首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黑皮质素系统来自阿片-促黑素细胞皮质素原,在中枢摄食行为和能量平衡代谢中起到重要作用,此系统生理功能的发挥主要通过与下丘脑神经元细胞上特定膜受体(黑皮质素受体)结合完成。黑皮质素受体(MCR)有五种亚型(MC1R-MC5R),其中参与体重调节的受体主要是黑皮质素受体3(MC3R)和黑皮质素受体4(MC4R)。MC4R属于G蛋白耦联受体,具有七次跨膜结构。作为一种膜受体,MC4R发挥体重调节作用,一方面受外界激动剂或拮抗剂的调节;另一方面,此受体活化后会影响到细胞内的信号调节通路。研究MC4R的功能首先要了解受体的结构,本文对G蛋白耦联受体的结构进行了较详细的叙述,MC4R经信号调节通路,激活腺苷酸环化酶,增加cAMP的浓度,最终通过影响细胞内基因的转录和翻译,来调节体重和能量的消耗。  相似文献   

2.
MC4R oligomerizes independently of extracellular cysteine residues   总被引:1,自引:0,他引:1  
The melanocortin 4 receptor (MC4R) plays an essential role in weight regulation. Recently we could show that the MC4R is able to form receptor dimers. In the present study we investigated the role of extracellular cysteine residues and the structure of the third extracellular loop for receptor dimerization. None of the four extracellular cysteine residues nor the structure of the third extracellular loop play a role for MC4R-MC4R interaction as all investigated mutants display the same dimerization pattern as the wild-type receptor. Therefore for MC4R dimerization structures of the transmembrane-spanning helices are more likely to be involved.  相似文献   

3.
Todorovic A  Haskell-Luevano C 《Peptides》2005,26(10):2026-2036
The melanocortin system (MC) is implicated in the regulation of a variety of physiological pathways including pigmentation, steroid function, energy homeostasis, food intake, obesity, cardiovascular, sexual function, and normal gland regulation. The melanocortin system consists of five receptors identified to date (MC1-5R), melanocortin agonists derived from the pro-opiomelanocortin prohormone (POMC) and two naturally existing antagonists. Melanocortin receptor ligand structure-activity studies have been performed since the 1960s, primarily focused on the pigmentation aspect of physiology. During the 1990s, the melanocortin-4 receptor was identified to play a significant physiological role in the regulation of both food intake and obesity. Subsequently, a concerted drug design effort has focused on the design and discovery of melanocortin receptor small molecules. Herein, we present an overview of melanocortin receptor heterocyclic small molecules.  相似文献   

4.
5.
黑素皮质素受体对动物采食量和能量稳态的调控   总被引:7,自引:2,他引:5  
蒋思文  彭健  熊远著 《遗传》2002,24(2):223-226
黑素皮质素受体是G-蛋白耦联受体超家族成员。5个黑素皮质素受体基因已经被克隆和鉴定,并有不同的组织分布和生物学功能。本文综述了黑素皮质素受体3和受体4基因调控采食量和能量稳态的研究进展。 Abstract:The melanocortin receptors are members of the super-family of G-protein coupled receptors.To date,five melanocortin receptor genes (MC1R-MC5R) have been cloned and characterized.These receptorsdiffer in their tissue distributions and physiological roles.This review focuses on the roles of MC3R and MC4R in regulation of food intake and energy homeostasis.  相似文献   

6.
Regulation of thermogenesis by the central melanocortin system   总被引:1,自引:0,他引:1  
Fan W  Voss-Andreae A  Cao WH  Morrison SF 《Peptides》2005,26(10):1800-1813
Adaptive thermogenesis represents one of the important homeostatic mechanisms by which the body maintains appropriate levels of stored energy and its core temperature. Dysregulation of adaptive thermogenesis promotes obesity. The central melanocortin system, in particular the melanocortin 4 receptor (MC4R) signaling pathway, influences the regulation of every aspect of energy balance, including thermogenesis, and plays a critical role in energy homeostasis in both rodent and man. This review will outline our current understanding of adaptive thermogenesis, focusing on the role of the central melanocortin pathway in the regulation of thermogenesis.  相似文献   

7.
Zhou L  Williams T  Lachey JL  Kishi T  Cowley MA  Heisler LK 《Peptides》2005,26(10):1728-1732
Multiple lines of research provide compelling support for an important role for central serotonergic (5-hydroxytryptamine, 5-HT) and melanocortin pathways in the regulation of food intake and body weight. In this brief review, we outline data supporting a model in which serotonergic pathways affect energy balance, in part, by converging upon central melanocortin systems to stimulate the release of the endogenous melanocortin agonist, alpha-melanocyte stimulating hormone (alpha-MSH). Further, we review the neuroanatomical mapping of a downstream target of alpha-MSH, the melanocortin 4 receptor (MC4R), in the rodent brain. We propose that downstream activation of MC4R-expressing neurons substantially contributes to serotonin's effects on energy homeostasis.  相似文献   

8.
The hypothalamic melanocortin-4 receptor (MC4R), a seven transmembrane G-protein-coupled receptor, plays an important role in the regulation of body weight. The synthetic melanocortin analog SHU9119 has been widely used to characterize the physiological role of MC4R in feeding behavior and energy homeostasis. Previous studies indicated that SHU9119 is an agonist at the melanocortin-1 receptor (MC1R) but an antagonist at the MC4R. However, the molecular basis of the interaction between hMC4R and SHU9119 has not been clearly defined. To gain insight into the molecular determinants of hMC4R in the selectivity of SHU9119 chimeras and mutants hMC1R and hMC4R were expressed in cell lines and pharmacologically analyzed. A region of receptor containing the third transmembrane of hMC4R was found to be required for selective SHU9119 antagonism. Further mutagenesis studies of this region of hMC4R demonstrated that the amino acid residue leucine 133 in the third transmembrane was critical for the selective antagonist activity of SHU9119. The single substitution of leucine 133 to methionine did not affect SHU9119 binding to hMC4R. However, this substitution did convert SHU9119 from an antagonist to an agonist. Conversely, exchange of Met(128) in hMC1R to Leu, the homologous residue 133 of hMC4R, displayed a reduction in SHU9119 binding affinity and potency. This report provides the details of the molecular recognition of SHU9119 antagonism at hMC4R and shows that amino acid Leu(133) of hMC4R plays a key role in melanocortin receptor subtype specificity.  相似文献   

9.
The melanocortin system is involved in the regulation of several diverse physiological pathways, including energy homeostasis. Several synthetic peptide analogs have been designed, synthesized, and pharmacologically characterized at the mouse melanocortin receptor subtypes MC1R, MC3R, MC4R, and MC5R. These peptides incorporate modifications of the melanocortin core amino acids His-Phe-Arg-Trp by using the cyclic lactam templates of the lead structures MTII and SHU9119. Analogs containing DNal(2') at position 7 resulted in partial agonist and antagonistic activities at the mMC3R while possessing full antagonistic activities at the mMC4R. Recently, the melanocortin-5 receptor (MC5R) has been demonstrated to have a role in the regulation of exocrine gland function. This study has characterized the following analogs of SHU9119 that possess antagonist activity at the MC5R: Ac-Nle-c[Asp-(1-Me)His(6)-DNal(2')(7)-Arg-Trp-Lys]-NH(2), pA(2) = 7. 1; Ac-Nle-c[Asp-(1-Me)His(6)-DNal(2')(7)-Arg-Nal(2')(9)-Lys]-NH(2), pA(2) = 7.2; and Ac-Nle-c[Asp-Trp(6)-DNal(2')(7)-Arg-Nal(2')(9)-Lys]-NH(2), pA(2) = 6. 6.  相似文献   

10.
The melanocortin 4 receptor is a member of melanocortin receptors of G-protein-coupled receptors. By binding to melanocortin receptor agonists or antagonists, MC4R participates in the regulating of food intake, weight, energy homeostasis and sexual behavior. By activating the protein kinase A and leptin-melanocortin signalling pathways, MC4R mediates the amplification of signals from the hypothalamo–pituitary–adrenal and hypothalamo–pituitary–thyroid axes. This process permits peripheral information about the status of energy metabolism to be transmitted to the central nervous system. The hypothalamic nuclei then integrate these signals to evoke the appropriate reaction. We found that different sexes exhibited distinct metabolic regulation abilities, likely due to differences in these signalling pathways. MC4R plays a key role in coordinating the afferent messages from the peripheral and regulatory signals by controlling food intake and energy expenditure. To probe the disparities in metabolism and weight regulation between the sexes, we analyzed the expression of MC4R in different tissues from male and female mice by qRT-PCR and immunofluorescence. The results show that the expression of MC4R in brain and kidney is higher in female mice than in male mice, but in the livers, the result is opposition. Additionally, in both sexes, the expression of MC4R is higher in the brain than in the kidneys, and its expression in the liver is lowest, in males, the expression of MC4R in the testis is higher than that in the kidneys. These data show that the expression of MC4R exist different between sexes mice.  相似文献   

11.
12.
Ghrelin stimulates food intake in part by activating hypothalamic neuropeptide Y (NPY) neurons/agouti related peptide (AGRP) neurons. We investigated the role of AGRP/melanocortin signaling in ghrelin-induced food intake by studying melanocortin 3 and 4 receptor knockout (MC3R KO and MC4R KO) mice. We also determined whether reduced ghrelin levels and/or an altered sensitivity to the GH-stimulating effects of ghrelin accompany the obesity syndromes of MC3R KO and MC4R KO mice. Compared to wild-type (WT) mice, the effects of ghrelin on food intake were reduced in MC3R KO and MC4R KO mice and circulating ghrelin levels were reduced in female MC4R KO mice. Female MC3R KO and MC4R KO mice exhibited a diminished responsiveness to the GH-releasing effects of ghrelin. Thus, deletion of the MC3R or MC4R results in a decreased sensitivity to ghrelin and verifies the involvement in the melanocortin system in ghrelin-induced food intake.  相似文献   

13.
The melanocortin-4 receptor (MC4R) is involved in several physiological processes, including body weight regulation and grooming behaviour in rats. It has also been suggested that the MC4R mediates the effects of melanocortin ligands on neuropathic pain. Selective compounds are needed to study the exact role of the MC4R in these different processes. We describe here the development and evaluation of new melanocortin compounds that are selective for the MC4R as compared with the other centrally expressed receptors, MC3R and MC5R. First, a library of 18 peptides, in which a melanocortin-based sequence was systematically point-mutated, was screened for binding to and activity on the MC3R, MC4R and MC5R. Compound Ac-Nle-Gly-Lys-D-Phe-Arg-Trp-Gly-NH(2) (JK1) appeared to be the most selective MC4R compound, based on affinity. This compound is 90- and 110-fold selective for the MC4R as compared to the MC3R and MC5R, respectively. Subsequent modification of JK1 yielded compound Ac-Nle-Gly-Lys-D-Nal(2)-Arg-Trp-Gly-NH(2) (JK7)(,) a selective MC4R antagonist with 34-fold MC4R/MC3R and 109-fold MC4R/MC5R selectivity. The compounds were active in vivo as determined in a grooming assay and a model for neuropathic pain in rats. Intravenous (i.v.) injections suggested that they were able to pass the blood-brain barrier.The compounds identified here will be useful in further research on the physiological roles of the MC4R.  相似文献   

14.
Chai B  Li JY  Zhang W  Newman E  Ammori J  Mulholland MW 《Peptides》2006,27(11):2846-2857
The melanocortin-4 receptor (MC4R) is a seven transmembrane member of the melanocortin receptor family. The GT1-1 cell line exhibits endogenous expression of MC4R. In this study, GT1-1 cells were used to study MC4R signaling pathways and to examine the effects of melanocortin receptor agonist NDP-MSH on apoptosis. MC4R mRNA expression was demonstrated by RT-PCR. Functional melanocortin receptor expression was implied by specific binding of NDP-MSH and cAMP production. NDP-MSH-stimulated GnRH release in a dose-dependent manner. Serum deprivation-induced apoptosis in GT1-1 cells, and the NDP-MSH inhibited this effect. The melanocortin receptor antagonist SHU9119 blocked the antiapoptotic actions of NDP-MSH, and the MAP kinase inhibitor PD98059 significantly attenuated the antiapoptotic effect. NDP-MSH-stimulated ERK1/2 phosphorylation in a dose-dependent manner. ERK1/2 phosphorylation could be abolished by SHU9119. In GT1-1 cells, melanocortin receptor activation causes ERK1/2 phosphorylation. In these cells, MC4R activation is also associated with antiapoptotic effects.  相似文献   

15.
The central melanocortin (MC) system has been demonstrated to act downstream of leptin in the regulation of body weight. The system comprises alpha-MSH, which acts as agonist, and agouti-related protein (AgRP), which acts as antagonist at the MC3 and MC4 receptors (MC3R and MC4R). This property suggests that MCR activity is tightly regulated and that opposing signals are integrated at the receptor level. We here propose another level of regulation within the melanocortin system by showing that the human (h) MC4R displays constitutive activity in vitro as assayed by adenylyl cyclase (AC) activity. Furthermore, human AgRP(83-132) acts as an inverse agonist for the hMC4R since it was able to suppress constitutive activity of the hMC4R both in intact B16/G4F melanoma cells and membrane preparations. The effect of AgRP(83-132) on the hMC4R was blocked by the MC4R ligand SHU9119. Also the hMC3R and the mouse(m)MC5R were shown to be constitutively active. AgRP(83-132) acted as an inverse agonist on the hMC3R but not on the mMC5R. Thus, AgRP is able to regulate MCR activity independently of alpha-MSH. These findings form a basis to further investigate the relevance of constitutive activity of the MC4R and of inverse agonism of AgRP for the regulation of body weight.  相似文献   

16.
The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5′AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII’s effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature.  相似文献   

17.
18.
Obesity is caused by an imbalance between energy intake and expenditure and has become a major health-care problem in western society. The central melanocortin system plays a crucial role in the regulation of feeding and energy expenditure, and functional loss of melanocortin receptor 4 (MC4R) is the most common genetic cause of human obesity. In this study, we present the first functional Mc4r knockout model in the rat, resulting from an N-ethyl-N-nitrosourea mutagenesis-induced point mutation. In vitro observations revealed impaired membrane-binding and subsequent nonfunctionality of the receptor, whereas in vivo observations showed that functional loss of MC4R increased body weight, food intake, white adipose mass, and changed substrate preference. In addition, intracerebroventricular (ICV) administration of Agouti-Related Protein(79-129) (AgRP(79-129)), an MC4R inverse agonist, or Melanotan-II (MTII), an MC4R agonist, did affect feeding behavior in wild-type rats but not in homozygous mutant rats, confirming complete loss of MC4R function in vivo. Finally, ICV administration of MTII induced excessive grooming behavior in wild-type rats, whereas this effect was absent in homozygous mutant rats, indicating that MTII-induced grooming behavior is exclusively regulated via MC4R pathways. Taken together, we expect that the MC4R rat model described here will be a valuable tool for studying monogenic obesity in humans. More specifically, the relative big size and increased cognitive capacity of rats as compared to mice will facilitate complex behavioral studies and detailed mechanistic studies regarding central function of MC4R, both of which ultimately may help to further understand the specific mechanisms that induce obesity during loss of MC4R function.  相似文献   

19.
While it is known that mice lacking melanocortin 4 receptor (MC4R) expression develop hyperphagia resulting in early‐onset obesity, the specific neural circuits that mediate this process remain unclear. Here, we report that selective restoration of MC4R expression within dopamine‐1 receptor‐expressing neurons [MC4R/dopamine 1 receptor (D1R) mice] partially blunts the severe obesity seen in MC4R‐null mice by decreasing meal size, but not meal frequency, in the dark cycle. We also report that both acute cocaine‐induced anorexia and the development of locomotor sensitization to repeated administration of cocaine are blunted in MC4R‐null mice and normalized in MC4R/D1R mice. Neuronal retrograde tracing identifies the lateral hypothalamic area as the primary target of MC4R‐expressing neurons in the nucleus accumbens. Biochemical studies in the ventral striatum show that phosphorylation of DARPP‐32Thr‐34 and GluR1Ser‐845 is diminished in MC4R‐null mice after chronic cocaine administration but rescued in MC4R/D1R mice. These findings highlight a physiological role of MC4R‐mediated signaling within D1R neurons in the long‐term regulation of energy balance and behavioral responses to cocaine.  相似文献   

20.
Agouti-related protein (AGRP) is an endogenous antagonist of melanocortin action that functions in the hypothalamic control of feeding behavior. Although previous studies have shown that AGRP binds three of the five known subtypes of melanocortin receptor, the receptor domains participating in binding and the molecular interactions involved are presently unknown. The present studies were designed to examine the contribution of extracytoplasmic domains of the melanocortin-4 receptor (MC4R) to AGRP binding by making chimerical receptor constructs of the human melanocortin-1 receptor (MC1R; a receptor that is not inhibited by AGRP) and the human MC4R (a receptor that is potently inhibited by AGRP). Substitutions of the extracytoplasmic NH2 terminus and the first extracytoplasmic loop (exoloop) of the MC4R with homologous domains of the MC1R had no effect on AGRP (87-132) binding affinity or inhibitory activity (the ability to inhibit melanocortin-stimulated cAMP generation). In contrast, cassette substitutions of exoloops 2 and 3 of the MC4R with the homologous exoloops of the MC1R resulted in a substantial loss of AGRP binding affinity and inhibitory activity. Conversely, the exchange of exoloops 2 and 3 of the MC1R with the homologous exoloops of the MC4R was found to confer AGRP binding and inhibitory activity to the basic structure of the MC1R. Importantly, these substitutions did not affect the ability of the alpha-melanocyte stimulating hormone analogue [Nle4,D-Phe7] melanocyte stimulating hormone to bind or activate the chimeric receptors. These data indicate that exoloops 2 and 3 of the melanocortin receptors are important for AGRP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号