首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The particular virulence of Plasmodium falciparum compared with the other malaria species which naturally infect humans is thought to be due to the way in which the parasite modifies the surface of the infected red cell. Approximately 16 hours into the asexual cycle, parasite encoded proteins appear on the red cell surface which mediate adherence to a variety of host tissues. Binding of infected red cells to vascular endothelium, a process which occurs in all infections, is thought to be an important factor in the pathogenesis of severe disease where concentration of organisms in particular organs such as the brain occurs. Binding to uninfected red cells to form erythrocyte rosettes, a property of some isolates, is linked to disease severity. Here we summarise the data on the molecular basis of these interactions on both the host and parasite surfaces and review the evidence for the involvement of particular receptors in specific disease syndromes. Finally we discuss the relevance of these data to the development of new treatments for malaria.  相似文献   

2.
For poorly understood reasons, malaria parasites tend to develop in synchrony with each other in the asexual erythrocytic phase of infection, and this synchronization determines the periodic nature of malaria fever. There is evidence to suggest that fever might help to protect the host, while synchronization might provide counter-protection for the parasite. Dominic Kwiatkowski and Brian Greenwood propose that malaria fever may be of mutual benefit for parasite and host.  相似文献   

3.
Rosetting is a property of many malaria parasite species that has been linked to virulence in the major species infecting humans, Plasmodium falciparum. Here, the basic properties of rosettes in the rodent malaria laboratory model, P. chabaudi, were studied with a view to future studies on the role of rosetting in malaria parasite virulence and transmission. Rosetting occurred in 14 out of the 15 P. chabaudi clones studied, varied consistently between clones, and ranged between 9 and 37% at full parasite maturity. Rosetting frequency markedly declined after the mouse reached peak parasitemia, possibly due to host immunity. Consistent with P. falciparum and P. vivax, rosettes in P. chabaudi were disrupted by treatment with trypsin and EDTA. However, P. chabaudi rosettes were insensitive to sulfated glycoconjugates (heparin, heparan sulfate and fucoidan). The molecular basis of rosetting in P. chabaudi is unknown at present, but the results suggest that the molecules involved may differ from those in human-infecting species.  相似文献   

4.
Drug resistance has been shown to increase malaria mortality and morbidity in both community- and hospital-based studies. We investigated the association between two Plasmodium falciparum drug resistance-related molecular markers and clinical profiles of severe malaria in children hospitalised in Niger. PCR-RFLP analysis showed that the codon 108 mutation of the pfdhfr gene was positively linked to severe malarial anaemia. These findings are consistent with persistent parasite infection leading to unbalanced anaemia in young children. No significant relationship was found between the molecular markers and hypoglycaemia or hyperparasitaemia. Conversely, the pfcrt T76 mutation was found to be negatively associated with cerebral malaria and neurological symptoms, such as convulsions and coma. These results have implications for the strain-specific virulence hypothesis and for parasite fitness and evolution. Our findings are discussed in regard to the local malaria transmission level.  相似文献   

5.
Plasmodium falciparum gametocytes: still many secrets of a hidden life   总被引:3,自引:0,他引:3  
Sexual differentiation and parasite transmission are intimately linked in the life cycle of malaria parasites. The specialized cells providing this crucial link are the Plasmodium gametocytes. These are formed in the vertebrate host and are programmed to mature into gametes emerging from the erythrocytes in the midgut of a blood-feeding mosquito. The ensuing fusion into a zygote establishes parasite infection in the insect vector. Although key mechanisms of gametogenesis and fertilization are becoming progressively clear, the fundamental biology of gametocyte formation still presents open questions, some of which are specific to the human malaria parasite Plasmodium falciparum. Developmental commitment to sexual differentiation, regulation of stage-specific gene expression, the profound molecular and cellular changes accompanying gametocyte specialization, the requirement for tissue-specific sequestration in P. falciparum gametocytogenesis are proposed here as areas for future investigation. The epidemiological relevance of parasite transmission from humans to mosquito in the spread of malaria and of Plasmodium drug resistance genes indicates that understanding molecular mechanisms of gametocyte formation is highly relevant to design strategies able to interfere with the transmission of this disease.  相似文献   

6.
Tumor necrosis factor (TNF) has long been recognized to promote malaria parasite killing, but also to contribute to the development of severe malaria disease. The precise molecular mechanisms that influence these different outcomes in malaria patients are not well understood, but the virulence and drug-resistance phenotype of malaria parasites and the genetic background and age of patients are likely to be important determinants. In the past few years, important roles for other TNF family members in host immune responses to malaria parasites and the induction of disease pathology have been discovered. In this review, we will summarize these more recent findings and highlight major gaps in our current knowledge. We will also discuss future research strategies that may allow us to better understand the sometimes subtle and intricate effects of TNF family molecules during malaria infection.  相似文献   

7.
In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence) were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host) of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii.  相似文献   

8.
Mosquito mortality and the evolution of malaria virulence   总被引:1,自引:0,他引:1  
Abstract Several laboratory studies of malaria parasites (Plasmodium sp.) and some field observations suggest that parasite virulence, defined as the harm a parasite causes to its vertebrate host, is positively correlated with transmission. Given this advantage, what limits the continual evolution of higher parasite virulence? One possibility is that while more virulent strains are more infectious, they are also more lethal to mosquitoes. In this study, we tested whether the virulence of the rodent malaria parasite P. chabaudi in the laboratory mouse was correlated with the fitness of mosquitoes it subsequently infected. Mice were infected with one of seven genetically distinct clones of P. chabaudi that differ in virulence. Weight loss and anemia in infected mice were monitored for 16–17 days before Anopheles stephensi mosquitoes were allowed to take a blood meal from them. Infection virulence in mice was positively correlated with transmission to mosquitoes (infection rate) and weakly associated with parasite burden (number of oocysts). Mosquito survival fell with increasing oocyst burden, but there was no overall statistically significant relationship between virulence in mice and mosquito mortality. Thus, there was no evidence that more virulent strains are more lethal to mosquitoes. Both vector survival and fecundity depended on parasite clone, and contrary to expectations, mosquitoes fed on infections more virulent to mice were more fecund. The strong parasite genetic effects associated with both fecundity and survival suggests that vector fitness could be an important selective agent shaping malaria population genetics and the evolution of phenotypes such as virulence in the vector.  相似文献   

9.
A rich body of theory on the evolution of virulence (disease severity) attempts to predict the conditions that cause parasites to harm their hosts, and a central assumption to many of these models is that the relative virulence of pathogen strains is stable across a range of host types. In contrast, a largely nonoverlapping body of theory on coevolution assumes that the fitness effects of parasites on hosts is not stable across host genotype, but instead depends on host genotype by parasite genotype interactions. If such genetic interactions largely determine virulence, it becomes difficult to predict the strength and direction of selection on virulence. In this study, we tested for host-by-parasite interactions in a medically relevant vertebrate disease model: the rodent malaria parasite Plasmodium chabaudi in laboratory mice. We found that parasite and particularly host main effects explained most of the variance in virulence (anaemia and weight loss), resistance (parasite burden) and transmission potential. Host-by-parasite interactions were of limited influence, but nevertheless had significant effects. This raises the possibility that host heterogeneity may affect the rate of any parasite response to selection on virulence. This study of rodent malaria is one of the first tests for host-by-parasite interactions in any vertebrate disease; host-by-parasite interactions typical of those assumed in coevolutionary models were present, but were by no means pervasive.  相似文献   

10.
Malaria continues to be a serious threat to global health. The malaria problem is compounded by the absence of an efficacious vaccine and widespread drug resistance in the Plasmodium malarial parasite. The host factors and parasite virulence determinants that regulate early response to infection and subsequent onset of protective immunity are poorly understood. The molecular characterization of this early host:pathogen interface may identify novel targets for prophylactic or therapeutic intervention. Genetic analyses in mouse model of malaria show that inactivation of the enzyme pantetheinase (Char9 locus) causes susceptibility to blood-stage infection. The pantetheinase product cysteamine is an inexpensive and non-toxic aminothiol that is approved for lifelong clinical management of nephropathic cystinosis. In mouse models of infection, cysteamine not only displays anti-malarial activity of its own, but also dramatically potentiates the anti-malarial activity of artemisinin, at doses currently used for the clinical management of cystinosis. Therefore, the inclusion of cysteamine in current artemisinin combination therapies may significantly increase efficacy and may also prove effective against emerging artemisinin-resistant human Plasmodium parasite.  相似文献   

11.
Models of malaria epidemiology and evolution are frequently based on the assumption that vector-parasitic associations are benign. Implicit in this assumption is the supposition that all Plasmodium parasites have an equal and neutral effect on vector survival, and thus that there is no parasite genetic variation for vector virulence. While some data support the assumption of avirulence, there has been no examination of the impact of parasite genetic diversity. We conducted a laboratory study with the rodent malaria parasite, Plasmodium chabaudi and the vector, Anopheles stephensi, to determine whether mosquito mortality varied with parasite genotype (CR and ER clones), infection diversity (single versus mixed genotype) and nutrient availability. Vector mortality varied significantly between parasite genotypes, but the rank order of virulence depended on environmental conditions. In standard conditions, mixed genotype infections were the most virulent but when glucose water was limited, mortality was highest in mosquitoes infected with CR. These genotype-by-environment interactions were repeatable across two experiments and could not be explained by variation in anaemia, gametocytaemia, blood meal size, mosquito body size, infection rate or oocyst burden. Variation in the genetic and environmental determinants of virulence may explain conflicting accounts of Plasmodium pathogenicity to mosquitoes in the malaria literature.  相似文献   

12.
Virulence in malaria: an evolutionary viewpoint   总被引:10,自引:0,他引:10  
Malaria parasites cause much morbidity and mortality to their human hosts. From our evolutionary perspective, this is because virulence is positively associated with parasite transmission rate. Natural selection therefore drives virulence upwards, but only to the point where the cost to transmission caused by host death begins to outweigh the transmission benefits. In this review, we summarize data from the laboratory rodent malaria model, Plasmodium chabaudi, and field data on the human malaria parasite, P. falciparum, in relation to this virulence trade-off hypothesis. The data from both species show strong positive correlations between asexual multiplication, transmission rate, infection length, morbidity and mortality, and therefore support the underlying assumptions of the hypothesis. Moreover, the P. falciparum data show that expected total lifetime transmission of the parasite is maximized in young children in whom the fitness cost of host mortality balances the fitness benefits of higher transmission rates and slower clearance rates, thus exhibiting the hypothesized virulence trade-off. This evolutionary explanation of virulence appears to accord well with the clinical and molecular explanations of pathogenesis that involve cytoadherence, red cell invasion and immune evasion, although direct evidence of the fitness advantages of these mechanisms is scarce. One implication of this evolutionary view of virulence is that parasite populations are expected to evolve new levels of virulence in response to medical interventions such as vaccines and drugs.  相似文献   

13.
Although molecular biology has illustrated the phenotypic heterogeneity of Plasmodium falciparum, there are still no specific markers of virulence. As parasite virulence is an important determinant of severe malaria, the choice of comparison groups in the study of host factors influencing severity is a delicate issue. Ignoring parasite factors in the selection of controls potentially leads to biased comparisons between a majority of cases with virulent parasites and a majority of controls with non-virulent parasites. This article discusses how to avoid this virulence bias in the absence of specific markers of virulence.  相似文献   

14.
For over a century it has been recognized that many of the clinical symptoms of malaria are caused by toxins released by rupturing schizonts, but it is only in the past few years that the underlying mechanisms have begun to be understood. Dominic Kwiatkowski here focuses on the toxins that cause malaria fever by stimulating host cells to produce tumour necrosis factor a (TNF) and other pyrogenic cytokines. Both TNF and fever have antiparasite properties, and it is proposed that the release of these toxins plays an important role in the regulation of parasite density within the host. Cerebral malaria is related to excessive TNF production. Recent data indicate that this can be the consequence of genetic variation in the host's propensity to produce TNF.  相似文献   

15.
In this study we intended to examine the extent of genetic diversity of Plasmodium falciparum parasites causing severe malaria (SM). For this purpose, 100 parasite isolates were obtained from patients with SM and uncomplicated malaria, from an area of low and unstable malaria transmission in Sudan. The diversity of infection (DOI) was estimated by relating the number of the different parasite genotypes that were detected to the total number of parasites that were genotyped (parasite population/subpopulation). We used different molecular markers individually (pfcrt-76, pfmr1-86, GLURP size and MSP2 family and size) and as a group to set a multilocus genetic profile for each parasite isolate. The DOI as estimated by MSP2 and GLURP was 0.553 and 0.435, respectively. However, combination of all four molecular markers (multilocus genetic profile) revealed a fingerprint pattern of genetic diversity with a DOI of 0.936, indicating that in SM infection, diversity is the rule and homogeny is the exception. Furthermore, our clinical data suggest that the virulence markers might also be more diverse than expected. In conclusion, the results are unexpected and overturn the assumption that parasites causing SM are a limited subpopulation of virulent parasites or of a clonal nature. However, it was more likely that there was a genetically unique parasite in each infection.  相似文献   

16.
17.
18.
Invasion of the erythrocyte by the merozoites of the malaria parasite is a complex process involving a range of receptor-ligand interactions. Two protein families termed Erythrocyte Binding Like (EBL) proteins and Reticulocyte Binding Protein Homologues (RH) play an important role in host cell recognition by the merozoite. In the rodent malaria parasite, Plasmodium yoelii, the 235 kDa rhoptry proteins (Py235) are coded for by a multigene family and are members of the RH. In P. yoelii Py235 as well as a single member of EBL have been shown to be key mediators of virulence enabling the parasite to invade a wider range of host erythrocytes. One member of Py235, PY01365 is most abundantly transcribed in parasite populations and the protein specifically binds to erythrocytes and is recognized by the protective monoclonal antibody 25.77, suggesting a key role of this particular member in virulence. Recent studies have indicated that overall levels of Py235 expression are essential for parasite virulence. Here we show that disruption of PY01365 in the virulent YM line directly impacts parasite virulence. Furthermore the disruption of PY01365 leads to a reduction in the number of schizonts that express members of Py235 that react specifically with the mcAb 25.77. Erythrocyte binding assays show reduced binding of Py235 to red blood cells in the PY01365 knockout parasite as compared to YM. While our results identify PY01365 as a mediator of parasite virulence, they also confirm that other members of Py235 are able to substitute for PY01365.  相似文献   

19.
HOST LIFE HISTORY AND THE EVOLUTION OF PARASITE VIRULENCE   总被引:3,自引:0,他引:3  
Abstract.— We present a general epidemiological model of host‐parasite interactions that includes various forms of superinfection. We use this model to study the effects of different host life‐history traits on the evolution of parasite virulence. In particular, we analyze the effects of natural host death rate on the evolutionarily stable parasite virulence. We show that, contrary to classical predictions, an increase in the natural host death rate may select for lower parasite virulence if some form of superinfection occurs. This result is in agreement with the experimental results and the verbal argument presented by Ebert and Mangin (1997). This experiment is discussed in the light of the present model. We also point out the importance of superinfections for the effect of nonspecific immunity on the evolution of virulence. In a broader perspective, this model demonstrates that the occurrence of multiple infections may qualitatively alter classical predictions concerning the effects of various host life‐history traits on the evolution of parasite virulence.  相似文献   

20.
Understanding the different factors that may influence parasite virulence is of fundamental interest to ecologists and evolutionary biologists. It has recently been demonstrated that parasite virulence may occur partly through manipulation of host competitive ability. Differences in competitive ability associated with the social status (dominant or subordinate) of a host may determine the extent of this competition-mediated parasite virulence. We proposed that differences between subordinate and dominant birds in the physiological costs of infection may change depending on the level of competition in social groups. We observed flocks of domestic canaries to determine dominant or subordinate birds, and modified competition by providing restricted (high competition) or ad libitum food (low competition). Entire flocks were then infected with either the avian malaria parasite, Plasmodium relictum or a control. Contrary to our predictions we found that the level of competition had no effect on the outcome of infection for dominant or subordinate birds. We found that dominant birds appeared to suffer greater infection mediated morbidity in both dietary treatments, with a higher and more sustained reduction in haematocrit, and higher parasitaemia, than subordinates. Our results show that dominance status in birds can certainly alter parasite virulence, though the links between food availability, competition, nutrition and virulence are likely to be complex and multifaceted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号