首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An abundant cytoplasmic 43-kDa protein from Mycoplasma synoviae, a major pathogen from poultry, was identified as elongation factor Tu. The N-terminal amino acid sequence (AKLDFDRSKEHVNVGTIGHV) has 90% identity with the sequence of the Mycoplasma hominis elongation factor Tu protein. Monoclonal antibodies reacting with the M. synoviae elongation factor Tu protein also reacted with 43-kDa proteins from the avian Mycoplasma species Mycoplasma gallinarum, Mycoplasma gallinaceum, Mycoplasma pullorum, Mycoplasma cloacale, Mycoplasma iners and Mycoplasma meleagridis, but not with the proteins from Mycoplasma gallisepticum, Mycoplasma imitans or Mycoplasma iowae. In addition, two groups of phase variable integral membrane proteins, pMSA and pMSB, associated with hemadherence and pathogenicity of M. synoviae strains AAY-4 and ULB925 were identified. The cleavage of a larger hemagglutinating protein encoded by a gene homologous to the vlhA gene of M. synoviae generates pMSB1 and pMSA1 proteins defined by mAb 125 and by hemagglutination inhibiting mAb 3E10, respectively. The N-terminal amino acid sequences of pMSA proteins (SENKLI ... and SENETQ ...) probably indicate the cleavage site of the M. synoviae strain ULB 925 hemagglutinin.  相似文献   

2.
Two structural genes for the Thermus thermophilus elongation factor Tu (tuf) were identified by cross-hybridization with the tufA gene from E. coli. The sequence of one of these tuf genes, localized on a 6.6 kb Bam HI fragment, was determined and confirmed by partial protein sequencing of an authentic elongation factor Tu from T. thermophilus HB8. Expression of this tuf gene in E. coli minicells provided a low amount of immuno-precipitable thermophilic EF-Tu. Affinity labeling of the T. thermophilus EF-Tu and sequence comparison with homologous proteins from other organisms were used to identify the guanosine-nucleotide binding domain.  相似文献   

3.
Rates of incorporation of [3H]phenylalanine and [14C]leucine from the aminoacylated transfer-RNA into polypeptides synthesized on poly(U) programmed Escherichia coli ribosomes have been determined in cell-free translation systems containing either elongation factors Tu and G with GTP, or just elongation factor Tu or G with GTP, or none of the elongation factors. The presence of elongation factor Tu with GTP has been shown to reduce the leucine to phenylalanine ratio in the product at relatively low concentrations of Mg2+. This error-reducing effect of elongation factor Tu has not been observed at high concentrations of Mg2+, although the factor still contributed to the speed of elongation. The results are discussed in terms of the kinetic proof-reading mechanism proposed by Hopfield (1974).  相似文献   

4.
The genes for protein synthesis elongation factors Tu and G were cloned from the cyanobacterium Anacystis nidulans. The locations of these genes were mapped within the cloned DNA fragment by hybridization with Escherichia coli probes. The organization of the cloned fragment and the DNA flanking it in the A. nidulans chromosome was also determined. The elongation factor Tu and G genes are adjacent to one another and in the same 5'-to-3' orientation. In contrast to other gram-negative bacteria, A. nidulans contains only one gene for elongation factor Tu.  相似文献   

5.
We have determined the nucleotide sequence of the Escherichia coli fus gene, which codes for elongation factor G. The protein product of the sequenced gene contains 703 amino acids, with a predicted molecular weight of 77,444. The fus gene shows the nonrandom pattern of codon usage typical of ribosomal proteins and other proteins synthesized at a high level. We have identified several potential promoter sequences within the gene. One of these sequences may correspond to the secondary promoter for expression of the downstream tufA gene (encoding elongation factor Tu) whose activity has been described previously (1,2). A comparison of the nucleotide and amino acid sequences of elongation factors G and Tu reveals a limited but significant homology between the two proteins within the 150 amino acid residues at their amino-terminal ends.  相似文献   

6.
7.
Oversynthesis of elongation factors G and Tu in Escherichia coli.   总被引:2,自引:0,他引:2       下载免费PDF全文
We induced the oversynthesis of elongation factors Tu and G by using multicopy plasmids carrying the structural genes for these proteins under the control of the lac operator-promoter. We found no evidence that accumulation of excess elongation factor Tu or G affects the expression of genes for ribosomal proteins or elongation factors.  相似文献   

8.
The crystal structure of Thermus thermophilus elongation factor G without guanine nucleotide was determined to 2.85 A. This GTPase has five domains with overall dimensions of 50 x 60 x 118 A. The GTP binding domain has a core common to other GTPases with a unique subdomain which probably functions as an intrinsic nucleotide exchange factor. Domains I and II are homologous to elongation factor Tu and their arrangement, both with and without GDP, is more similar to elongation factor Tu in complex with a GTP analogue than with GDP. Domains III and V show structural similarities to ribosomal proteins. Domain IV protrudes from the main body of the protein and has an extraordinary topology with a left-handed cross-over connection between two parallel beta-strands.  相似文献   

9.
By using inhibitors of elongation factor Tu (L-1-tosylamido-2-phenylethyl chloromethyl ketone [TPCK] and kirromycin), we determined the effect of elongation factor Tu inhibition on the synthesis of individual components of the translation machinery. The rates of synthesis of individual proteins were measured in double-label experiments using a two-dimensional gel system. TPCK inhibition produce a coordinate decrease in the differential synthesis rates of all components of the translation machinery examined in these experiments. On the other hand, kirromycin inhibition increased the differential synthesis rates of some translation components and decreased the differential synthesis rates of others. These results suggest that the metabolic regulation of synthesis of various translation proteins is not mediated through a common signal.  相似文献   

10.
An RNase protection assay was used to show that the dissociation rate constants and equilibrium constants of unmodified yeast and Escherichia coli phenylalanyl-tRNA(Phes) to elongation factor Tu from E.coli were very similar to each other and to their fully modified counterparts. The affinity of aminoacylated tRNA to elongation factor Tu was substantially lower when GTP analogues were used in place of GTP, emphasizing the importance of the beta-gamma phosphate linkage in the function of G-proteins. Fourteen different mutations in conserved and semi-conserved nucleotides of yeast phenylalanyl-tRNA(Phe) were tested for binding to elongation factor Tu.GTP and assayed for activity in the ribosomal A- and P-sites. Most of the mutations did not severely impair the function of these tRNAs in any of the assays. This suggests that the translational machinery does not form sequence-specific interactions with the conserved nucleotides of tRNA.  相似文献   

11.
Streptococcus oralis, a member of the mitis group of oral streptococci, is implicated in the pathogenesis of infective endocarditis and is the predominant aciduric non-mutans-group streptococcus in dental plaque. We undertook to identify the most abundant surface-associated proteins of S. oralis and to investigate changes in protein expression when the organism was grown under acidic culture conditions. Surface-associated proteins were extracted from cells grown in batch culture, separated by two-dimensional gel electrophoresis, excised, digested with trypsin, and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Putative functions were assigned by homology to a translated genomic database of Streptococcus pneumoniae. A total of 27 proteins were identified; these included a lipoprotein, a ribosome recycling factor, and the glycolytic enzymes phosphoglycerate kinase, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and enolase. The most abundant protein, phosphocarrier protein HPr, was present as three isoforms. Neither lactate dehydrogenase nor pyruvate oxidase, dominant intracellular proteins, were present among the proteins on the gels, demonstrating that proteins in the surface-associated pool did not arise as a result of cell lysis. Eleven of the proteins identified were differentially expressed when cells were grown at pH 5.2 versus pH 7.0, and these included superoxide dismutase, a homologue of dipeptidase V from Lactococcus lactis, and the protein translation elongation factors G, Tu, and Ts. This study has extended the range of streptococcal proteins known to be expressed at the cell surface. Further investigations are required to ascertain their functions at this extracellular location and determine how their expression is influenced by other environmental conditions.  相似文献   

12.
The protein composition of inclusion bodies produced in recombinant Escherichia coli overproducing Vitreoscilla hemoglobin (VHb) was analyzed by one-dimensional and two-dimensional electrophoresis techniques. Results indicate the presence of two types of cytoplasmic aggregates of differing morphology in single bacterial cells. These aggregates also differ in their relative content of VHb and pre-beta-lactamase and are separable by differential centrifugation. Results further suggest that the cytoplasmic protein elongation factor Tu is integrated into VHb inclusion bodies. The presence of the outer membrane proteins OmpA and OmpF in inclusion body preparations is attributed to cell envelope contamination rather than specific involvement in inclusion bodies. The specificity of in vivo protein aggregation is discussed.  相似文献   

13.
Spiroplasma melliferum is a wall-less bacterium with dynamic helical symmetry. Taking advantage of the simplicity of this primitive lifeform, we have used structural (electron tomography and freeze fracture of whole cells; cryoelectron tomography and diffraction analysis of isolated cytoskeletons) and proteomic approaches to elucidate the basic organizing principles of its minimal yet functional cytoskeleton. From among ∼ 30 Spiroplasma proteins present in a highly purified cytoskeletal fraction, we identify three major putative structural proteins: Fib, MreB, and elongation factor Tu. Fib assembles into a single flattened ribbon that follows the shortest helical line just under the plasma membrane and acts as a linear motor, whereas MreB is present as a matching array of membrane-associated fibrils parallel and associated with the motor. We also identify a prominent previously unknown filamentous network that occupies much of the cytoplasm and appears to cross-link the ribosomes. The abundant potentially filament-forming protein elongation factor Tu may be a component of this network, but the tomography data are most consistent with DNA as the core component. The results provide new information on the minimal organization necessary to support the scaffolding and motile functions of a minimal cytoskeleton.  相似文献   

14.
Here we identify, using nonelectrophoretic proteomics, effects of subminimum inhibitory concentrations (subMIC) of two antibiotic preparations, chlortetracycline (CTC), and chlortetracycline-sulfamethazine (CTC + SMZ), on protein expression in the bovine respiratory pathogen Mannheimia haemolytica. The M. haemolytica genome is currently in draft form, and annotation is incomplete. Relying on the principle of gene sequence conservation across species, we used annotated genomes from closely related species to identify, confirm, and functionally annotate 495 M. haemolytica proteins. To conduct quantitative comparative proteomics, we developed a protein quantitation method based on the cross correlation function of the SEQUEST algorithm. When M. haemolytica was cultivated in the presence of 1/4 MIC of CTC and CTC + SMZ, expression of proteins involved in energy production, nucleotide metabolism, translation, and the bacterial stress response (chaperones) were affected. The most notable subMIC effect was a significant decrease in the expression of leukotoxin A, which is an important M. haemolytica virulence factor. Reduction in leukotoxin expression could be one of the molecular mechanisms responsible for the efficacy of these antibiotics against bovine respiratory disease.  相似文献   

15.
Transfer messenger RNA (tmRNA) directs the modification of proteins of which the biosynthesis has stalled or has been interrupted. Here, we report that aminoglycosides can interfere with this quality control system in bacteria, termed trans-translation. Neomycin B is the strongest inhibitor of tmRNA aminoacylation with alanine (K(i) value of approximately 35 micro m), an essential step during trans-translation. The binding sites of neomycin B do not overlap with the identity determinants for alanylation, but the aminoglycoside perturbs the conformation of the acceptor stem that contains the aminoacylation signals. Aminoglycosides reduce the conformational freedom of the transfer RNA-like domain of tmRNA. Additional contacts between aminoglycosides and tmRNA are within the tag reading frame, probably also disturbing reprogramming of the stalled ribosomes prior protein tagging. Aminoglycosides impair tmRNA aminoacylation in the presence of all of the transfer RNAs from Escherichia coli, small protein B, and elongation factor Tu, but when both proteins are present, the inhibition constant is 1 order of magnitude higher. SmpB and elongation factor Tu have RNA chaperone activities, ensuring that tmRNA adopts an optimal conformation during aminoacylation.  相似文献   

16.
Germination is the first step of plant growth in plant life cycle. An embryonic radicle protruding the seed coat is the first part of plant which has direct contact with external environment including salt-affected soil. In embryo axes, mitochondria are the main energy producer. To understand better salinity impact on mitochondria functioning, this study was focused on the effect of NaCl stress onto mitochondria proteome. Mitochondria were isolated from yellow lupine (Lupine luteus L. ‘Mister’) embryo axes cultured in vitro for 12 h with 250 and 500 mM NaCl. Two-dimensional gel electrophoresis of mitochondrial proteins isolated from NaCl-treated axes demonstrated significant changes in proteins abundances as a response to salinity treatment. Twenty-one spots showing significant changes in protein expression profiles both under 250 and 500 mM NaCl treatment were selected for tandem mass spectrometry identification. This approach revealed proteins associated with different metabolic processes that represent enzymes of tricarboxylic acid cycle, mitochondrial electron transport chain, enzymes and proteins involved in mitochondria biogenesis and stresses response. Among proteins involved in mitochondria biogenesis, mitochondrial import inner membrane translocase, subunit Tim17/22, mitochondrial-processing peptidase subunit alpha-1, mitochondrial elongation factor Tu and chaperonins CPN60 were revealed. Finally, formate dehydrogenase 1 was found to accumulate in lupine embryo axes mitochondria under salinity. The functions of identified proteins are discussed in relation to salinity stress response, including salinity-induced PCD.  相似文献   

17.
Elongation factor Tu from Thermus thermophilus was treated successively with periodate-oxidized GDP or GTP and cyanoborohydride. Covalently modified cyanogen bromide or trypsin fragments of the protein were isolated, and the position of their modification was determined. Lysine residues 52 and 137 were heavily labeled, lysine-137 being considerably more reactive in the GTP form as compared to the GDP form of the protein. These residues are in the proximity of the GDP/GTP binding site. Lys-325 was also labeled, but to a lower extent. The part of the EF-Tu containing residue 52 is missing in crystallized EF-Tu.GDP from Escherichia coli [Jurnak, F. (1985) Science (Washington, D.C.) 230, 32-36]. These results place the part of T. thermophilus EF-Tu corresponding to the missing fragment in E. coli EF-Tu in the vicinity of the nucleotide binding site and allow its role in the interaction with aminoacyl-tRNA and elongation factor Ts to be evaluated. Cross-linking of EF-Tu.GDP by irradiation at 257 nm showed that a sequence of 10 amino acids residues which is found in the Thermus thermophilus elongation factor Tu but not in other homologous bacterial proteins is located in the vicinity of the GDP/GTP binding site.  相似文献   

18.
Temperature-induced changes in thermotolerance and protein composition were examined in heat-shocked cells and high-temperature-grown cells of the extremely thermophilic bacterium Rhodothermus obamensis. The survival at temperatures superoptimal for growth (90 and 95°C) was enhanced in both heat-shocked cells and high-temperature-grown cells relative to that of cells grown at optimal temperatures. In a comparison of protein composition using two-dimensional gel electrophoresis, putative heat shock proteins (HSPs) and high-temperature growth-specific proteins (HGPs) were detected. N-terminal amino acid sequence analysis revealed that the putative HSPs were quite similar to the ATP-binding subunits of ABC transporters and the HGPs were proteins corresponding to domains II and III of elongation factor Tu. These results suggested that this extreme thermophile has developed temperature-induced responses that include increased survival under hyperthermal conditions, changes in protein composition, and also the production of novel HSPs.  相似文献   

19.
Redox active proteins in plant mitochondria were examined using 2-D oxidant/reductant diagonal-SDS-PAGE to separate and identify proteins with intermolecular or intramolecular disulphide bonds using diamide in the first dimension and DTT in the second dimension. Eighteen proteins spots were resolved either above or below the diagonal and these were in-gel digested and identified by MS/MS. This analysis revealed intermolecular disulphide bonds in alternative oxidase, O-acetylserine (thiol) lyase, citrate synthase and between subunits of the ATP synthase. Intramolecular disulphide bonds were observed in a range of mitochondrial dehydrogenases, elongation factor Tu, adenylate kinase and the phosphate translocator. Many of the soluble proteins found were known glutaredoxin/thioredoxin targets in other plants, but the membrane proteins were not found by these methods nor were the nature of the disulphides able to be investigated. The accessibility of thiols involved in disulphide bonds to modification by a lipid derived aldehyde gave an insight into the potential impact of Cys modification on redox-functions in mitochondria during lipid peroxidation. Comparison of the protein sequences of the identified proteins with homologs from other species has identified specific Cys residues that may be responsible for plant-specific redox modulations of mitochondrial proteins.  相似文献   

20.
The gene encoding ribosomal proteins S12 and probably S7 as well as protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) of Spirulina platensis have been identified and cloned. Gene expression was determined for ribosomal protein S12 by genetic complementation of the appropriate Escherichia coli mutant, whereas for the EF-Tu gene it was determined by production of the protein in E. coli minicells. On the basis of these experiments we suggest the following gene order in the S. platensis chromosome: S12, S7, EF-G, EF-Tu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号