首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swanton E  High S  Woodman P 《The EMBO journal》2003,22(12):2948-2958
The endoplasmic (ER) quality control apparatus ensures that misfolded or unassembled proteins are not deployed within the cell, but are retained in the ER and degraded. A glycoprotein-specific system involving the ER lectins calnexin and calreticulin is well documented, but very little is known about mechanisms that may operate for non-glycosylated proteins. We have used a folding mutant of a non- glycosylated membrane protein, proteolipid protein (PLP), to examine the quality control of this class of polypeptide. We find that calnexin associates with newly synthesized PLP molecules, binding stably to misfolded PLP. Calnexin also binds stably to an isolated transmembrane domain of PLP, suggesting that this chaperone is able to monitor the folding and assembly of domains within the ER membrane. Notably, this glycan-independent interaction with calnexin significantly retards the degradation of misfolded PLP. We propose that calnexin contributes to the quality control of non-glycosylated polytopic membrane proteins by binding to misfolded or unassembled transmembrane domains, and discuss our findings in relation to the role of calnexin in the degradation of misfolded proteins.  相似文献   

2.
Stress conditions affecting the functions of the endoplasmic reticulum (ER) cause the accumulation of unfolded proteins. ER stress is counteracted by the unfolded-protein response (UPR). However, under prolonged stress the UPR initiates a proapoptotic response. Mounting evidence indicate that the ER chaperone calnexin is involved in apoptosis caused by ER stress. Here, we report that overexpression of calnexin in Schizosaccharomyces pombe induces cell death with apoptosis markers. Cell death was partially dependent on the Ire1p ER-stress transducer. Apoptotic death caused by calnexin overexpression required its transmembrane domain (TM), and involved sequences on either side of the ER membrane. Apoptotic death caused by tunicamycin was dramatically reduced in a strain expressing endogenous levels of calnexin lacking its TM and cytosolic tail. This demonstrates the involvement of calnexin in apoptosis triggered by ER stress. A genetic screen identified the S. pombe homologue of the human antiapoptotic protein HMGB1 as a suppressor of apoptotic death due to calnexin overexpression. Remarkably, overexpression of human calnexin in S. pombe also provoked apoptotic death. Our results argue for the conservation of the role of calnexin in apoptosis triggered by ER stress, and validate S. pombe as a model to elucidate the mechanisms of calnexin-mediated cell death.  相似文献   

3.
Calnexin is an endoplasmic reticulum (ER) resident type I integral membrane phosphoprotein. This protein is actively involved in the ER glycoprotein quality control through its luminal domain. In addition, although calnexin also interacts with membrane-bound ribosomes, the nature of this interaction remains poorly characterized. Herein, using in vitro approaches, we demonstrate that calnexin cytosolic domain directly interacts with, at least 5 ribosomal proteins. Furthermore, we characterize more specifically its interaction with the ribosomal protein L4 and that L4 binds to the 19 carboxy terminal amino acids of calnexin. We suggest that the direct interaction of calnexin with membrane-bound ribosomes may represent a regulatory mechanism for its lectin-like chaperone function.  相似文献   

4.
The voltage-gated sodium channel (Nav) 1.8 contributes substantially to the rising phase of action potential in small dorsal root ganglion neurons. Nav1.8 is majorly localized intracellularly and its expression on the plasma membrane is regulated by exit from the endoplasmic reticulum (ER). Previous work has identified an ER-retention/retrieval motif in the first intracellular loop of Nav1.8, which prevents its surface expression. Here we report that the transmembrane segments of Nav1.8 also cause this channel retained in the ER. Using transferrin receptor and CD8α as model molecules, immunocytochemistry showed that the first, second, and third transmembrane segments in each domain of Nav1.8 reduced their surface expression. Alanine-scanning analysis revealed acidic amino acids as critical factors in the odd transmembrane segments. Furthermore, co-immunoprecipitation experiments showed that calnexin interacted with acidic amino acid-containing sequences through its transmembrane segment. Overexpression of calnexin resulted in increased degradation of those proteins through the ER-associated degradation pathway, whereas down-regulation of calnexin reversed the phenotype. Thus our results reveal a critical role and mechanism of transmembrane segments in surface expression and degradation of Nav1.8.  相似文献   

5.
6.
Calnexin is a membrane protein of the endoplasmic reticulum (ER) that functions as a molecular chaperone and as a component of the ER quality control machinery. Calreticulin, a soluble analog of calnexin, is thought to possess similar functions, but these have not been directly demonstrated in vivo. Both proteins contain a lectin site that directs their association with newly synthesized glycoproteins. Although many glycoproteins bind to both calnexin and calreticulin, there are differences in the spectrum of glycoproteins that each binds. Using a Drosophila expression system and the mouse class I histocompatibility molecule as a model glycoprotein, we found that calreticulin does possess apparent chaperone and quality control functions, enhancing class I folding and subunit assembly, stabilizing subunits, and impeding export of assembly intermediates from the ER. Indeed, the functions of calnexin and calreticulin were largely interchangeable. We also determined that a soluble form of calnexin (residues 1-387) can functionally replace its membrane-bound counterpart. However, when calnexin was expressed as a soluble protein in L cells, the pattern of associated glycoproteins changed to resemble that of calreticulin. Conversely, membrane-anchored calreticulin bound to a similar set of glycoproteins as calnexin. Therefore, the different topological environments of calnexin and calreticulin are important in determining their distinct substrate specificities.  相似文献   

7.
While membrane insertion of single-spanning membrane proteins into the endoplasmic reticulum (ER) is relatively well understood, it is unclear how multi-spanning proteins integrate. We have investigated the cotranslational ER integration of a double-spanning protein that is derived from leader peptidase. Both transmembrane (TM) segments are inserted into the membrane by the Sec61 channel. While the first, long and hydrophobic TM segment (TM1) inserts into the lipid bilayer on its own, the second, shorter TM anchor (TM2) collaborates with TM1 during its integration. TM1 diffuses away from the Sec61 complex in the absence of TM2, but is close to Sec61 when TM2 arrives inside the channel. These data suggest that the exit of a weak TM segment from the Sec61 channel into the lipid phase can be facilitated by its interaction with a previously integrated strong and stabilizing TM anchor.  相似文献   

8.
To better define the mechanism of membrane protein insertion into the membrane of the endoplasmic reticulum, we measured the kinetics of translocation across microsomal membranes of the N-terminal lumenal tail and the lumenal domain following the second transmembrane segment (TM2) in the multispanning mouse protein Cig30. In the wild-type protein, the N-terminal tail translocates across the membrane before the downstream lumenal domain. Addition of positively charged residues to the N-terminal tail dramatically slows down its translocation and allows the downstream lumenal domain to translocate at the same time as or even before the N-tail. When TM2 is deleted, or when the loop between TM1 and TM2 is lengthened, addition of positively charged residues to the N-terminal tail causes TM1 to adopt an orientation with its N-terminal end in the cytoplasm. We suggest that the topology of the TM1-TM2 region of Cig30 depends on a competition between TM1 and TM2 such that the transmembrane segment that inserts first into the ER membrane determines the final topology.  相似文献   

9.
Vacuolar (H+)-ATPase (V-ATPase) is a proton pump present in several compartments of eukaryotic cells to regulate physiological processes. From biochemical studies it is known that the interaction between arginine 735 present in the seventh transmembrane (TM7) segment from subunit a and specific glutamic acid residues in the subunit c assembly plays an essential role in proton translocation. To provide more detailed structural information about this protein domain, a peptide resembling TM7 (denoted peptide MTM7) from Saccharomyces cerevisiae (yeast) V-ATPase was synthesized and dissolved in two membrane-mimicking solvents: DMSO and SDS. For the first time the secondary structure of the putative TM7 segment from subunit a is obtained by the combined use of CD and NMR spectroscopy. SDS micelles reveal an alpha-helical conformation for peptide MTM7 and in DMSO three alpha-helical regions are identified by 2D 1H-NMR. Based on these conformational findings a new structural model is proposed for the putative TM7 in its natural environment. It is composed of 32 amino acid residues that span the membrane in an alpha-helical conformation. It starts at the cytoplasmic side at residue T719 and ends at the luminal side at residue W751. Both the luminal and cytoplasmatic regions of TM7 are stabilized by the neighboring hydrophobic transmembrane segments of subunit a and the subunit c assembly from V-ATPase.  相似文献   

10.
Polytopic protein topology is established in the endoplasmic reticulum (ER) by sequence determinants encoded throughout the nascent polypeptide. Here we characterize 12 topogenic determinants in the cystic fibrosis transmembrane conductance regulator, and identify a novel mechanism by which a charged residue is positioned within the plane of the lipid bilayer. During cystic fibrosis transmembrane conductance regulator biogenesis, topology of the C-terminal transmembrane domain (TMs 7-12) is directed by alternating signal (TMs 7, 9, and 11) and stop transfer (TMs 8, 10, and 12) sequences. Unlike conventional stop transfer sequences, however, TM8 is unable to independently terminate translocation due to the presence of a single charged residue, Asp(924), within the TM segment. Instead, TM8 stop transfer activity is specifically dependent on TM7, which functions both to initiate translocation and to compensate for the charged residue within TM8. Moreover, even in the presence of TM7, the N terminus of TM8 extends significantly into the ER lumen, suggesting a high degree of flexibility in establishing TM8 transmembrane boundaries. These studies demonstrate that signal sequences can markedly influence stop transfer behavior and indicate that ER translocation machinery simultaneously integrates information from multiple topogenic determinants as they are presented in rapid succession during polytopic protein biogenesis.  相似文献   

11.
Calnexin is an abundant integral membrane phosphoprotein of the endoplasmic reticulum (ER) of eukaryotic cells. The role of the luminal domain as an N-glycoprotein specific lectin has been well-established. Cytosolic C-terminal domain phosphorylation of calnexin has recently been elucidated in glycoprotein folding and quality control. Signalling of the presence of unfolded proteins from the lumen of the ER is mediated by the three ER membrane sensor proteins Ire1, ATF6 and PERK. The observation that the C-terminus of calnexin is differentially phosphorylated when glycoproteins are misfolded initiated our search for functional roles of calnexin phosphorylation. Recent studies have defined a role for phosphorylation at a proline-directed kinase site (Ser563) in ER protein quality control, while phosphorylation at a casein kinase 2 site (Ser534, Ser544) may be linked to transport functions. There are also four other abundant integral membrane phosphoproteins in the ER, and these may be components of other signalling pathways that link and coordinate other ER functions with the rest of the cell.  相似文献   

12.
Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling. We showed that calnexin and PTP1B form UBC9-dependent complexes, revealing a previously unrecognized contribution of calnexin to the retention of PTP1B at the ER membrane. This work shows that the SUMOylation machinery links two ER proteins from divergent pathways to potentially affect cellular protein quality control and energy metabolism.  相似文献   

13.
Role of CD3 gamma in T cell receptor assembly   总被引:3,自引:0,他引:3       下载免费PDF全文
The T cell receptor (TCR) consists of the Ti alpha beta heterodimer and the associated CD3 gamma delta epsilon and zeta 2 chains. The structural relationships between the subunits of the TCR complex are still not fully known. In this study we examined the role of the extracellular (EC), transmembrane (TM), and cytoplasmic (CY) domain of CD3 gamma in assembly and cell surface expression of the complete TCR in human T cells. A computer model indicated that the EC domain of CD3 gamma folds as an Ig domain. Based on this model and on alignment studies, two potential interaction sites were predicted in the EC domain of CD3 gamma. Site-directed mutagenesis demonstrated that these sites play a crucial role in TCR assembly probably by binding to CD3 epsilon. Mutagenesis of N-linked glycosylation sites showed that glycosylation of CD3 gamma is not required for TCR assembly and expression. In contrast, treatment of T cells with tunicamycin suggested that N-linked glycosylation of CD3 delta is required for TCR assembly. Site-directed mutagenesis of the acidic amino acid in the TM domain of CD3 gamma demonstrated that this residue is involved in TCR assembly probably by binding to Ti beta. Deletion of the entire CY domain of CD3 gamma did not prevent assembly and expression of the TCR. In conclusion, this study demonstrated that specific TCR interaction sites exist in both the EC and TM domain of CD3 gamma. Furthermore, the study indicated that, in contrast to CD3 gamma, glycosylation of CD3 delta is required for TCR assembly and expression.  相似文献   

14.
Biosynthesis and folding of multidomain transmembrane proteins is a complex process. Structural fidelity is monitored by endoplasmic reticulum (ER) quality control involving the molecular chaperone calnexin. Retained misfolded proteins undergo ER-associated degradation (ERAD) through the ubiquitin-proteasome pathway. Our data show that the major degradation pathway of the cystic fibrosis transmembrane conductance regulator (CFTR) with F508del (the most frequent mutation found in patients with the genetic disease cystic fibrosis) from the ER is independent of calnexin. Moreover, our results demonstrate that inhibition of mannose-processing enzymes, unlike most substrate glycoproteins, does not stabilize F508del-CFTR, although wild-type (wt) CFTR is drastically stabilized under the same conditions. Together, our data support a novel model by which wt and F508del-CFTR undergo ERAD from two distinct checkpoints, the mutant being disposed of independently of N-glycosidic residues and calnexin, probably by the Hsc70/Hsp70 machinery, and wt CFTR undergoing glycan-mediated ERAD.  相似文献   

15.
Immature thymocytes express clonotype-independent CD3 complexes that, when engaged by anti-CD3 antibodies, can signal CD4-CD8- thymocytes to differentiate into CD4+CD8+ cells. Clonotype-independent CD3 complexes consist of CD3 components associated with an unknown 90 kDa surface protein. We now report the surprising finding that this 90 kDa surface protein is the molecular chaperone calnexin, an integral membrane protein previously thought to reside only in the endoplasmic reticulum (ER). We found that calnexin-CD3 complexes escaping to the cell surface utilize interchain associations distinct from those utilized by calnexin-CD3 complexes remaining within the ER. Specifically, we demonstrate that carbohydrate-mediated luminal domain interactions that are necessary for formation of most internal calnexin-CD3 complexes destined to be expressed on the cell surface, and we provide evidence that cytoplasmic domain interactions between calnexin and CD3 epsilon chains mask calnexin's ER retention signal, permitting calnexin and associated proteins to escape ER retention. Thus, the present study demonstrates that partial T cell antigen receptor complexes can escape the ER of immature thymocytes in association with their molecular chaperone to be expressed at low levels on the cell surface where they may function as a signaling complex to regulate thymocyte maturation.  相似文献   

16.
Heterodimers of MHC class I glycoprotein and beta(2)-microglobulin (beta(2)m) bind short peptides in the endoplasmic reticulum (ER). Before peptide binding these molecules form part of a multisubunit loading complex that also contains the two subunits of the TAP, the transmembrane glycoprotein tapasin, the soluble chaperone calreticulin, and the thiol oxidoreductase ERp57. We have investigated the assembly of the loading complex and provide evidence that after TAP and tapasin associate with each other, the transmembrane chaperone calnexin and ERp57 bind to the TAP-tapasin complex to generate an intermediate. These interactions are independent of the N:-linked glycan of tapasin, but require its transmembrane and/or cytoplasmic domain. This intermediate complex binds MHC class I-beta(2)m dimers, an event accompanied by the loss of calnexin and the acquisition of calreticulin, generating the MHC class I loading complex. Peptide binding then induces the dissociation of MHC class I-beta(2)m dimers, which can be transported to the cell surface.  相似文献   

17.
Over 155 mutations within the V2 vasopressin receptor (AVPR2) gene are responsible for nephrogenic diabetes insipidus (NDI). The expression and subcellular distribution of four of these was investigated in transfected cells. These include a point mutation in the seventh transmembrane domain (S315R), a frameshift mutation in the third intracellular loop (804delG), and two nonsense mutations that code for AVPR2 truncated within the first cytoplasmic loop (W71X) and in the proximal portion of the carboxyl tail (R337X). RT-PCR revealed that mRNA was produced for all mutant receptor constructs. However, no receptor protein, as assessed by Western blot analysis, was detected for 804delG. The S315R was properly processed through the Golgi and targeted to the plasma membrane but lacked any detectable AVP binding or signaling. Thus, this mutation induces a conformational change that is compatible with endoplasmic reticulum (ER) export but dramatically affects hormone recognition. In contrast, the W71X and R337X AVPR2 were retained inside the cell as determined by immunofluorescence. Confocal microscopy revealed that they were both retained in the ER. To determine if calnexin could be involved, its interaction with the AVPR2 was assessed. Sequential coimmunoprecipitation demonstrated that calnexin associated with the precursor forms of both wild-type (WT) and mutant receptors in agreement with its general role in protein folding. Moreover, its association with the ER-retained R337X mutant was found to be longer than with the WT receptor suggesting that this molecular chaperone also plays a role in quality control and ER retention of misfolded G protein-coupled receptors.  相似文献   

18.
Enveloped viruses utilize the membranous compartments of the host cell for the assembly and budding of new virion particles. In this report, we have investigated the biogenesis and trafficking of the envelope glycoprotein (GP-C) of the Junín arenavirus. The mature GP-C complex is unusual in that it retains a stable signal peptide (SSP) as an essential component in association with the typical receptor-binding (G1) and transmembrane fusion (G2) subunits. We demonstrate that, in the absence of SSP, the G1-G2 precursor is restricted to the endoplasmic reticulum (ER). This constraint is relieved by coexpression of SSP in trans, allowing transit of the assembled GP-C complex through the Golgi and to the cell surface, the site of arenavirus budding. Transport of a chimeric CD4 glycoprotein bearing the transmembrane and cytoplasmic domains of G2 is similarly regulated by SSP association. Truncations to the cytoplasmic domain of G2 abrogate SSP association yet now permit transport of the G1-G2 precursor to the cell surface. Thus, the cytoplasmic domain of G2 is an important determinant for both ER localization and its control through SSP binding. Alanine mutations to either of two dibasic amino acid motifs in the G2 cytoplasmic domain can also mobilize the G1-G2 precursor for transit through the Golgi. Taken together, our results suggest that SSP binding masks endogenous ER localization signals in the cytoplasmic domain of G2 to ensure that only the fully assembled, tripartite GP-C complex is transported for virion assembly. This quality control process points to an important role of SSP in the structure and function of the arenavirus envelope glycoprotein.  相似文献   

19.
Z Xu  V Bruss    T S Yen 《Journal of virology》1997,71(7):5487-5494
Hepatitis B virus small surface protein is synthesized as a transmembrane protein of the rough endoplasmic reticulum (RER) and then buds into the lumen in the form of subviral particles that are secreted. The closely related large surface protein is also targeted to the RER but is retained in a pre-Golgi compartment and cannot be secreted. It has been assumed that the large surface protein remains as a transmembrane RER protein and hence cannot form particles, possibly because of binding to a host factor on the cytosolic face of the RER membranes. We have reexamined this question and found the following results. (i) The retained large surface protein is associated not with RER but, rather, with a more distal compartment. (ii) Electron microscopy reveals intravesicular 20-nm particles, similar to those formed by the small surface protein. (iii) The large surface protein colocalizes with and binds to calnexin, an ER chaperone protein. Therefore, our results indicate that the large surface protein is capable of budding and forming particles, and hence its intracellular retention cannot be attributed to a cytosolic factor. We interpret the data as evidence that the large surface protein is retained by virtue of interacting with calnexin, a component of what is considered the quality control mechanism of the ER.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号