首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A review of the main approaches to the revealing molecular evolution of glutamate receptors is presented. Large amount of evidences concerning the homology of glutamate-binding proteins forming the membrane channels has been accumulated. However, the knowledge of amino acid sequences of these proteins is the necessary but not sufficient condition for clarification of their origin and the changes in the course of molecular evolution. The natural selection estimated and secured the functional validity ofligand-gated channels. Therefore the functional and molecular approaches should supplement each other. It has been shown by and example of glutamate receptor channels of vertebrate and invertebrate animals that the combined analysis of the structure and function allows to reveal the main routes of molecular evolution of this kind of synaptic receptors.  相似文献   

2.
Structure and pharmacology of spider venom neurotoxins   总被引:16,自引:0,他引:16  
Escoubas P  Diochot S  Corzo G 《Biochimie》2000,82(9-10):893-907
Spider venoms are complex mixtures of neurotoxic peptides, proteins and low molecular mass organic molecules. Their neurotoxic activity is due to the interaction of the venom components with cellular receptors, in particular ion channels. Spider venoms have proven to be a rich source of highly specific peptide ligands for selected subtypes of potassium, sodium and calcium channels, and these toxins have been used to elucidate the structure and physiological roles of the channels in excitable and non-excitable cells. Spider peptides show great variability in their pharmacological activity and primary structure but relative homogeneity in their secondary structure. Following diverse molecular evolution mechanisms, and in particular selective hypermutation, short spider peptides appear to have functionally diversified while retaining a conserved molecular scaffold. This paper reviews the composition and pharmacology of spider venoms with emphasis on polypeptide toxin structure, mode of action and molecular evolution.  相似文献   

3.
Transmitter-gated channels, which can be selective for cations or for anions, form an important class among the membrane receptors responsible for signal transduction. Thirteen principal types of these channels can now be recognized and most of these are available for analysis in recombinant form. It is instructive to contrast their characteristic structural features with those of the two other primary classes of the signal-transducing receptors of membranes.  相似文献   

4.
Gamma-aminobutyric acid type A (GABAA) receptors are major inhibitory neurotransmitter-gated ion channels in the central nervous system. GABAA receptors consist of multiple subunits and exhibit distinct pharmacological and channel properties. Of all GABAA receptor subunits, the beta subunit is thought to be a key component for the functionality of the receptors. Certain types of GABAA receptors have been found to be constitutively active. However, the molecular basis for spontaneous opening of channels of these receptors is not totally understood. In this study, we showed that channels that contain the beta1 but not beta3 subunits opened spontaneously when these subunits were expressed homomerically or co-expressed with other types of GABAA receptor subunits in Xenopus oocytes. Using subunit chimeras and site-directed mutagenesis, we localized a key amino acid residue, a serine at position 265, that is critical in conferring an open state of the beta1 subunit-containing GABAA receptors in the absence of agonist. Moreover, some point mutations of Ser-265 also produced constitutively active channels. The magnitude of spontaneous activity of these receptors was correlated with the molecular volume of the residue at 265 for both homomeric and heteromeric GABAA receptors, suggesting that the spontaneous activity of the beta1 subunit-containing GABAA receptors may be mediated through a similar molecular mechanism that is dependent on the molecular volume of the residue at 265.  相似文献   

5.
ADP and other nucleotides control ion currents in the nervous system via various P2Y receptors. In this respect, Cav2 and Kv7 channels have been investigated most frequently. The fine tuning of neuronal ion channel gating via G protein coupled receptors frequently relies on the formation of higher order protein complexes that are organized by scaffolding proteins and harbor receptors and channels together with interposed signaling components. However, ion channel complexes containing P2Y receptors have not been described. Therefore, the regulation of Cav2.2 and Kv7.2/7.3 channels via P2Y1 and P2Y12 receptors and the coordination of these ion channels and receptors in the plasma membranes of tsA 201 cells have been investigated here. ADP inhibited currents through Cav2.2 channels via both P2Y1 and P2Y12 receptors with phospholipase C and pertussis toxin-sensitive G proteins being involved, respectively. The nucleotide controlled the gating of Kv7 channels only via P2Y1 and phospholipase C. In fluorescence energy transfer assays using conventional as well as total internal reflection (TIRF) microscopy, both P2Y1 and P2Y12 receptors were found juxtaposed to Cav2.2 channels, but only P2Y1, and not P2Y12, was in close proximity to Kv7 channels. Using fluorescence recovery after photobleaching in TIRF microscopy, evidence for a physical interaction was obtained for the pair P2Y12/Cav2.2, but not for any other receptor/channel combination. These results reveal a membrane juxtaposition of P2Y receptors and ion channels in parallel with the control of neuronal ion currents by ADP. This juxtaposition may even result in apparent physical interactions between receptors and channels.  相似文献   

6.
Recent analyses of the genomes of several animal species, including man, have revealed that a large number of ion channels are present in the nervous system. Our understanding of the physiological role of these channels in the nervous system has followed the evolution of biophysical techniques during the last century. The observation and the quantification of the electrical events associated with the operation of the ionic channels has been, and still is, one of the best tools to analyse the various aspects of their contribution to nerve function. For this reason, we have chosen to use electrophysiological recordings to illustrate some of the main functions of these channels. The properties and the roles of Na+ and K+ channels in neuronal resting and action potentials are illustrated in the case of the giant axons of the squid and the cockroach. The nature and role of the calcium currents in the bursting behaviour of the neurons are illustrated for Aplysia giant neurons. The relationship between presynaptic calcium currents and synaptic transmission is shown for the squid giant synapse. The involvement of calcium channels in survival and neurite outgrowth of cultured neurons is exemplified using embryonic cockroach brain neurons. This same neuronal preparation is used to illustrate ion channel noise and single-channel events associated with the binding of agonists to nicotinic receptors. Some features of the synaptic activity in the central nervous system are shown, with examples from the cercal nerve giant-axon preparation of the cockroach. The interplay of different ion conductances involved in the oscillatory behaviour of the Xenopus spinal motoneurons is illustrated and discussed. The last part of this review deals with ionic homeostasis in the brain and the function of glial cells, with examples from Necturus and squids.  相似文献   

7.
Sher E  Giovannini F  Boot J  Lang B 《Biochimie》2000,82(9-10):927-936
Peptide neurotoxins isolated from the venom of snakes, spiders and snails have represented invaluable tools for the identification and characterisation of membrane ion channels and receptors in vertebrate cells, including human neurons. We here report on the use of these toxins for the characterisation of membrane ion channels and receptors expressed by one of the most aggressive human cancers, small-cell lung carcinoma. This tumour shares many properties with other neuro-endocrine cell types, including the ability of firing action potentials and release hormones in a calcium-dependent manner. Toxins such as alpha-bungarotoxin and omega-conotoxins, among others, have been successfully used to characterise neuronal nicotinic receptors and voltage-dependent calcium channels, respectively, in human small-cell lung carcinoma cells. These receptors and ion channels are not only crucial for the growth of this specific tumour, but also represent autoantigens against which cancer patients build an autoimmune response. Although the aim of this autoimmune response is eventually the destruction of the cancer cells, the circulating antibodies cross-react with similar ion channels and receptors present in normal neurons or other cells, causing a number of different paraneoplastic diseases, the best characterised of which is the Lambert-Eaton myasthenic syndrome. Conotoxin-based radioimmunoassays have become an invaluable tool for the diagnosis and follow up of these paraneoplastic disorders and could represent a step forward in the early diagnosis of small-cell lung carcinoma itself.  相似文献   

8.
There is accumulating evidence that the specificity of the transduction cascades activated by G protein-coupled receptors cannot solely depend on the nature of the coupled G protein. To identify additional structural determinants, we studied two metabotropic glutamate (mGlu) receptors, the mGlu2 and mGlu7 receptors, that are both coupled to G(o) proteins but are known to affect different effectors in neurons. Thus, the mGlu2 receptor selectively blocks N- and L-type Ca(2+) channels via a protein kinase C-independent pathway, whereas the mGlu7 receptor selectively blocks P/Q-type Ca(2+) channels via a protein kinase C-dependent pathway, and both effects are pertussis toxin-sensitive. We examined the role of the C-terminal domain of these receptors in this coupling. Chimeras were constructed by exchanging the C terminus of these receptors and transfected into neurons. Different chimeric receptors bearing the C terminus of mGlu7 receptor blocked selectively P/Q-type Ca(2+) channels, whereas chimeras bearing the C terminus of mGlu2 receptor selectively blocked N- and L-type Ca(2+) channels. These results show that the C terminus of mGlu2 and mGlu7 receptors is a key structural determinant that allows these receptors to select a specific signaling pathway in neurons.  相似文献   

9.
10.
11.
Extracellular purines and pyrimidines have emerged as key regulators of a wide range of physiological and pathophysiological cellular processes acting through P1 and P2 cell surface receptors. Increasing evidence suggests that purinergic receptors can interact with and/or modulate the activity of other classes of receptors and ion channels. This review will focus on the interactions of purinergic receptors with other GPCRs, ion channels, receptor tyrosine kinases, and steroid hormone receptors. Also, the signal transduction pathways regulated by these complexes and their new functional properties are discussed.  相似文献   

12.
Voltage gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead forms signaling complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily.  相似文献   

13.
The action of several peptides and drugs is thought to be primarily dependent on their interactions with specific cell surface G-protein-coupled receptors and ionic transporters such as channels and exchangers. Recent development of 3-D confocal microscopy allowed several laboratories, including ours, to identify and study the localization of receptors, channels, and exchangers at the transcellular level of several cell types. Using this technique, we demonstrated in the nuclei of several types of cells the presence of Ca(2+) channels as well as Na(+)-H(+) exchanger and receptors such as endothelin-1 and angiotensin II receptors. Stimulation of these nuclear membrane G-protein-coupled receptors induced an increase of nuclear Ca(2+). Our results suggest that, similar to the plasma membrane, nuclear membranes possess channels, exchangers and receptors such as those for endothelin-1 and angiotensin II, and that the nucleus seems to be a cell within a cell. This article will emphasize these findings.  相似文献   

14.
Voltage gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead forms signaling complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily.  相似文献   

15.
Neuronal G protein‐gated inwardly rectifying potassium (GIRK) channels mediate the slow inhibitory effects of many neurotransmitters post‐synaptically. However, no evidence exists that supports that GIRK channels play any role in the inhibition of glutamate release by GABAB receptors. In this study, we show for the first time that GABAB receptors operate through two mechanisms in nerve terminals from the cerebral cortex. As shown previously, GABAB receptors reduces glutamate release and the Ca2+ influx mediated by N‐type Ca2+ channels in a mode insensitive to the GIRK channel blocker tertiapin‐Q and consistent with direct inhibition of this voltage‐gated Ca2+ channel. However, by means of weak stimulation protocols, we reveal that GABAB receptors also reduce glutamate release mediated by P/Q‐type Ca2+ channels, and that these responses are reversed by the GIRK channel blocker tertiapin‐Q. Consistent with the functional interaction between GABAB receptors and GIRK channels at nerve terminals we demonstrate by immunogold electron immunohistochemistry that pre‐synaptic boutons of asymmetric synapses co‐express GABAB receptors and GIRK channels, thus suggesting that the functional interaction of these two proteins, found at the post‐synaptic level, also occurs at glutamatergic nerve terminals.  相似文献   

16.
Intercellular communication relies on signal transduction mediated by extracellular ligands and their receptors. Although the ligand-receptor interaction is usually a two-player event, there are selective examples of one polypeptide ligand interacting with more than one phylogenetically unrelated receptor. Likewise, a few receptors interact with more than one polypeptide ligand, and sometimes with more than one coreceptor, likely through an interlocking of unique protein domains. Phylogenetic analyses suggest that for certain triumvirates, the matching events could have taken place at different evolutionary times. In contrast to a few polypeptide ligands interacting with more than one receptor, we found that many small nonpeptide ligands have been paired with two or more plasma membrane receptors, nuclear receptors, or channels. The observation that many small ligands are paired with more than one receptor type highlights the utilitarian use of a limited number of cellular components during metazoan evolution. These conserved ligands are ubiquitous cell metabolites likely favored by natural selection to establish novel regulatory networks. They likely possess structural features useful for designing agonistic and antagonistic drugs to target diverse receptors.  相似文献   

17.
The function of chloride (Cl-) channel proteins is to regulate the transport of Cl- across membranes. There are two major kinds of Cl- channels: 1) those activated by binding of a transmitter such as gamma-aminobutyric acid (GABA), glycine, or glutamate, and thus are receptors; and 2) those activated by membrane depolarization or by calcium. There are two kinds of GABA receptors: GABAA is the major inhibitory receptor of vertebrate brain and the one that operates a Cl- channel, and the GABAB receptor, which is proposed to regulate cAMP production that is stimulated by other receptors. Except for binding of GABA, these two GABA receptors differ completely in their drug specificities. However, there are many similarities among the GABAA receptor, the glycine receptor, and the voltage-dependent Cl- channel. The two receptors and Cl- channels bind avermectin, whereas bicuculline binds only to mammalian GABAA and glycine receptors, not to the insect brain GABAA receptor. Barbiturates bind to GABAA and voltage-dependent Cl- channels, possibly directly activating them. Benzodiazepines potentiate both the glycine and GABAA receptors. Several insecticides act on the GABAA receptor and voltage-dependent Cl- channel. It is suggested that the GABAA receptor is the primary target for the action of toxaphene and cyclodiene insecticides but a secondary target for lindane and type II pyrethroids. On the other hand, the Cl- channel may be a primary target for avermectin and lindane but a secondary one for cyclodienes. The similarity in certain drug specificities and the operation of Cl- channels suggest a degree of homology between the subunits of GABAA and glycine receptors and the voltage-dependent Cl- channels.  相似文献   

18.
The mechanism of blocking effect of phenylcyclohexyl derivative, IEM-1925, on ionotropic glutamate receptors of the NMDA and AMPA types has been studied on the rat isolated brain neurons. The whole-cell configuration of patck clanp recording technique was used equilibrium conditions and -80 mV holding potential, the IEM-1925 manifests nonselective action on open channels of both receptors. However, the prominent differences in the mechanism of the blocking effect were revealed. Although IEM-1925 can not enter the closed channels of both types, its molecule are able to leave closed channels of the AMPA but not the NMDA receptors. Hyperpolarization reduces removal of blocker from the open channels of the NMDA receptors. Contrary to that, hyperpolarization facilitates going out of the IEM-1925 to cytozol from both open and closed channels. Evidently, the bloker can pass through the AMPA receptor channels into the cell, and the gating mechanism of these channels is located above the binding site for the blocker. The blocking action of the IEM-1925 on the NMDA and AMPA receptors was compared with its potency to weaken the tremor evoked by subcutaneous injection of arecoline to mice. The observed differences in the mechanisms of action help to explain the ambiguous effects of channel blocking drugs on experimental models of pathological processes.  相似文献   

19.
Tandem constructs are increasingly being used to restrict the composition of recombinant multimeric channels. It is therefore important to assess not only whether such approaches give functional channels, but also whether such channels completely incorporate the subunit tandems. We have addressed this question for neuronal nicotinic acetylcholine receptors, using a channel mutation as a reporter for subunit incorporation. We prepared tandem constructs of nicotinic receptors by linking alpha (alpha2-alpha4, alpha6) and beta (beta2, beta4) subunits by a short linker of eight glutamine residues. Robust functional expression in oocytes was observed for several tandems (beta4_alpha2, beta4_alpha3, beta4_alpha4, and beta2_alpha4) when coexpressed with the corresponding beta monomer subunit. All tandems expressed when injected alone, except for beta4_alpha3, which produced functional channels only together with beta4 monomer and was chosen for further characterization. These channels produced from beta4_alpha3 tandem constructs plus beta4 monomer were identical with receptors expressed from monomer alpha3 and beta4 constructs in acetylcholine sensitivity and in the number of alpha and beta subunits incorporated in the channel gate. However, separately mutating the beta subunit in either the monomer or the tandem revealed that tandem-expressed channels are heterogeneous. Only a proportion of these channels contained as expected two copies of beta subunits from the tandem and one from the beta monomer construct, whereas the rest incorporated two or three beta monomers. Such inaccuracies in concatameric receptor assembly would not have been apparent with a standard functional characterization of the receptor. Extensive validation is needed for tandem-expressed receptors in the nicotinic superfamily.  相似文献   

20.
Dendritic ion channels play a critical role in shaping synaptic input and are fundamentally important for synaptic integration and plasticity. In the hippocampal region CA1, somato-dendritic gradients of AMPA receptors and the hyperpolarization-activated cation conductance (Ih) counteract the effects of dendritic filtering on the amplitude, time-course, and temporal integration of distal Schaffer collateral (SC) synaptic inputs within stratum radiatum (SR). While ion channel gradients in CA1 distal apical trunk dendrites within SR have been well characterized, little is known about the patterns of ion channel expression in the distal apical tuft dendrites within stratum lacunosum moleculare (SLM) that receive distinct input from the entorhinal cortex via perforant path (PP) axons. Here, we measured local ion channels densities within these distal apical tuft dendrites to determine if the somato-dendritic gradients of Ih and AMPA receptors extend into distal tuft dendrites. We also determined the densities of voltage-gated sodium channels and NMDA receptors. We found that the densities of AMPA receptors, Ih, and voltage-gated sodium channels are similar in tuft dendrites in SLM when compared with distal apical dendrites in SR, while the ratio of NMDA receptors to AMPA receptors increases in tuft dendrites relative to distal apical dendrites within SR. These data indicate that the somato-dendritic gradients of Ih and AMPA receptors in apical dendrites do not extend into the distal tuft, and the relative densities of voltage-gated sodium channels and NMDA receptors are poised to support nonlinear integration of correlated SC and PP input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号