- 0.1 pulses/hour) and LH pulse amplitude (2.9 +/- 0.5 and 2.9 +/- 0.6 ng/ml) were similar for suckled and nonsuckled cows, respectively. Morphine decreased (P < 0.01) mean serum LH concentrations (pretreatment 4.2 +/- 0.2 vs post-treatment 2.2 +/- 0.2 ng/ml) in both suckled and nonsuckled cows; however, mean serum LH concentrations remained unchanged after naloxone. Nonsuckled cows had a greater (P < 0.001) LH response to GnRH than did suckled cows (area of response curve: 1004 +/- 92 vs 434 +/- 75 arbitrary units). We suggest that opioid receptors are functionally linked to the GnRH secretory system in suckled and nonsuckled cows that had been ovariectomized for a long period of time. However, gonadotropin secretion appears not to be regulated by opioid mechanisms, and suckling inhibits pituitary responsiveness to GnRH in this model.  相似文献   

15.
Sex differences in sympathetic neural control during static exercise in humans are few and the findings are inconsistent. We hypothesized women would have an attenuated vasomotor sympathetic response to static exercise, which would be further reduced during the high sex hormone [midluteal (ML)] vs. the low hormone phase [early follicular (EF)]. We measured heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) in 11 women and 10 men during a cold pressor test (CPT) and static handgrip to fatigue with 2 min of postexercise circulatory arrest (PECA). HR increased during handgrip, reached its peak at fatigue, and was comparable between sexes. BP increased during handgrip and PECA where men had larger increases from baseline. Mean ± SD MSNA burst frequency (BF) during handgrip and PECA was lower in women (EF, P < 0.05), as was ΔMSNA-BF smaller (main effect, both P < 0.01). ΔTotal activity was higher in men at fatigue (EF: 632 ± 418 vs. ML: 598 ± 342 vs. men: 1,025 ± 416 a.u./min, P < 0.001 for EF and ML vs. men) and during PECA (EF: 354 ± 321 vs. ML: 341 ± 199 vs. men: 599 ± 327 a.u./min, P < 0.05 for EF and ML vs. men). During CPT, HR and MSNA responses were similar between sexes and hormone phases, confirming that central integration and the sympathetic efferent pathway was comparable between the sexes and across hormone phases. Women demonstrated a blunted metaboreflex, unaffected by sex hormones, which may be due to differences in muscle mass or fiber type and, therefore, metabolic stimulation of group IV afferents.  相似文献   

16.
Octreotide is a potent somatostatin analog that inhibits growth hormone (GH) release and restricts somatotrope cell growth. The long-acting octreotide formulation Sandostatin LAR is effective clinically in approximately 60% of patients with acromegaly. Tumoral GH secretion in this disorder is characterized by increases in pulse amplitude and frequency, nonpulsatile (basal) release, and irregularity. Whether sustained blockade by octreotide can restore physiological secretion patterns in this setting is unknown. To address this question, we studied seven patients with GH-secreting tumors during chronic receptor agonism. Responses were monitored by sampling blood at 10-min intervals for 24 h, followed by analyses of secretion and regularity by multiparameter deconvolution and approximate entropy (ApEn). The somatostatin agonist suppressed GH secretory-burst mass, nonpulsatile (basal) GH release, and pulsatile secretion, thereby decreasing total GH secretion by 86% (range 70-96%). ApEn decreased from 1.203 +/- 0.129 to 0.804 +/- 0.141 (P = 0.032), denoting greater regularity. None of GH pulse frequency, basal GH secretion rates, or ApEn normalized. In summary, chronic somatostatin agonism is able to repress amplitude-dependent measures of excessive GH secretion in acromegaly. Presumptive tumoral autonomy is inferred by continued elevations of event frequency, overall pattern disruption (irregularity), and nonsuppressible basal GH secretion.  相似文献   

17.
Thirty-two postpartum (PP) cows were used to investigate the effect of suckling on secretion of luteinizing hormone (LH). Calves remained with their dams (suckled; S), or they were removed within 24 h of birth (nonsuckled; NS). To evaluate the relationship between suckling and negative feedback regulation of LH, cows were ovariectomized on Day 5 PP, then injected intravenously with estradiol-17 beta (E) or vehicle (V) on Day 10 PP. To investigate the influence of suckling on the gonadotropin-releasing hormone (GnRH)-induced release of LH, cows were injected with 80 micrograms of GnRH on a single day varying from 18 to 85 days PP. Suckling inhibited the postcastration rise in LH, as LH concentrations increased at a faster rate in NS compared with S cows [0.031 +/- 0.02 ng/(ml X day) LH: P less than 0.05]; this was not influenced by basal amounts of E since amounts did not differ between S and NS cows at ovariectomy (5.37 +/- 0.36 vs. 5.34 +/- 0.48 pg/ml E; P greater than 0.05). Serum concentrations of LH were negatively related to total follicular E only in S cows (r = -0.71; P less than 0.01). Estradiol-17 beta caused a decrease not only in the level but also the variability in LH concentrations in both S and NS cows: LH in S cows was less variable after E than in NS cows (P less than 0.001), but the magnitude of LH suppression was not influenced by suckling (P greater than 0.25). The regression of LH response on days PP was essentially the same over time for both S (P greater than 0.25) and NS (P greater than 0.25) cows, indicating that LH response to a GnRH injection was not influenced by suckling or days PP. Suckled cows had a tendency to release more LH relative to their baseline in response to GnRH as time PP increased (P less than 0.10), but NS cows did not. These results indicate that even though ovarian secretions inhibit LH release from the pituitary, other inhibitory influences may have a major effect in S cows. Concentrations of LH were lower in S cows than NS cows on Day 10 PP, following removal of the ovaries on Day 5, suggesting that suckling had a direct effect on the hypothalamic-pituitary axis.  相似文献   

18.
Neuroendocrine axes are feedback- and feedforward-coupled dynamic ensembles. Disruption of selected pathways in such networklike organizations may explicate loss of orderly hormonal output as observed in aging. To test this notion more explicitly, we implemented an earlier computer-assisted biomathematical model of the interlinked male hypothalamo [gonadotropin-releasing hormone (GnRH)]-pituitary [luteinizing hormone, (LH)]-testicular [Leydig cell testosterone (Te)] axis (Am J Physiol Endocrinol Metab Physiol 275: E157--E176, 1988; Keenan D., W. Sun, and J. D. Veldhuis, SIAM J Appl Math 61: 934--965, 2000). Thereby, we appraise mechanistic hypotheses for more disorderly LH and Te secretion in aging men. We compare model predictions with monitored abnormalities in the older male, namely, irregular patterns of individual and synchronous LH and Te release, reduced 24-h rhythmic Te output, and variably elevated LH secretion. Among the mechanisms examined, the most parsimonious aging hypothesis would entail impaired LH feedforward on Te without or with attenuated Te feedback on GnRH/LH secretion. This investigative strategy should aid in exploring new postulates of disrupted feedback networks in pathophysiology.  相似文献   

19.
The aim of this study was of establishing a correlation between endogenous LH secretion and the magnitude of the LH response to challenges with GnRH and the opioid antagonist naloxone during lactation, and between these characteristics and LH secretion and follicular development after weaning. Sows (n = 9) were sampled for 6 h at day 2 post-partum, for 12 h on day 26 of lactation and for 6 h immediately after weaning at day 27 of lactation. Four hours after the beginning of sampling at day 26 of lactation all sows were injected with 2 mg/kg i.v. of naloxone hydrochloride and 5 h later with 100 microg/sow of GnRH. Follicular development was studied in all sows at slaughter the day after weaning. There was an effect of time (sampling period; P < 0.001) on mean plasma LH, with an increase (P < 0.05) in LH the day after weaning compared to mean LH concentrations during lactation. Naloxone and GnRH treatment both increased (P < 0.05) mean LH concentrations. A positive relationship (r = 0.58, P < 0.01) between mean plasma LH after GnRH and after weaning was established. Although there were differences (P < 0.001) between sows in follicular fluid volume, there were no correlations between mean follicular fluid volume and mean LH concentrations after GnRH or after weaning. These data indicate that the LH response to GnRH during late lactation could be useful predictor of LH activity after weaning. However, none of the measures of endogenous or induced LH secretion were associated with differences in ovarian follicular size after weaning. Direct evidence is therefore still needed for a functional link between differences in LH in lactation and differences in fertility after weaning.  相似文献   

20.
The present study extends a recent composite model of in vivo interglandular signaling to assess the impact of age on 1) nonequilibrium exchange among diffusible and protein-bound testosterone (Te); 2) elimination of total and free Te; 3) basal and pulsatile Te secretion (sec); 4) the implicit feedforward function mediating luteinizing hormone (LH) concentration (con) drive of instantaneous Te sec; and 5) possible stochastic variability of the predicted LH con-Te sec dose-response linkage. To this end, we measured LH and Te con every 10 min for 24 h in healthy young (n = 13) and older men (n = 13). Statistical comparisons of analytic estimates revealed that elderly subjects manifest 1) reduced maximal burstlike LH-stimulated Te sec (impaired stimulus efficacy); 2) depressed half-maximally LH-stimulated Te sec (lower Leydig-cell responsivity); 3) decreased pulsatile and total Te sec; 4) elevated basal Te sec; 5) a prolonged half-life of total but not free Te con; and 6) delayed time evolution of LH and Te sec bursts. In contradistinction, age did not influence estimated LH-pulse potency (ED50), steroidogenic sensitivity (slope term), or stochastic variability of LH-Te coupling. On the basis of these data, we postulate that aging in the human male alters specific dose-response attributes linking LH con and Te sec and disrupts the time waveform of LH and Te sec bursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号