首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subjects with metabolic syndrome–a constellation of cardiovascular risk factors of which central obesity and insulin resistance are the most characteristic–are at increased risk for developing diabetes mellitus and cardiovascular disease. In these subjects, abdominal adipose tissue is a source of inflammatory cytokines such as tumor necrosis factor-alpha, known to promote insulin resistance. The presence of inflammatory cytokines together with the well-documented increased risk for cardiovascular diseases in patients with inflammatory arthritides and systemic lupus erythematosus has prompted studies to examine the prevalence of the metabolic syndrome in an effort to identify subjects at risk in addition to that conferred by traditional cardiovascular risk factors. These studies have documented a high prevalence of metabolic syndrome which correlates with disease activity and markers of atherosclerosis. The correlation of inflammatory disease activity with metabolic syndrome provides additional evidence for a link between inflammation and metabolic disturbances/vascular morbidity.  相似文献   

2.
PURPOSE OF REVIEW: The recognition that inflammation is a hallmark of atherosclerotic disease has led to a series of studies reporting accelerated atherogenesis in chronic inflammatory diseases. Indeed, systemic lupus erythematosus is associated with an increased incidence of cardiovascular disease and the etiology thereof deserves closer attention. RECENT FINDINGS: The association between systemic lupus erythematosus and accelerated atherosclerosis has recently been confirmed by surrogate-marker studies for cardiovascular disease in patients with systemic lupus erythematosus. Since the propensity towards cardiovascular disease cannot solely be explained by classical risk factors, disease-specific pathways have been put forward as additional risk factors. SUMMARY: In the present review, we will discuss several of these factors as well as their potential impact for future prevention strategies in systemic lupus erythematosus.  相似文献   

3.
Inflammation is believed to play a central part in the pathogenesis of atherosclerosis, and much attention has been paid to the possible association between atherosclerosis and other inflammatory diseases. Periodontal disease is a common inflammatory disease affecting up to 50% of the adult population, and during the past two decades much research has focused on a possible association between periodontitis and cardiovascular disease. Here, we review the existing literature on the association between the two diseases.  相似文献   

4.
Systemic vasculitis, an inflammatory necrotizing disease of the blood vessel walls, can occur secondary to autoimmune diseases, including connective tissue diseases. Various pathogenic mechanisms have been implicated in the induction of vasculitis, including cell-mediated inflammation, immune complex-mediated inflammation and autoantibody-mediated inflammation. This inflammatory activity is believed to contribute to accelerated atherosclerosis, and also leads to increased risk for cardiovascular events in patients with rheumatoid arthritis and systemic lupus erythematosus. Endothelial cell activation is a common pathogenic pathway in the systemic vasculitis associated with rheumatoid arthritis and systemic lupus erythematosus, with elevated levels of endothelin-1 potentially inducing vascular dysregulation.  相似文献   

5.
PURPOSE OF REVIEW: Inflammation contributes to the formation and progression of atherosclerosis and the therapeutic potential of some anti-inflammatory drugs has been evaluated for possible antiatherosclerotic effects. This review will briefly describe the mechanisms underlying the inflammation-atherosclerosis connection, the effect of various anti-inflammatory therapies on atherosclerotic disease and a sampling of the potential targets and agents under evaluation. RECENT FINDINGS: Some agents with anti-inflammatory properties appear to have beneficial effects on atherosclerosis or subsequent risk for cardiovascular events, while others have been disappointing. The anti-inflammatory actions of statins have been linked retrospectively with their favorable effects on atherosclerosis progression and clinical outcomes. The cardiovascular safety of COX-2 inhibitors is being assessed prospectively in patients with atherosclerosis. Potential new therapeutic agents targeting other inflammatory mechanisms and oxidative stress are being evaluated in animal models and clinical trials. SUMMARY: Due to the contributory inflammatory pathways in atherosclerosis, the properties of existing and novel anti-inflammatory agents are being carefully and actively evaluated in cardiovascular disease. Advances in our understanding of both atherosclerosis and the inflammatory contributors may play an important role in future strategies to decrease the incidence of atherosclerotic cardiovascular disease.  相似文献   

6.
Obesity, adiponectin and vascular inflammatory disease   总被引:28,自引:0,他引:28  
PURPOSE OF REVIEW: Obesity is the most common risk factor for cardiovascular diseases in industrial countries. It is now clear that adipose tissue secretes various bioactive substances, conceptualized as adipocytokines, and that dysregulation of adipocytokines directly contributes to obesity-related diseases. Chronic inflammatory processes contribute to the development of atherosclerosis. In this review, the authors focus on the relationship between adiponectin, a recently discovered anti-atherogenic adipocytokine, and vascular inflammation. RECENT FINDINGS: Plasma concentrations of adiponectin, an adipocyte-specific protein, are reduced in obese subjects and in patients with type 2 diabetes and coronary artery disease. Adiponectin inhibits the expression of tumor necrosis factor-alpha-induced endothelial adhesion molecules, macrophage-to-foam cell transformation, tumor necrosis factor-alpha expression in macrophages and adipose tissues, and smooth muscle cell proliferation. In addition, adenovirus-expressed adiponectin reduces atherosclerotic lesions in a mouse model of atherosclerosis, and adiponectin-deficient mice exhibit an excessive vascular remodeling response to injury. Clinically, hypoadiponectinemia is closely associated with increased levels of inflammatory markers such as C-reactive protein and interleukin-6. SUMMARY: Adiponectin acts as an anti-inflammatory and anti-atherogenic plasma protein. Adiponectin is an endogenous biologically relevant modulator of vascular remodeling linking obesity and vascular disease.  相似文献   

7.
Cystic fibrosis (CF) represents one of a number of localized lung and non-lung diseases with an intense chronic inflammatory component associated with evidence of systemic oxidative stress. Many of these chronic inflammatory diseases are accompanied by an array of atherosclerotic processes and cardiovascular disease (CVD), another condition strongly related to inflammation and oxidative stress. As a consequence of a dramatic increase in long-lived patients with CF in recent decades, the specter of CVD must be considered in these patients who are now reaching middle age and beyond. Buttressed by recent data documenting that CF patients exhibit evidence of endothelial dysfunction, a recognized precursor of atherosclerosis and CVD, the spectrum of risk factors for CVD in CF is reviewed here. Epidemiological data further characterizing the presence and extent of atherogenic processes in CF patients would seem important to obtain. Such studies should further inform and offer mechanistic insights into how other chronic inflammatory diseases potentiate the processes leading to CVDs.  相似文献   

8.
动脉粥样硬化是一种慢性炎症过程,炎症反应在动脉粥样斑块的形成、发展、稳定性丧失和斑块破裂过程中都起着非常重要的作用,贯穿于动脉粥样硬化的各个环节。从早期的脂质条纹到进一步的动脉粥样病变及血栓性并发症都能见到炎症细胞的浸润,其中又以激活的巨噬细胞尤为重要。新蝶呤是巨噬细胞激活后的代谢产物,它不仅是巨噬细胞激活的炎症标志物,还参与多种调节氧化平衡的生化途径,增加氧化应激水平,促进动脉粥样硬化的进展,是斑块不稳定性及不良性心血管事件的独立预测因子。在临床上,降低血清新蝶呤水平可以降低冠心病患者发生危险事件的风险。因此,新蝶呤对冠心病的诊断和治疗都有重要意义。本文将对新蝶呤在冠心病中的角色做一综述。  相似文献   

9.
The traditional view of atherosclerosis has recently been expanded from a predominantly lipid retentive disease to a coupling of inflammatory mechanisms and dyslipidemia. Studies have suggested a novel role for polymorphonuclear neutrophil (PMN)-dominant inflammation in the development of atherosclerosis. Human neutrophil peptides (HNPs), also known as alpha-defensins, are secreted and released from PMN granules upon activation and are conventionally involved in microbial killing. Current evidence suggests an important immunomodulative role for these peptides. HNP levels are markedly increased in inflammatory diseases including sepsis and acute coronary syndromes. They have been found within the intima of human atherosclerotic arteries, and their deposition in the skin correlates with the severity of coronary artery diseases. HNPs form complexes with LDL in solution and increase LDL binding to the endothelial surface. HNPs have also been shown to contribute to endothelial dysfunction, lipid metabolism disorder, and the inhibition of fibrinolysis. Given the emerging relationship between PMN-dominant inflammation and atherosclerosis, HNPs may serve as a link between them and as a biological marker and potential therapeutic target in cardiovascular diseases including coronary artery diseases and acute coronary syndromes.  相似文献   

10.
Cardiovascular diseases are the human diseases with the highest death rate and atherosclerosis is one of the major underlying causes of cardiovascular diseases. Inflammatory and innate immune mechanisms, employing monocytes, innate receptors, innate cytokines, or chemokines are suggested to be involved in atherogenesis. Among the inflammatory pathways the cytokines are central players. Plasma levels of cytokines and related proteins, such as CRP, have been investigated in cardiovascular patients, tissue mRNA expression was analyzed and correlations to vascular diseases established. Consistent with these findings the generation of cytokine-deficient animals has provided direct evidence for a role of cytokines in atherosclerosis. In vitro cell culture experiments further support the suggestion that cytokines and other innate mechanisms contribute to atherogenesis. Among the initiation pathways of atherogenesis are innate mechanisms, such as toll-like-receptors (TLRs), including the endotoxin receptor TLR4. On the other hand, innate cytokines, such as IL-1 or TNF, or even autoimmune triggers may activate the cells. Cytokines potently activate multiple functions relevant to maintain or spoil homeostasis within the vessel wall. Vascular cells, not least smooth muscle cells, can actively contribute to the inflammatory cytokine-dependent network in the blood vessel wall by: (i) production of cytokines; (ii) response to these potent cell activators; and (iii) cytokine-mediated interaction with invading cells, such as monocytes, T-cells, or mast cells. Activation of these pathways results in accumulation of cells and increased LDL- and ECM-deposition which may serve as an 'immunovascular memory' resulting in an ever-growing response to subsequent invasions. Thus, vascular cells may potently contribute to the inflammatory pathways involved in development and acceleration of atherosclerosis.  相似文献   

11.
Early detection of atherosclerosis is of major importance to reduce the increased incidence of cardiovascular (CV) complications observed in patients with rheumatoid arthritis (RA). Prospective studies have shown that an abnormally increased carotid intima-media thickness and the presence of plaques assessed by carotid ultrasound are good markers to predict the development of CV events in these patients. Age, classic CV risk factors, and corticosteroid use are also predictors of new plaque formation in patients with RA. Active treatment of the disease may decrease the inflammatory burden, leading to a reduction in the progression of subclinical atherosclerosis in these patients.  相似文献   

12.
Cardiovascular morbidity and mortality are becoming major health concerns for adults with inflammatory rheumatic diseases. The enhanced atherogenesis in this patient population is promoted by the exposure to traditional risk factors as well as nontraditional cardiovascular insults, such as corticosteroid therapy, chronic inflammation and autoantibodies. Despite definite differences between many adult-onset and pediatric-onset rheumatologic diseases, it is extremely likely that atherosclerosis will become the leading cause of morbidity and mortality in this pediatric patient population. Because cardiovascular events are rare at this young age, surrogate measures of atherosclerosis must be used. The three major noninvasive vascular measures of early atherosclerosis - namely, flow-mediated dilatation, carotid intima-media thickness and pulse wave velocity - can be performed easily on children. Few studies have explored the prevalence of cardiovascular risk factors and even fewer have used the surrogate vascular measures to document signs of early atherosclerosis in children with pediatric-onset rheumatic diseases. The objective of this review is to provide an overview on cardiovascular risk and early atherosclerosis in pediatric-onset systemic lupus erythematosus, juvenile idiopathic arthritis and juvenile dermatomyositis patients, and to review cardiovascular preventive strategies that should be considered in this population.  相似文献   

13.
During recent years atherosclerosis, the major cause of cardiovascular disease (CVD), has been recognised as a chronic inflammatory condition in which rupture of atherosclerotic lesions appears to play a major role. The risk of CVD is raised in many rheumatic diseases. This risk is high in systemic lupus erythematosus - as much as a 50-times increase among middle-aged women has been reported. Studies on CVD and atherosclerosis in rheumatic disease could thus provide interesting information about CVD and atherosclerosis in addition to being an important clinical problem. A combination of traditional and nontraditional risk factors accounts for the increased risk of CVD and atherosclerosis in rheumatic disease. One interesting possibility is that atherosclerotic lesions in rheumatic disease are more prone to rupture than normal atherosclerotic lesions. It is also likely that increased risk of thrombosis may play an important role, not least in systemic lupus erythematosus. Further, it is not clear whether an increased risk of CVD is a general feature of rheumatic disease, or whether this only occurs among subgroups of patients. It should be emphasised that there is an apparent lack of treatment studies where CVD in rheumatic disease is the end point. Control of disease activity and of traditional risk factors, however, appears to be well founded in relation to CVD in rheumatic disease. Further studies are needed to determine the exact role of lipid-lowering drugs as statins. Hopefully novel therapies can be developed that target the causes of the inflammation in atherosclerotic lesions both in rheumatic patients and in the general population.  相似文献   

14.
The vasculature plays a crucial role in inflammation, angiogenesis, and atherosclerosis associated with the pathogenesis of inflammatory rheumatic diseases, hence the term 'vascular rheumatology'. The endothelium lining the blood vessels becomes activated during the inflammatory process, resulting in the production of several mediators, the expression of endothelial adhesion molecules, and increased vascular permeability (leakage). All of this enables the extravasation of inflammatory cells into the interstitial matrix. The endothelial adhesion and transendothelial migration of leukocytes is a well-regulated sequence of events that involves many adhesion molecules and chemokines. Primarily selectins, integrins, and members of the immunoglobulin family of adhesion receptors are involved in leukocyte 'tethering', 'rolling', activation, and transmigration. There is a perpetuation of angiogenesis, the formation of new capillaries from pre-existing vessels, as well as that of vasculogenesis, the generation of new blood vessels in arthritis and connective tissue diseases. Several soluble and cell-bound angiogenic mediators produced mainly by monocytes/macrophages and endothelial cells stimulate neovascularization. On the other hand, endogenous angiogenesis inhibitors and exogenously administered angiostatic compounds may downregulate the process of capillary formation. Rheumatoid arthritis as well as systemic lupus erythematosus, scleroderma, the antiphospholipid syndrome, and systemic vasculitides have been associated with accelerated atherosclerosis and high cardiovascular risk leading to increased mortality. Apart from traditional risk factors such as smoking, obesity, hypertension, dyslipidemia, and diabetes, inflammatory risk factors, including C-reactive protein, homocysteine, folate deficiency, lipoprotein (a), anti-phospholipid antibodies, antibodies to oxidized low-density lipoprotein, and heat shock proteins, are all involved in atherosclerosis underlying inflammatory rheumatic diseases. Targeting of adhesion molecules, chemokines, and angiogenesis by administering nonspecific immunosuppressive drugs as well as monoclonal antibodies or small molecular compounds inhibiting the action of a single mediator may control inflammation and prevent tissue destruction. Vasoprotective agents may help to prevent premature atherosclerosis and cardiovascular disease.  相似文献   

15.
BackgroundEnd stage renal disease (ESRD) patients are characterized by increased morbidity and mortality due to highest prevalence of cardiovascular disease. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that controls cellular signaling in human physiology, pathophysiology, and diseases. Increased MIF plasma levels promote vascular inflammation and development of atherosclerosis. We have shown that MIF is associated with vascular dysfunction in ESRD patients. Whether hemodialysis (HD) affects circulating MIF plasma levels is unknown. We here aimed to investigate whether HD influences the circulating MIF pool in ESRD patients.ConclusionMIF is a dialyzable plasma component that is effectively filtrated during HD from the patient blood pool in large amounts. After removal of remarkable amounts of MIF during a single HD session, MIF plasma pool is early reconstituted after termination of HD from unknown sources.  相似文献   

16.
The oxidation hypothesis of atherosclerosis proposes that oxidized LDL is a major causative factor in the development of atherosclerosis. Although this hypothesis has received strong mechanistic support and many animal studies demonstrated profound atheroprotective effects of antioxidants, which reduce LDL oxidation, the results of human clinical trials with antioxidants were mainly negative, except in selected groups of patients with clearly increased systemic oxidative stress. We propose that even if reducing lipoprotein oxidation in humans might be difficult to achieve, deeper understanding of mechanisms by which oxidized LDL promotes atherosclerosis and targeting these specific mechanisms will offer novel approaches to treatment of cardiovascular disease. In this review article, we focus on oxidized cholesteryl esters (OxCE), which are a major component of minimally and extensively oxidized LDL and of human atherosclerotic lesions. OxCE and OxCE-protein covalent adducts induce profound biological effects. Among these effects, OxCE activate macrophages via toll-like receptor-4 (TLR4) and spleen tyrosine kinase and induce macropinocytosis resulting in lipid accumulation, generation of reactive oxygen species and secretion of inflammatory cytokines. Specific inhibition of OxCE-induced TLR4 activation, as well as blocking other inflammatory effects of OxCE, may offer novel treatments of atherosclerosis and cardiovascular disease. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.  相似文献   

17.
Purpose of Review: Atherosclerosis is the principal cause of cardiovascular diseases (CVDs) which are the major cause of death worldwide. Mechanical force plays an essential role in cardiovascular health and disease. To bring the awareness of mechanosensitive Piezo1 role in atherosclerosis and its therapeutic potentials we review recent literature to highlight its involvement in various mechanisms of the disease.Recent Findings: Recent studies reported Piezo1 channel as a sensor, and transducer of various mechanical forces into biochemical signals, which affect various cellular activities such as proliferation, migration, apoptosis and vascular remodeling including immune/inflammatory mechanisms fundamental phenomenon in atherogenesis.Summary: Numerous evidences suggest Piezo1 as a player in different mechanisms of cell biology, including immune/inflammatory and other cellular mechanisms correlated with atherosclerosis. This review discusses mechanistic insight about this matter and highlights the drugability and therapeutic potentials consistent with emerging functions Piezo1 in various mechanisms of atherosclerosis. Based on the recent works, we suggest Piezo1 as potential therapeutic target and a valid candidate for future research. Therefore, a deeper exploration of Piezo1 biology and translation towards the clinic will be a novel strategy for treating atherosclerosis and other CVDs.  相似文献   

18.
Patients with chronic kidney disease (CKD) have significantly increased morbidity and mortality resulting from infections and cardiovascular diseases. Since monocytes play an essential role in host immunity, this study was directed to explore the gene expression profile in order to identify differences in activated pathways in monocytes relevant to the pathophysiology of atherosclerosis and increased susceptibility to infections. Monocytes from CKD patients (stages 4 and 5, estimated GFR <20 ml/min/1.73 m2) and healthy donors were collected from peripheral blood. Microarray gene expression profile was performed and data were interpreted by GeneSpring software and by PANTHER tool. Western blot was done to validate the pathway members. The results demonstrated that 600 and 272 genes were differentially up- and down regulated respectively in the patient group. Pathways involved in the inflammatory response were highly expressed and the Wnt/β-catenin signaling pathway was the most significant pathway expressed in the patient group. Since this pathway has been attributed to a variety of inflammatory manifestations, the current findings may contribute to dysfunctional monocytes in CKD patients. Strategies to interfere with this pathway may improve host immunity and prevent cardiovascular complications in CKD patients.  相似文献   

19.
Atherosclerosis is one of leading phenotypes of cardiovascular diseases, featured with increased vascular intima‐media thickness (IMT) and unstable plaques. The interaction between gastrointestinal system and cardiovascular homeostasis is emerging as a hot topic. Therefore, the present study aimed to explore the role of an intestinal protein, intestinal fatty acid‐binding protein (I‐FABP/FABP2) in the atherosclerotic progress. In western diet–fed ApoE?/? mice, FABP2 was highly expressed in intestine. Silence of intestinal Fabp2 attenuated western diet–induced atherosclerotic phenotypes, including decreasing toxic lipid accumulation, vascular fibrosis and inflammatory response. Mechanistically, intestinal Fabp2 knockdown improved intestinal permeability through increasing the expression of tight junction proteins. Meanwhile, intestinal Fabp2 knockdown mice exhibited down‐regulation of intestinal inflammation in western diet–fed ApoE?/? mice. In clinical patients, the circulating level of FABP2 was obviously increased in patients with cardiovascular disease and positively correlated with the value of carotid intima‐media thickness, total cholesterol and triglyceride. In conclusion, FABP2‐induced intestinal permeability could address a potential role of gastrointestinal system in the development of atherosclerosis, and targeting on intestinal FABP2 might provide a therapeutic approach to protect against atherosclerosis.  相似文献   

20.
Atherosclerosis is an arterial disease associated with inflammation. Thrombin is a procoagulant and proinflammatory serine protease that contributes to the pathology of atherosclerosis by enhancing the expression of cell adhesion molecules, inducing the secretion of proinflammatory cytokines, activating inflammatory responses in atherosclerotic plaques, stimulating proliferation of aortic smooth muscle cells, and exacerbating vascular lesions at sites of injury. Hence, thrombin appears to be an important target for treatment of atherosclerosis and thrombin pharmacological inhibitors have significant therapeutic potency for suppressing inflammatory responses in cardiovascular diseases. This review summarizes the proinflammatory signaling functions of thrombin as well as the therapeutic potency of thrombin inhibitors in the pathogenesis of atherosclerosis and hence their potential therapeutic value in this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号