首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Early Palaeozoic phytoplankton (acritarch) radiation paralleled a long-term increase in sea level between the Early Cambrian and the Late Ordovician. In the Late Cambrian, after the SPICE δ13Ccarb excursion, acritarchs underwent a major change in morphological disparity and their taxonomical diversity increased to reach highest values during the Middle Ordovician (Darriwilian). This highest phytoplankton diversity of the Palaeozoic was possibly the result of palaeogeography (greatest continental dispersal) and major orogenic and volcanic activity, which provided maximum ecospace and large amounts of nutrients. With its warm climate and high atmospheric CO2 levels, the Ordovician was similar to the Cretaceous: a period when phytoplankton diversity was at its maximum during the Mesozoic. With increased phytoplankton availability in the Late Cambrian and Ordovician a radiation of zooplanktonic organisms took place at the same time as a major diversification of suspension feeders. In addition, planktotrophy originated in invertebrate larvae during the Late Cambrian–Early Ordovician. These important changes in the trophic chain can be considered as a major palaeoecological revolution (part of the rise of the Palaeozoic Evolutionary Fauna of Sepkoski). There is now sufficient evidence that this trophic chain revolution was related to the diversification of the phytoplankton, of which the organic-walled fraction is partly preserved.  相似文献   

2.
The development of marine benthic communities in the Early Palaeozoic occurred mainly in the shallow water epicontinental seas. It included those stages of the Cambrian and Ordovician evolutionary radiations that were dominated by a high rate of morphogenesis, when new food and territory resources were not limited. This provided many opportunities for coadaptation of emerging organisms. At the time of the Cambrian radiation, the body plans of all animals were formed, while in the Ordovician, the maximum rank of emerging taxa did not exceed the level of class. The beginning of each radiation was explosive. Vendian benthic communities developed in cold seas and in the shallowest areas of warm seas, where organic matter from the surface layers was available at the bottom because of the absence of a thermocline. The Cambrian radiation began with the appearance of pelagic suspension feeders, because of which much of the primary production could penetrate the thermocline and settle at the bottom. This allowed the occupation of warmer seas and greater depths. At the same time, the productivity of the pelagic region sharply increased because of the emergence of positive feedback between the producers and consumers in the water, leading to increased water transparency and elongation of trophic chains. Arthropods, the first suspension feeders, were the launch group of the Cambrian radiation. Cambrian benthic suspension feeders could seize only the smallest particles, mostly bacteria, and dissolved organic matter. This food resource was contained in the thin bottom water layer. Therefore, the food grasping structures of all the Cambrian suspension feeders were near the bottom, without forming tiers. The Ordovician evolutionary radiation began with the launch of the Pelmatozoan echinoderms, which were the first benthic suspension feeders to begin feeding on plankton. The exploitation of this resource led to the creation of a 1-m tier above the bottom and an increase in their calcite productivity. Positive feedback emerged between the grounds and the community of its inhabitants and considerably changed the composition and diversity of grounds, which sharply increased the diversity of benthos. The appearance of positive feedback between different components of ecosystems resulted in explosive evolution in both the Cambrian and Ordovician.  相似文献   

3.
The shell of marine gastropods conserves and reflects early ontogeny, including embryonic and larval stages, to a high degree when compared with other marine invertebrates. Planktotrophic larval development is indicated by a small embryonic shell (size is also related to systematic placement) with little yolk followed by a multiwhorled shell formed by a free‐swimming veliger larva. Basal gastropod clades (e.g. Vetigastropoda) lack planktotrophic larval development. The great majority of Late Palaeozoic and Mesozoic ‘derived’ marine gastropods (Neritimorpha, Caenogastropoda and Heterobranchia) with known protoconch had planktotrophic larval development. Dimensions of internal moulds of protoconchs suggest that planktotrophic larval development was largely absent in the Cambrian and evolved at the Cambrian–Ordovician transition, mainly due to increasing benthic predation. The evolution of planktotrophic larval development offered advantages and opportunities such as more effective dispersal, enhanced gene flow between populations and prevention of inbreeding. Early gastropod larval shells were openly coiled and weakly sculptured. During the Mid‐ and Late Palaeozoic, modern tightly coiled larval shells (commonly with strong sculpture) evolved due to increasing predation pressure in the plankton. The presence of numerous Late Palaeozoic and Triassic gastropod species with planktotrophic larval development suggests sufficient primary production although direct evidence for phytoplankton is scarce in this period. Contrary to previous suggestions, it seems unlikely that the end‐Permian mass extinction selected against species with planktotrophic larval development. The molluscan classes with highest species diversity (Gastropoda and Bivalvia) are those which may have planktotrophic larval development. Extremely high diversity in such groups as Caenogastropoda or eulamellibranch bivalves is the result of high phylogenetic activity and is associated with the presence of planktotrophic veliger larvae in many members of these groups, although causality has not been shown yet. A new gastropod species and genus, Anachronistella peterwagneri, is described from the Late Triassic Cassian Formation; it is the first known Triassic gastropod with an openly coiled larval shell.  相似文献   

4.
The closure of the late Neogene interoceanic seaways between the Western Atlantic (WA) and Tropical Eastern Pacific (TEP)—commonly referred to as the Central American Seaway—significantly decreased nutrient supply in the WA compared to the TEP. In marine invertebrates, an increase in parental investment is expected to be selectively favored in nutrient‐poor marine environments as prolonged feeding in the plankton becomes less reliable. Here, we examine turritelline gastropods, which were abundant and diverse across this region during the Neogene and serve as important paleoenvironmental proxies, and test whether species exhibit decreased planktotrophy in the WA postclosure as compared to preclosure fossils and extant TEP species. We also test for differences in degree of planktotrophy in extant sister species pairs. Degree of planktotrophy was inferred by measuring the size of protoconchs, the species' larval shell that represents egg size. Protoconch size was compared between extant postclosure WA and TEP species and preclosure fossil species. To compare extant sister species, we reconstructed the phylogeny of available WA and TEP species using one nuclear (H3) and three mitochondrial markers (12S, 16S, and COI). Compared to the preclosure fossils, protoconch size increased in WA species but remained the same in the TEP species. In the two extant sister species pairs recovered in the phylogenetic analysis, the WA species are inferred to be nonplanktotrophic while the TEP species are planktotrophic. This suggests that decreased nutrient availability and primary productivity in the WA may have driven this change in developmental mode, and was the primary selective force resulting in postclosure turritelline extinctions.  相似文献   

5.
Early and middle Paleozoic gastropod protoconchs generally differ strongly from their corresponding adult morphologies, that is, most known protoconchs are smooth and openly coiled, whereas the majority of adult shells are ornamented and tightly coiled. In contrast, larval and adult shells of late Paleozoic gastropods with planktotrophic larval development (Caenogastropoda, Neritimorpha) commonly resemble each other in shape and principle ornamentation. This is surprising because habitat and mode of life of planktonic larvae and benthic adults differ strongly from each other. Generally, late Paleozoic to Recent protoconchs are tightly coiled. This modern type of larval shell resembles the adult shell morphology and was obviously predisplaced onto the larval stage during the middle Paleozoic. The oldest known planktonic‐armored (strongly ornamented) larval shells are known from the late Paleozoic. However, smooth larval shells are also common among the studied late Paleozoic gastropods. The appearance of larval armor at the beginning of the late Paleozoic could reflect an increase of predation pressure in the plankton. Although there are counter examples in which larval and adult shell morphology differ strongly from each other, there is statistical evidence for a heterochronic predisplacement of adult characters onto the larval stage. Larval and adult shells are built in the same way, by accretionary secretion at the mantle edge. It is likely that the same underlying gene expression is responsible for that. If so, similarities of larval and adult shell may be explained by gene sharing, whereas differences may be due to different (planktic vs. benthic life) epigenetic patterns.  相似文献   

6.
Major trophic links are reconstructed for the Vendian and Early Paleozoic. A hypothesis of the predominant development of extracorporeal or skin digestion in Vendian multicellular consumers is substantiated. The main food sources were algal-bacterial films, finely dispersed debris falling from the photic zone in cold shallow seas lacking a thermocline and debris on the surface of the sediment. Symbiosis with phototrophic and chemotrophic bacteria was widespread. Pelagic filtration and filtration of the near-bottom finely dispersed organic matter (including bacteria), and debris-feeding appeared when internal digestion became widespread in the Cambrian. These were supplemented in the Ordovician by feeding on the live phyto- and zooplankton in the water column one meter above the bottom. Before the Ordovician, feeding on live plankton and more so active predation on larger multicellular animals was the exception rather than the rule. The role of active predators in the biota did not become more important until the end of the Silurian. Mass morphogenesis among occurred multicellular animals as the amount and diversity of nutritional and/or spatial resources rapidly increased, while before that the lack of these was a limiting factor.  相似文献   

7.
Major trophic links are reconstructed for the Vendian and Early Paleozoic. A hypothesis of the predominant development of extracorporeal or skin digestion in Vendian multicellular consumers is substantiated. The main food sources were algal-bacterial films, finely dispersed debris falling from the photic zone in cold shallow seas lacking a thermocline and debris on the surface of the sediment. Symbiosis with phototrophic and chemotrophic bacteria was widespread. Pelagic filtration and filtration of the near-bottom finely dispersed organic matter (including bacteria), and debris-feeding appeared when internal digestion became widespread in the Cambrian. These were supplemented in the Ordovician by feeding on the live phyto- and zooplankton in the water column one meter above the bottom. Before the Ordovician, feeding on live plankton and more so active predation on larger multicellular animals was the exception rather than the rule. The role of active predators in the biota did not become more important until the end of the Silurian. Mass morphogenesis among occurred multicellular animals as the amount and diversity of nutritional and/or spatial resources rapidly increased, while before that the lack of these was a limiting factor.  相似文献   

8.
Various causes, such as increased predation pressure, the lack of planktotrophic larvae, a 'resetting' of diversity, increased competition from benthic molluscs and the decline of the Palaeozoic fauna, have been suggested to explain the failure of the brachiopods to reradiate following the Permo-Triassic mass extinction. Increased predation pressure has hitherto appeared improbable, because typical predators of brachiopods, such as teleostean fish, brachyuran crabs and predatory gastropods, did not undergo major radiation until the late Mesozoic and early Cenozoic. However, new evidence strongly suggests that one important group of predators of shelly benthic organisms, the asteroids, underwent a major radiation at the beginning of the Mesozoic. Although asteroids appeared in the early Ordovician, they remained a minor element of the marine benthos during the Palaeozoic acme of the brachiopods. However, these early asteroids lacked four important requirements for active predation on a bivalved epifauna: muscular arms (evolved in the early Carboniferous); suckered tube feet, a flexible mouth frame and an eversible stomach (all evolved in the early Triassic). Thus radiation of the Subclass Neoasteroidea coincided with both their improved feeding capability and the decline of the articulates. The asteroids were the only group of predators of brachiopods that underwent a major adaptive radiation in the earliest Mesozoic. The asteroids may therefore have contributed to inhibiting a Mesozoic reradiation of the brachiopods. Epifaunal species lacking a muscular pedicle may have been particularly vulnerable. Unlike bivalve molluscs, modern brachiopods show only a limited range of adaptations to discourage asteroid predation. □ Asteroidea, Brachiopoda, evolution, predation, functional morphology.  相似文献   

9.
Worldwide Late Cambrian—Silurian lithofacies patterns indicate that the platforms of that time were sites of accumulation of two essentially different rocks suites: the platform carbonate rocks and the platform terrigenous rocks. Most of the platform rocks accumulated as sediments in shallow marine environments similar to those of the present but far more widely spread.Present-day marine benthic faunas are distributed in depth zones which are primarily controlled by temperature. Faunas tend to occur in substrate-related discrete clusters (communities) within each life zone; similar substrates in different depth zones commonly have different faunal associations. Individual phyletic stocks may encounter environmental optimum or near-optimum conditions in certain areas, that commonly are revealed by an abundance of species and individuals within species in each stock. Environmental optimum conditions depend upon availability of food that may be utilized, modes of feeding of the animals present, water motion, and substrate, among other factors. Organisms in past seas were distributed in patterns similar to those of the present.Carbonate platforms were particularly widespread during the latest Cambrian—Early Ordovician. Intertidal environments spread widely across those platforms during that time and characteristic faunal associations developed in them. Saukiid and related tribolites dominated latest Cambrian carbonate platform intertidal faunas. The Early Ordovician carbonate platform intertidal was dominated by archeogastropod-nautiloid cephalopod faunas. These animals were joined by tabulate corals and certain brachiopods during the latter part of the Ordovician and Silurian as prominent faunal elements in the carbonate platform intertidal—shallow subtidal. Cruziana and related trace fossils, bivalves, and certain tribolites (notably homalonotids and dalmanitids) dominated most terrigenous platform intertidal—shallow subtidal faunas of the Ordovician and Silurian.Articulate brachiopods (primarily orthoids, strophomenoids, and rhynchonelloids) appear to have been relatively prominent during the Early Ordovician in shallow subtidal environments on both carbonate and terrigenous platforms and to have spread down the bathymetric gradient into increasingly deeper subtidal areas of both platforms during the latter part of the Ordovician. Tribolites dominated faunas in relatively moderate to deep subtidal environments on both platforms during the early part of the Ordovician. They were gradually replaced by brachiopods in first the shallower, and later the deeper subtidal as dominant members of the faunas. Brachiopods (primarily pentameroids and spiriferoids) dominated nearly all Silurian warm-water subtidal environments from the shallow subtidal to the edges of the platforms.Platform uplifts in the Middle Ordovician and glacio-eustatic sea-level fluctuations in the Late Ordovician caused environmental changes across the platforms that were accompanied by marked replacements among marine benthic faunas in all environments. The distribution of Ordovician carbonate platforms and glacial deposits suggests that an Ordovician polar region may have been close to present-day equatorial Africa and that Ordovician warm temperate-tropical regions lay close to the present-day North Pole.  相似文献   

10.
In free-spawning marine invertebrates, larval development typically proceeds by one of two modes: planktotrophy (obligate larval feeding) from small eggs or lecithotrophy (obligate non-feeding) from relatively large eggs. In a rare third developmental mode, facultative planktotrophy, larvae can feed, but do not require particulate food to complete metamorphosis. Facultative planktotrophy is thought to be an intermediate condition that results from an evolutionary increase in energy content in the small eggs of a planktotrophic ancestor. We tested whether an experimental reduction in egg size is sufficient to restore obligate planktotrophy from facultative planktotrophy and whether the two sources of larval nutrition (feeding and energy in the egg) differentially influence larval survival and juvenile quality. We predicted, based on its large egg size, that a reduction in egg size in the echinoid echinoderm Clypeaster rosaceus would affect juvenile size but not time to metamorphosis. We reduced the effective size of whole (W) zygotes by separating blastomeres at the two- or four-cell stages to create half- (H) or quarter-size (Q) “zygotes” and reared larvae to metamorphosis, both with and without particulate food. Larvae metamorphosed at approximately the same time regardless of food or egg size treatment. In contrast, juveniles that developed from W zygotes were significantly larger, had higher organic content and had longer and more numerous spines than juveniles from H or Q zygotes. Larvae from W, H and Q zygotes were able to reach metamorphosis without feeding, suggesting that the evolution of facultative planktotrophy in C. rosaceus was accompanied by more than a simple increase in egg size. In addition, our results suggest that resources lost by halving egg size have a larger effect on larval survival and juvenile quality than those lost by withholding particulate food.  相似文献   

11.
1. Data on the distributions of pelagic and benthic Chaoborus flavicans larvae were gathered in 1994 and tested for their agreement with the predator avoidance hypotheses. The development of all Chaoborus life stages, as well as the horizontal and vertical distribution in the four larval instars, was followed from May until October. We expected the largest larvae to dwell deeper by day, thus avoiding predation by visually foraging fish.
2. In agreement with this prediction body size increased with daytime depth, and this was true both between and within instars. The migration amplitude consequently increased with larval instar.
3. There was also evidence for horizontal migration, mainly in the third but also in the fourth instar.
4. Along a horizontal transect with increasing depth, locations with many benthic larvae had fewer pelagic larvae. Oxygen concentration was a good predictor of maximum benthic larval depth for most of the season but failed to predict their distribution in autumn.  相似文献   

12.
Summary Pigmented eyespot size of the benthic cladoceran Simocephalus exspinosus was measured in individuals sampled from four freshwater ponds that differed in the extent of visually-oriented predation. In ponds with such predation (from fish, salamander larvae, and dragonfly nymphs), eyespot size was found to be significantly smaller, relative to body size, than in a pond without visually-oriented predation. Reduction in pigmented eyespot size may represent an adaptation to reduce vulnerability to predation.  相似文献   

13.
Species with large eggs and nonfeeding larvae have evolved many times from ancestors with smaller eggs and feeding larvae in numerous groups of aquatic invertebrates and amphibians. This change in reproductive allocation and larval form is often accompanied by dramatic changes in development. Little is known of this transformation because the intermediate form (a facultatively feeding larva) is rare. Knowledge of facultatively feeding larvae may help explain the conditions under which nonfeeding larvae evolve. Two hypotheses concerning the evolutionary loss of larval feeding are as follows: (1) large eggs evolve before modifications in larval development, and (2) the intermediate form (facultatively feeding larva) is evolutionarily short-lived. I show that larvae of a heart urchin, Brisaster latifrons, are capable of feeding but do not require food to complete larval development. Food for larvae appears to have little effect on larval growth and development. The development, form, and suspension feeding mechanism of these larvae are similar to those of obligate-feeding larvae of other echinoids. Feeding rates of Brisaster larvae are similar to cooccurring, obligate-feeding echinoid larvae but are low relative to the large size of Brisaster larvae. The comparison shows that in Brisaster large egg size, independence from larval food, and relatively low feeding rate have evolved before the heterochronies and modified developmental mechanisms common in nonfeeding echinoid larvae. If it is general, the result suggests that hypotheses concerning the origin of nonfeeding larval development should be based on ecological factors that affect natural selection for large eggs, rather than on the evolution of heterochronies and developmental novelties in particular clades. I also discuss alternative hypotheses concerning the evolutionary persistence of facultative larval feeding as a reproductive strategy. These hypotheses could be tested against a phylogenetic hypothesis.  相似文献   

14.
1. Recently, a small predatory beetle, Trechisibus antarcticus (Carabidae), was accidentally introduced onto the island of South Georgia, sub-Antarctic.
2. From the presumed site of introduction the beetle is invading the coastal lowland area, building up high densities locally in the tussock-forming grass Parodiochloa flabellata .
3. In the coastal area the endemic detritivorous/herbivorous beetle Hydromedion sparsutum (Perimylopidae) is common, especially in and beneath the tussocks.
4. The first three, out of six, larval instars of H. sparsutum are easily taken prey by the carabid.
5. In sites colonized by the carabid, total abundance and the ratio between larval and adult numbers of H. sparsutum are far lower, and its adult body size clearly larger, than in comparable sites where the carabid is absent.
6. Two hypotheses are proposed for explaining the increase in adult body size of H. sparsutum : (i) the increase is a direct effect of predation: selection by the predator favours large hatchlings and/or larvae with a high growth rate; and (ii) the increase is an indirect effect of predation: by lowering the density of H. sparsutum , predation has increased its per capita food supply, enabling a higher growth rate and a larger adult body size.
7. A food addition experiment in a carabid-free site showed availability of high quality food to be insufficient for sustaining the initial larval population.
8. In the laboratory, females from the predator-infested sites produced larger eggs and hatchlings than females from the carabid-free sites, but mass specific growth rates of the larvae were not higher.
9. Field and laboratory data give stronger support to the food hypothesis than to the size selectivity hypothesis.  相似文献   

15.
The adaptations of young insect larvae to factors causing mortality may not depend on whole-body size but may instead depend substantially on the size of specific body parts. Using two closely related plant species, Arabis flagellosa, which has leaves that are tougher and difficult to digest, and A. gemmifera, which has leaves that are softer and difficult to convert, we showed that larvae of the butterfly Pieris napi exhibit specific adaptations through changes in body-part size based on different traits of their host plants. For a given egg size, the head widths of hatchlings from eggs collected from A. flagellosa were significantly larger than those of hatchlings from eggs collected from A. gemmifera. In addition, larger heads were accompanied by smaller abdomens in hatchlings originating from A. flagellosa, whereas the opposite pattern was observed in hatchlings from A. gemmifera. The time to completion of the first feeding on leaves of A. gemmifera was not affected by either egg or head size regardless of the original food plant. However, the time to completion of the first feeding on A. flagellosa decreased with increasing head size of hatchlings, regardless of the original food plant. Furthermore, even though egg sizes did not differ between treatments, larvae originating from A. gemmifera and A. flagellosa exhibited similar weight gain on leaves of A. flagellosa, whereas larvae originating from A. gemmifera gained more weight than larvae from A. flagellosa when reared on leaves of A. gemmifera. These results suggest that selection in young larvae for adaptations to environmental conditions may operate on specific larval body-part sizes.  相似文献   

16.
1. The effects of resource availability during ontogeny on subsequent feeding performance were investigated in larvae of the small-mouthed salamander ( Ambystoma texanum ).
2. Salamander larvae were reared individually in either high or low prey density treatments for 7 weeks prior to intermediate prey density foraging trials. Larvae from the low prey density treatment were on average 35% smaller in body size than individuals from the high prey density treatment.
3. Resource availability during development influenced larval feeding rates and altered the relationship between body size and three feeding performance measures (attack rates, capture success and feeding rates). Feeding rates in predation trials were also positively correlated with growth rate early in the larval period (until the end of week 5).
4. These results suggest that the environment to which developing organisms are exposed can have significant effects on subsequent behaviour, and that small-mouthed salamander larvae may show state-dependent changes in feeding behaviour in response to differences in long-term feeding history. Additionally, differences in feeding performance may influence the probability of survival to the adult stage for organisms that utilize ephemeral habitats.  相似文献   

17.
1. The effects of resource availability during ontogeny on subsequent feeding performance were investigated in larvae of the small-mouthed salamander ( Ambystoma texanum ).
2. Salamander larvae were reared individually in either high or low prey density treatments for 7 weeks prior to intermediate prey density foraging trials. Larvae from the low prey density treatment were on average 35% smaller in body size than individuals from the high prey density treatment.
3. Resource availability during development influenced larval feeding rates and altered the relationship between body size and three feeding performance measures (attack rates, capture success and feeding rates). Feeding rates in predation trials were also positively correlated with growth rate early in the larval period (until the end of week 5).
4. These results suggest that the environment to which developing organisms are exposed can have significant effects on subsequent behaviour, and that small-mouthed salamander larvae may show state-dependent changes in feeding behaviour in response to differences in long-term feeding history. Additionally, differences in feeding performance may influence the probability of survival to the adult stage for organisms that utilize ephemeral habitats.  相似文献   

18.
Quantitative data on molluscan larval conch fossil assemblages of ages ranging from the Ordovician (Argentina and the Baltic region), through Silurian (Austria), Devonian (Poland) to Carboniferous (Texas) supplement knowledge of early planktonic gastropods communities transformations. They show that larval shells of the bilaterally symmetrical bellerophontids and dextrally coiled gastropods with a hook-like straight apical portion of the first whorl initially dominated. Their relative frequency, as well as that of the sinistrally coiled ‘paragastropods’, diminished during the Ordovician and Silurian to virtually disappear in the Late Devonian and Early Carboniferous. Already during the Ordovician, diversity of larvae with gently loosely coiled first whorl increased, to be replaced then with more and more tightly coiled forms. Both the aperture constrictions and mortality peaks, probably connected with hatching and metamorphosis, indicate that the Ordovician protoconchs with hook-like first coil represent both the stage of an embryo developing within the egg envelope and a planktonic larva. The similarity of the straight apex to larval conchs of hyoliths and advanced thecosome pteropods is superficial, as these were not homologous stages in early development.  相似文献   

19.
The diet of perch Perca fluviatilis was studied to reveal possible predation on vendace Coregonus albula larvae in an oligotrophic lake. Perch diet changed with the size of the fish: small perch ate mainly zooplankton and the diet shifted more to benthic invertebrates and fishes in larger perch. There were also annual and spatial differences in the diet, probably reflecting differences in the availability of prey animals. Perch predation on vendace larvae was only observed in the area with high availability of the larvae. The result suggested strengthened predation when the density of the larvae increases. According to bioenergetics modelling, the perch population increased natural mortality of vendace larvae only marginally. Food intake of spawning female perch was slightly reduced, whereas spawning males fed similarly to non-spawning males. Hence, the spawning period of perch was only a minor refuge for vendace larvae. Laboratory experiments of perch digestion rate demonstrated that, due to rapid digestion of the small fish larvae, diet sampling interval should not be >2 h in the field.  相似文献   

20.
We report new discoveries of embryos and egg capsules from the Lower Cambrian of Siberia, Middle Cambrian of Australia and Lower Ordovician of North America. Together with existing records, embryos have now been recorded from four of the seven continents. However, the new discoveries highlight secular and systematic biases in the fossil record of embryonic stages. The temporal window within which the embryos and egg capsules are found is of relatively short duration; it ends in the Early Ordovician and is roughly coincident with that of typical "Orsten"-type faunas. The reduced occurrence of such fossils has been attributed to reducing levels of phosphate in marine waters during the early Paleozoic, but may also be owing to the increasing depth of sediment mixing by infaunal metazoans. Furthermore, most records younger than the earliest Cambrian are of a single kind-large eggs and embryos of the priapulid-like scalidophoran Markuelia. We explore alternative explanations for the low taxonomic diversity of embryos recovered thus far, including sampling, size, anatomy, ecology, and environment, concluding that the preponderance of Markuelia embryos is due to its precocious development of cuticle at an embryonic stage, predisposing it to preservation through action as a substrate on which microbially mediated precipitation of authigenic calcium phosphate may occur. The fossil record of embryos may be limited to a late Neoproterozoic to early Ordovician snapshot that is subject to dramatic systematic bias. Together, these biases must be considered seriously in attempts to use the fossil record to arbitrate between hypotheses of developmental and life history evolution implicated in the origin of metazoan clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号