首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We incubated eggs of the Chinese ratsnake Zaocys dhumnades at four constant temperatures (24, 27, 30 and 30 °C) to examine the effects of incubation temperature on hatching success and hatchling phenotypes. Incubation length increased nonlinearly as temperature decreased, with the mean incubation length being 76.7 d at 24 °C, 57.4 d at 27 °C, 47.3 d at 30 °C, and 44.1 d at 33 °C. Hatching successes were lower at the two extreme temperatures (69% at 24 °C, and 44% at 33 °C) than at the other two moderate temperatures (96% at 27 °C, and 93% at 30 °C). Incubation temperature affected nearly all hatchling traits examined in this study. Incubation of Z. dhumnades eggs at 33 °C resulted in production of smaller hatchlings that characteristically had less-developed carcasses but contained more unutilized yolks. Hatchlings from eggs incubated at 27 and 30 °C did not differ in any examined traits. Taking the rate of embryonic development, hatching success and hatchling phenotypes into account, we conclude that the temperature range optimal for incubation of Z. dhumnades eggs is narrower than the range of 24−33 °C but should be wider than the range of 27−30 °C.  相似文献   

2.
It has been documented in some reptiles that fluctuating incubation temperatures influence hatchling traits differently than constant temperatures even when the means are the same between treatments; yet whether the observed effects result from the thermal variance, temperature extremes or both is largely unknown. We incubated eggs of the checkered keelback snake Xenochrophis piscator under one fluctuating (Ft) and three constant (24, 27 and 30 °C) temperatures to examine whether the variance of incubation temperatures plays an important role in influencing the phenotype of hatchlings. The thermal conditions under which eggs were incubated affected a number of hatchling traits (wet mass, SVL, tail length, carcass dry mass, fatbody dry mass and residual yolk dry mass) but not hatching success and the sex ratio of hatchlings. Body sizes were larger in hatchlings from incubation temperatures of 24 and 27 °C compared with the other two treatments. Hatchlings from the four treatments could be divided into two groups: one included hatchlings from the 24 and 27 °C treatments, and the other included hatchlings from the 30 °C and Ft treatments. In the Ft treatment, the thermal variance was not a significant predictor of all examined hatchling traits, and incubation length was not correlated with the thermal variance when holding the thermal mean constant. The results of this study show that the mean rather than the variance of incubation temperatures affects the phenotype of hatchlings.  相似文献   

3.
4.
Fluctuating temperatures (FTs) influence hatchling phenotypes differently from constant temperatures (CTs) in some reptiles, but not in others. This inconsistency raises a question of whether thermal fluctuations during incubation always play an important role in shaping the phenotype of hatchlings. To answer this question, we incubated eggs of Naja atra under one CT (28 °C, CT), two temperature-shift [cold first (CF) and hot first (HF) in which eggs were first incubated at 24 or 32 °C and then at the other, each for 20 days, and finally at 28 °C until hatching], and one FT thermal regimes. Female hatchlings were larger in snout–vent length but smaller in tail length, head size than male hatchlings from the same-sized egg; female hatchlings had more ventral scales than did male hatchlings. The FT and HF treatments resulted in shorter incubation lengths. Tail length was greatest in the CT treatment and smallest in the FT treatment, with the CF and HF treatments in between; head width was greater in the CT treatment than in the other three treatments. Other examined hatchling traits did not differ among treatments. The observed morphological modifications cannot be attributed to the effect of thermal fluctuations but to the effect of temperatures close to the upper and lower viable limits for the species. Our results therefore support the hypothesis that hatchling phenotype is not altered by thermal fluctuation in species with no phenotypic response to incubation temperature within some thresholds.  相似文献   

5.
Although the effects of constant temperatures on hatchling traits have been extensively studied in reptiles, the effects of fluctuating temperatures remain poorly understood. Eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) were incubated at a constant temperatures (28 °C) and two fluctuating temperatures (28±3 °C and 28±6 °C) to test for the influence of thermal environment on incubation duration, hatchling traits, and post-hatching growth. Incubation duration was shorter at constant temperature than at fluctuating temperatures. The sex ratio of hatchlings varied among temperature treatments, with more females from 28±6 °C than from 28 °C. The size and mass were greater for hatchlings from a constant temperature than from fluctuating ones, but this difference in body size disappeared when the hatchlings were 3 months old. In addition, the swimming ability, survival, and growth of hatchlings from fluctuating temperatures did not differ from those of hatchlings from constant temperature, when they were kept at an artificial environment without food scarcity or predation. Therefore, the thermal environments with various temperature fluctuations used in this study do not significantly affect fitness-related hatchling traits in this species.  相似文献   

6.
Eggs of wall lizards (Podarcis muralis) were incubated at three temperatures approaching the upper limit of viability for embryonic development in this species (26, 29, and 32 degrees C) to assess the influence of temperature on various aspects of hatchling phenotype likely affecting fitness. The thermal environment affected size and several morphometric characteristics of hatchling lizards. Hatchlings from eggs incubated at 32 degrees C were smaller (snout-vent length, SVL) than those from 26 and 29 degrees C and had smaller mass residuals (from the regression on SVL) as well as shorter tail, head, and femur relative to SVL. Variation in the level of fluctuating asymmetry in meristic and morphometric traits associated with incubation temperatures was quite high but not clearly consistent with the prediction that environmental stress associated with the highest incubation temperatures might produce the highest level of asymmetry. When tested for locomotor capacity in trials developed at body temperatures of 32 and 35 degrees C, hatchlings from the 32 degrees C incubation treatment exhibited the worst performance in any aspect considered (burst speed, maximal length, and number of stops in the complete run). Repeated measures ANCOVAs (with initial egg mass as covariate) of snout-vent length and mass of lizards at days 0 and 20 revealed significant effects of incubation temperature only for mass, being again the hatchlings from eggs incubated at 32 degrees C those exhibiting the smallest final size. All together, our results evidenced a pervasive effect of thermal regime during incubation (and hence of nest site selection) on hatchling phenotypes. However, incubation temperature does not affect hatchling phenotypes in a continuous way; for most of the analysed traits a critical threshold seems to exist between 29 and 32 degrees C, so that hatchlings incubated at 32 degrees C exhibited major detrimental effects. J. Exp. Zool. 286:422-433, 2000.  相似文献   

7.
The ability of hatchling turtles to detect environmental temperature differences and to effectively select preferred temperature is a function that critically impacts survival. In some turtle species, temperature preference may be influenced by embryonic and post-hatching conditions, such as egg-incubation and acclimation temperature. We tested for effects of embryonic incubation temperature (27.5 °C, 30 °C) and acclimation temperature (20 °C, 25 °C) on the selected temperature and movement patterns of 32 Chrysemys picta bellii (Reptilia: Emydidae) hatchlings in an aquatic thermal gradient of 14-34 °C and in single-temperature (20 °C, 25 °C) control tests. Among 10-11 month old hatchlings, acclimation temperature and egg-incubation temperature influenced temperature selection and movement patterns. Acclimation temperature affected activity and movement: in thermal gradient and single-temperature control tests, 25 °C-acclimated turtles relocated between chambers significantly more frequently than individuals acclimated to 20 °C. Acclimation temperature also affected temperature selection: 20 °C-acclimated turtles selected a specific temperature during gradient tests, but 25 °C-acclimated turtles did not. Among 20 °C-acclimated turtles, egg-incubation temperature was inversely related to selected temperature: hatchling turtles incubated at 27.5 °C selected the warmest temperature available (34 °C); individuals incubated at 30 °C selected the coldest temperature (14 °C). These results suggest that interactions of environmental conditions may influence post-hatching thermoregulatory behavior in C. picta bellii, a factor that ultimately affects fitness.  相似文献   

8.
A novel sea turtle egg incubator was developed in which the heating element is placed above the clutch, which more closely simulates solar heating in nature. An electronic thermometer in conjunction with a thermostat located in sand beneath a heater plate was used to obtain the desired temperature in the placed eggs, as compared to previous methods of controlling global temperature within the interior of a chamber. To test the new incubator, Lepidochelys olivacea eggs were incubated under different thermal conditions in order to identify the temperature-dependent sex determination (TSD) period more precisely. Four incubation experiments were designed to test the performance of the incubator where the temperature was lowered from 32 to 28 °C during 60 h and then reestablished at 32 °C until hatching occurred. A significant mean hatching success rate of 89.6% was obtained for all the experiments. The main result from these preliminary findings was that the sex determination period to produce males was reduced from 15 (days 15–30) to eight days (days 19–27). Overall, the incubator provides precise control and simulates a natural thermal environment that may improve control of TSD in sea turtles.  相似文献   

9.
To understand the ecology and environmental tolerances of newly hatched larvae of the amphidromous fish Sicyopterus japonicus during their downstream migration, the salinity tolerance of eggs, 0-15 day old larvae, and adults, and the temperature tolerance, specific gravity and phototaxis of hatched larvae were examined. Tolerances of adults were measured as survival after a 24 h challenge in freshwater (FW), brackish water (1/3 SW) and seawater (SW). The survival rate of adult S. japonicus was 100% in FW and 1/3 SW, while none survived in SW. Hatching success of eggs (30 eggs each) was significantly higher in FW (mean: 73%) and 1/3 SW (73%) than in SW (19%). Tolerance of newly hatched larvae to salinity and temperature was investigated in different combinations of salinities (FW, 1/3 SW and SW) and temperatures (18, 23 and 28 °C). Larval survival was significantly different in each salinity and temperature. Survival rate was significantly higher in 1/3 SW than in FW and higher in SW than in FW at 23 °C and 28 °C. At the latter part of the experiment, there was no survival in FW and at 28 °C. Survival was higher in lower temperatures, but larval development did not occur in FW. Specific gravity of newly hatched larvae was 1.036 at 28 °C and 1.034 at 23 °C. When exposed to a light source on one side of an aquarium, larval distribution was not affected. Our results indicated larval S. japonicus are more adapted to brackish water and seawater than freshwater, while the adults and eggs are more adapted to freshwater and brackish water than seawater. This is consistent with their amphidromous life history with growth and spawning occurring in freshwater and the larval stage utilizing marine habitats.  相似文献   

10.
The limpet, Nacella concinna, collected from the Antarctic Peninsula (67°S), was incubated at − 0.3 °C and 2.9 °C for 9 months to test if the previously reported absence of acclimation capacity in Antarctic marine ectotherms could be due to the extended time it takes for them to adjust their physiology to a new stable state. Acclimation was tested through acute measurements of upper lethal limit and a modified measure of tenacity, that tested muscle capacity by measuring the length of time that N. concinna were able to remain attached to the substratum at different temperatures. Both measures acclimated in response to incubation to the higher temperature. Lethal limits were elevated in N. concinna incubated at 2.9 °C (8.1 ± 0.3 °C) compared to those incubated at − 0.3 °C (6.9 ± 0.4 °C). 2.9 °C incubated N. concinna also had a maximum tenacity at 2.1 °C, a higher temperature than the maximum tenacity of those incubated at − 0.3 °C, which occurred at − 1.0 °C. This study is the first to show that the Antarctic limpet can acclimate its physiology, but that it requires a greater period of time for acclimation to occur than previous studies have allowed for.  相似文献   

11.
The Socotra Giant Gecko, Haemodracon riebeckii, is the largest species of lizard on Socotra Island. The nocturnal, arboreal and rupiculous living geckos are omnivorous. Two pairs were kept in terrariums and were fed with various insects (crickets, locusts, cockroaches), sweet fruits and other feeding stuff (such as meat, fish). Temporarily H. riebeckii was kept together with other lizards (Eublepharis macularius, Trachylepis socotrana), without any signs of aggressive behaviour. Juveniles and adults of both sexes are able to produce a sound. These acoustic signals seem to be related to predators, because never any intraspecific function could be observed. Within seven years of captive breeding two females produced 253 eggs. Usually two white and sticky soft-shelled eggs were laid within one clutch, more rarely a single egg was laid. The two eggs of a clutch were always laid on the same day. H. riebeckii belongs to the geckos that bury their eggs and practice some brood care, but no special parental care. The female is able to proof with her hind legs the deep and shape of a hollow in the substrate to bury the eggs, which were buried in a sticky and soft-shelled condition. They are oval in shape (egg length 16.4-19.8 mm, egg width 12.4-17.8 mm, quotient EL:EW 1.22±0.05) and have in the beginning a weight ranging from 1.7100 to 2.5201 g. As typical for geckos with hard-shelled eggs the egg weight decreases during the incubation period. The loss can be between 5.59 to 30.29%. The development of eggs up to hatching of young depends upon temperature and the germinal stage in the laid egg. The time difference between the hatching of the young within one clutch of two eggs was usually 1 to 5 days. In some cases there were, however, longer differences (up to 61 days), which are probably caused by different developmental stages of the embryos during the time of egg laying. The shortest incubation period recorded during our investigations was 83 days for eggs incubated at constant temperature of 28 to 29.5 °C and the longest 359 days at 26 to 26.5 °C. Constant high incubation temperatures caused a premature hatching of young. In normal hatched young were the yolk sac retracted and the navel closed. In premature hatched young were the yolk not resorbed and the mortality within the first three month comparatively high. The snout-vent length (SVL) of newly hatched young is from 27 to 39 mm and the tail length (TL) from 25 to 38 mm (SVL:TL index 0.90-1.27), the weight is from 0.7688 to 1.5366 g. Young specimens are distinguished from adults by the brown/white striped lower jaw and the white-banded tail. Young which hatched in the terrarium were eaten by the adults. A loss of young can be avoided if they are raised individually.  相似文献   

12.
In an effort to understand whether heat shock protein 70 (Hsp70) participates in the environmental 5 °C signal reception/transduction toward breaking embryonic diapause of the silkworm Bombyx mori, we isolated a cDNA for Hsp70a and examined the expression of Hsp70a mRNA in B. mori diapause and nondiapause eggs by quantitative real-time PCR. Hsp70a mRNA gradually increased in diapause eggs continuously kept at 25 °C after oviposition to maintain diapause. When diapause eggs were exposed to the diapause-terminating condition of 5 °C beginning at 2 days post-oviposition, Hsp70a mRNA increased beginning at 5 days post-cold treatment. Even in nondiapause eggs, Hsp70a mRNA increased slightly with exposure to 5 °C. These results suggest that Hsp70a is involved in reception/transduction of the diapause-terminating (5 °C) signal via gene activation. The expression patterns of Hsp70a mRNA are discussed in relation to those of the cold-response gene Samui.  相似文献   

13.
In shallow coastal habitats scavenging netted whelks Nassarius reticulatus attached egg capsules to the stipes of red algae Chondrus crispus and occasionally on Furcellaria lumbricalis and Plumaria plumose. In the laboratory egg capsules were laid on aquaria sides and lids by individuals ≥ 21 mm shell length. Larger size classes produced more egg capsules and spawned over a longer period and in doing so partitioned less energy into shell growth. Large netted whelks (25-28.9 mm) produced larger capsules which contained significantly more and larger eggs than those produced by smaller individuals (21-24.9 mm). Egg capsule production continued throughout the year by regularly fed N. reticulatus held at ambient seawater temperatures. Egg production increased in the spring and summer with peak production during June (15 °C), decreased between August and October and resumed again during the winter (November to February at ∼ 7 °C). During the summer (15-16 °C) egg capsules were smaller and contained smaller eggs than those deposited during the winter (7-10 °C), although the number of eggs · capsule1 was similar. Enforced food limitation reduced the number and size of the egg capsules, the number and size of eggs produced · female1 and the duration of the breeding period. Hatching success of N. reticulatus egg capsules was high (95%) even at winter seawater temperatures (11-8.5 °C) and the duration of embryonic development was fastest between 15 and 17.5 °C.  相似文献   

14.
This study aimed to elucidate the effects of thermal manipulation (TM) during the development and maturation of the thyroid and adrenal axis on broiler chicks hatchability and thermoregulation during hatch, and to evaluate the improvement of thermotolerance acquisition of TM chicks by thermally challenging them post-hatch. Fertile Cobb eggs were divided into three treatments: control, 12 and 24 H. The control eggs were incubated under standard conditions, whereas the 12 and 24 H eggs were incubated from 7 d of incubation (E7) until E16 (inclusive) at 39.5 °C and 65% RH for 12 h/d (12 H) or continuously (24 H). Hatchability, BW and quality of the hatched 24 H chicks were negatively affected, but exhibited significantly improved thermotolerance on heat stress at 3 and 10 d of age for males and females, respectively. It can be concluded that continuous TM during embryogenesis impaired broiler chick performance, but improved their ability to thermoregulate in response to thermal challenge mainly by reducing heat production.  相似文献   

15.
In ectotherms, environmental temperature is the most prominent abiotic factor that modulates life-history traits. We explored the influence of environmental temperature on reproduction in the Madagascar ground gecko (Paroedura picta) by measuring reproductive traits of females at constant temperatures (24, 27, 30 °C). Females of this species lay clutches of one or two eggs within short intervals. For each female, we measured egg mass for the first five clutches. For one clutch, we also measured the energetic content of eggs via bomb calorimetry. Temperature positively influenced the rate of egg production, but females at 30 °C laid smaller eggs than did females at either 24 or 27 °C. Dry mass of eggs scaled allometrically with wet mass, but this relationship was similar among thermal treatments. Females at all temperatures produced eggs with similar energy densities. Females at 24 °C allocated less energy per time unit (≈8 mW) to reproduction than did females from higher temperatures (≈12 mW). However, females at either 24 or 27 °C allocated significantly more energy per egg than did females at 30 °C. Our results demonstrate that a complex thermal sensitivity of reproductive rate can emerge from distinct thermal sensitivities of egg size, egg composition and clutch frequency.  相似文献   

16.
The seasonal timing mechanism of egg hatching was examined in two cicadas, Cryptotympana facialis and Graptopsaltria nigrofuscata, with different but overlapping geographical distributions. These species lay eggs in summer, and nymphs hatch in the summer of the following year after egg durations of 10-12 months. When eggs were maintained at 25 °C from oviposition, both the species entered embryonic diapause within 60 days irrespective of photoperiod, but at different developmental stages between the two species. The optimal temperature for diapause development was approximately 15 °C in both the species. The development rate for postdiapause morphogenesis increased linearly with temperature in the range of 20-27.5 °C in C. facialis, and of 15-25 °C in G. nigrofuscata. The lower development threshold and the sum of effective temperatures were computed as 14.3 °C and 715.3 day-degrees in C. facialis and 12.1 °C and 566.6 day-degrees in G. nigrofuscata, respectively. The hatching dates predicted by these large thermal constants accorded with the hatching dates observed in the field, i.e., late June and mid-July in G. nigrofuscata and C. facialis, respectively. Therefore, the high thermal requirements for postdiapause development compel the cicadas to hatch in summer.  相似文献   

17.
Curculio sikkimensis undergoes prolonged larval diapause that is terminated by chilling and warming cycles. To examine the effects of warming temperatures and their duration on diapause termination, we exposed diapause larvae that had not been reactivated after chilling at 5 °C to 20 or 25 °C and chilled them again before incubation at 20 °C. With increasing warming duration at 20 °C, diapause termination after chilling increased and shorter chilling durations became effective. In contrast, few or no larvae warmed at 25 °C terminated diapause after chilling, irrespective of the warming duration. To investigate the effect of warming temperature on diapause intensity, larvae with diapause weakened by initial incubation at 20 °C after the first chilling were subsequently incubated at 15, 20, or 25 °C, then chilled at 5 °C before incubation at 20 °C. Diapause termination increased significantly after the larvae were treated at 15 or 20 °C but decreased significantly after they were treated at 25 °C. The intensification of prolonged diapause at 25 °C was reversed when the larvae were transferred to 20 °C. Diapause intensity in C. sikkimensis therefore decreases at 20 °C, increases at 25 °C, and can be reversed by alternately exposing diapause larvae to 20 and 25 °C. In C. sikkimensis, prolonged diapause does not always proceed in one direction, and its intensity fluctuates in response to ambient temperature conditions.  相似文献   

18.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

19.
We examined the effects of thermal and hydric environments on hatching success, the embryonic use of energy and hatchling traits in a colubrid snake, Elaphe carinata. The eggs were incubated at four temperatures ranging from 24 to 32 degrees C on substrates with water potentials of 0 and -220 kPa using a 4x2 factorial design. Both thermal and hydric environments affected the water exchange between eggs and their surroundings. Eggs incubated in wetter substrates gained mass throughout the course of incubation, whereas eggs in drier substrates gained mass during the first half of incubation and lost mass thereafter. Hatching success was noticeably higher at 26 and 30 degrees C than at 24 and 32 degrees C, but among treatments, differences in hatching success were not significant. Temperature significantly affected the duration of incubation and most hatchling traits examined. Deformed hatchlings were found in all temperature treatments, with more deformities observed at 32 degrees C. Hatchlings from eggs incubated at different temperatures differed in wet body mass, but the differences stemmed mainly from variation in water contents. Embryos at different temperatures completed development at nearly the same expenditure of energy and catabolized nearly the same amount of lipids, but hatchlings from different temperatures differed in the development condition of carcass at hatching. Hatchlings from eggs incubated at 26 degrees C were larger in SVL than those from other higher or lower incubation temperatures, characteristically having larger carcasses; hatchlings from 32 degrees C eggs were smaller in SVL and had smaller carcasses but larger residual yolks than those from lower incubation temperatures. Hatchlings from eggs incubated at 24 degrees C were shorter in tail length but greater in size (SVL)-specific body wet mass than those from higher incubation temperatures. Within the range from -220 to 0 kPa, the substrate water potential did not affect hatching success, the embryonic use of energy and all hatchling traits examined, and the effects of temperature were independent of the effects of substrate water potential. Therefore, our data add evidence showing that embryonic development in reptiles with pliable-shelled eggs is relatively insensitive to variation in hydric environments during incubation.  相似文献   

20.
Gravid females of Caligus rogercresseyi were collected from Atlantic salmon (Salmo salar) from a farm located at Chiloe Island (42°40′S73°15′W), Chile, to obtain information about the reproductive output of this parasite in vitro. The egg strings removed from the females were incubated under controlled conditions to obtain virgin adult females. One female which had mated only once produced eleven generations of eggs strings in a period of 74 days. The first egg strings of the females obtained in vitro were produced at 389 degree days (°D) after egg incubation, while the next generations of eggs strings were produced with a periodicity between 4 and 6 days dependent on the water temperature. The average length of the egg string was 3.1 mm and the mean number of eggs per string was 31. The values recorded in captivity for the egg string length and the number of eggs per string, were lower than the values recorded in gravid females from the field. One female survived for 79 days and males, maintained separately from the females, survived for 60 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号