首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We aimed to clarify responsiveness to angiotensin (Ang) II in the porcine basilar artery and the role of Ang II receptor subtypes by functional, radioligand binding, and cell culture studies. Ang II induced more potent contractions in the proximal part than in the distal part of isolated porcine basilar arteries. The contraction induced by Ang II was inhibited by the Ang II type 1 (AT1) receptor antagonist losartan, but the Ang II type 2 (AT2) receptor antagonist PD123319 enhanced it. After removal of the endothelium, the effect of losartan remained but the effect of PD123319 was abolished. The specific binding site of [3H]Ang II on the smooth muscle membrane was inhibited by losartan, but not by PD123319. Stimulation of angiotensin II increased nitric oxide (NO) production in cultured basilar arterial endothelial cells. This production was inhibited by PD123319 and the NO synthase inhibitor L-NG-nitroarginine. These results suggest that the contraction induced by Ang II might be mediated via the activation of AT1 receptors on the basilar arterial smooth muscle cells and be modulated via the activation of AT2 receptors on the endothelial cells, followed by NO production.  相似文献   

2.
Liu HQ  Wei XB  Sun R  Cai YW  Lou HY  Wang JW  Chen AF  Zhang XM 《Life sciences》2006,78(12):1293-1298
Microvascular changes in the brain are significant causes of cerebral edema and ischemia injury. A number of studies suggest that angiotensin (Ang) II may be involved in the initiation and regulation of processes occurring in brain ischemia. We recently reported that Ang II injures brain microvascular endothelial cells (BMEC) partially via stimulating intercellular adhesion molecule-1 (ICAM-1) expression. However, the signaling cascade leading to Ang II-induced ICAM-1 expression in BMEC was unclear. The present study tested the hypothesis that Ang II induces ICAM-1 expression via an AT1 receptor/nuclear factor-kappaB (NF-kappaB) pathway in BMEC. Ang II directly stimulated the expression of ICAM-1 mRNA and protein in primary cultured BMEC. Ang II treatment also resulted in the degradation of IkappaBalpha and increase of NF-kappaB p65 subunit in the nucleus as well as the DNA binding activity of nuclear NF-kappaB. These effects were abolished by pretreatment with the selective AT1 receptor antagonists, losartan and compound EXP-2528, or losartan plus the AT2 receptor antagonist PD123319, but not by PD123319 alone. Moreover, there were no significant differences between the losartan and losartan plus PD123319 groups. These findings indicate that Ang II-induced ICAM-1 upregulation in brain microvascular endothelial cells may be mediated via an AT1 receptor/NF-kappaB pathway.  相似文献   

3.
The aims of this study were to elucidate the distribution of angiotensin receptors (AT(1) and AT(2)) in the duodenal wall and to investigate whether AT(2) receptors are involved in the regulation of duodenal mucosal alkaline secretion, which is of importance for the mucosal defense against gastric acid. Immunohistochemistry was used to locate AT(1) and AT(2) receptors in chloralose-anesthetized rats. Duodenal mucosal alkaline output was measured by use of in situ pH-stat titration. Immunohistochemistry demonstrated a distinct staining for both AT(1) and AT(2) receptors in the lamina propria of the villi and also for AT(1) receptors in the muscularis interna. When angiotensin II was infused in the presence of the AT(1) receptor antagonist losartan, mucosal alkaline secretion increased by ~50%. This response was inhibited by the AT(2) receptor antagonist PD-123319. The AT(2) receptor agonist CGP-42112A increased mucosal alkaline secretion by ~50%. This increase was absent in the presence of PD-123319 but not in the presence of losartan or the local anesthetic lidocaine. We conclude that angiotensin II stimulates duodenal mucosal alkaline secretion by activation of AT(2) receptors located in the duodenal mucosa/submucosa.  相似文献   

4.
The neuropeptide angiotensin II (Ang II) has been recently found to be involved in cognitive processes. Both AT1 and AT2 angiotensin receptors seem to mediate this action. However, unspecific behavioural effects of the peptide, particularly motor and emotional, appear to influence the interpretation of cognition-oriented tests and contribute to considerable differences in opinions of various authors on the subject. In this study, aimed specifically at the assessment of these effects, we found small and insignificant changes in motor performance measured in open field after intracebroventricular injections of Ang II and its receptor subtype-specific antagonists; losartan (AT1) and PD 123319 (AT2). However, Ang II was found to increase substantially anxiety measured in elevated 'plus' maze and impair motor coordination measured in 'chimney test'. Interestingly, both antagonists abolished Ang II generated anxiety and only losartan counteracted impaired motor coordination caused by the peptide. The AT2 receptor antagonist PD 123319 impairing motor coordination on its own, nonetheless partly diminished that caused by Ang II. Therefore it appears safe to conclude that mood but not motor effects of AT1 and AT2 receptor affecting drugs may significantly bias interpretation of the cognition-oriented tests on these drugs.  相似文献   

5.
Thrombocytopenia is independently related with increased mortality in severe septic patients. Renin-angiotensin system (RAS) is elevated in septic subjects; accumulating studies show that angiotensin II (Ang II) stimulate the intrinsic apoptosis pathway by promoting reactive oxygen species (ROS) production. However, the mechanisms underlying the relationship of platelet apoptosis and RAS system in sepsis have not been fully elucidated. The present study aimed to elucidate whether the RAS was involved in the pathogenesis of sepsis-associated thrombocytopenia and explore the underlying mechanisms. We found that elevated plasma Ang II was associated with decreased platelet count in both patients with sepsis and experimental animals exposed to lipopolysaccharide (LPS). Besides, Ang II treatment induced platelet apoptosis in a concentration-dependent manner in primary isolated platelets, which was blocked by angiotensin II type 1 receptor (AT1R) antagonist losartan, but not by angiotensin II type 2 receptor (AT2R) antagonist PD123319. Moreover, inhibiting AT1R by losartan attenuated LPS-induced platelet apoptosis and alleviated sepsis-associated thrombocytopenia. Furthermore, Ang II treatment induced oxidative stress level in a concentration-dependent manner in primary isolated platelets, which was partially reversed by the AT1R antagonist losartan. The present study demonstrated that elevated Ang II directly stimulated platelet apoptosis through promoting oxidative stress in an AT1R-dependent manner in sepsis-associated thrombocytopenia. The results would helpful for understanding the role of RAS system in sepsis-associated thrombocytopenia.  相似文献   

6.
In the present study in normotensive Wistar Kyoto rats (WKY), we investigated whether any angiotensin II (ANG II) increases in vascular cyclic GMP production were via stimulation of AT(2) receptors. Adult WKY were infused for 4h with ANG II (30 ng/kg per min, i.v.) or vehicle (0.9% NaCl, i.v.) after pretreatment with (1) vehicle, (2) losartan (100 mg/kg p.o.), (3) PD 123319 (30 mg/kg i.v.), (4) losartan+PD 123319, (5) icatibant (500 microg/kg i.v.), (6) L-NAME (1 mg/kg i.v.), (7) minoxidil (3 mg/kg i.v.). Mean arterial blood pressure (MAP) was continuously monitored, and plasma ANG II and aortic cyclic GMP were measured at the end of the study. ANG II infusion over 4h raised MAP by a mean of 13 mmHg. This effect was completely prevented by AT(1) receptor blockade. PD 123319 slightly attenuated the pressor effect induced by ANG II alone (123.4+/-0.8 versus 130.6+/-0.6) but did not alter MAP in rats treated simultaneously with ANG II + losartan (113+/-0.6 versus 114.3+/-0.8). Plasma levels of ANG II were increased 2.2-3.7-fold by ANG II infusion alone or ANG II in combination with the various drugs. The increase in plasma ANG II levels was most pronounced after ANG II+losartan treatment but absent in rats treated with losartan alone. Aortic cyclic GMP levels were not significantly changed by either treatment. Our results demonstrate that the AT(2) receptor did not contribute to the cyclic GMP production in the vascular wall of normotensive WKY.  相似文献   

7.
The medial region of the nucleus tractus solitarius (mNTS) is a key brain stem site controlling cardiovascular function, wherein ANG II modulates neuronal L-type Ca(2+) currents via activation of ANG II type 1 receptors (AT(1)R) and production of reactive oxygen species (ROS). ANG II type 2 receptors (AT(2)R) induce production of nitric oxide (NO), which may interact with ROS and modulate AT(1)R signaling. We sought to determine whether AT(2)R-mediated NO production occurs in mNTS neurons and, if so, to elucidate the NO source and the functional interaction with AT(1)R-induced ROS or Ca(2+) influx. Electron microscopic (EM) immunolabeling showed that AT(2)R and neuronal NO synthase (nNOS) are coexpressed in neuronal somata and dendrites receiving synapses in the mNTS. In the presence of the AT(1)R antagonist losartan, ANG II increased NO production in isolated mNTS neurons, an effect blocked by the AT(2)R antagonist PD123319, but not the angiotensin (1-7) antagonist D-Ala. Studies in mNTS neurons of nNOS-null or endothelial NOS (eNOS)-null mice established nNOS as the source of NO. ANG II-induced ROS production was enhanced by PD123319, the NOS inhibitor N(G)-nitro-l-arginine (LNNA), or in nNOS-null mice. Moreover, in the presence of losartan, ANG II reduced voltage-gated L-type Ca(2+) current, an effect blocked by PD123319 or LNNA. We conclude that AT(2)R are closely associated and functionally coupled with nNOS in mNTS neurons. The resulting NO production antagonizes AT(1)R-mediated ROS and dampens L-type Ca(2+) currents. The ensuing signaling changes in the NTS may counteract the deleterious effects of AT(1)R on cardiovascular function.  相似文献   

8.
In this study, we examined the effects of angiotensin II (AngII) in a genetic in vitro PD model produced by alpha-synuclein (alpha-syn) overexpression in the human neuroglioma H4 cell line. We observed a maximal decrease in alpha-syn-induced toxicity of 85% and reduction in inclusion formation by 19% when cultures were treated with AngII in the presence of the angiotensin type 1 (AT1) receptor antagonist losartan and AT2 receptor antagonist PD123319. When compared to AngII, the AT4 receptor agonist AngIV was moderately effective in protecting H4 cells against alpha-syn toxicity and did not significantly reduce inclusion formation. Here we show that AngII is protective against genetic, as well as neurotoxic models of PD. These data support the view that agents acting on the renin-angiotensin-system (RAS) may be useful in the prevention and/or treatment of Parkinson's disease.  相似文献   

9.
Angiotensin-(1-7) (Ang-(1-7)) modulates the Na+-ATPase, but not the Na+,K+-ATPase activity present in pig kidney proximal tubules. The Na+-ATPase, insensitive to ouabain, but sensitive to furosemide, is stimulated by Ang-(1-7) (68% by 10(-9) M), in a dose-dependent manner. This effect is due to an increase in Vmax, while the apparent affinity of the enzyme for Na+ is not modified. Saralasin, a general angiotensin receptor antagonist, abolishes the stimulation, demonstrating that the Ang-(1-7) effect is mediated by receptor. The Ang-(1-7) stimulatory effect is not changed by either PD 123319, an AT2 receptor antagonist, or A779, an Ang-(1-7) receptor antagonist. On the other hand, increasing the concentration of the AT1 receptor antagonist losartan from 10(-11) to 10(-9) M, reverses the Ang(1-7) stimulation completely. A further increase to 10(-3) M losartan reverses the Na+-ATPase activity to a level similar to that obtained with Ang-(1-7) (10(-9) M) alone. The stimulatory effect of Ang-(1-7) at 10(-9) M is similar to the effect of angiotensin II (AG II) alone. However, when the two peptides are both present, Na+-ATPase activity is restored to control values. These data suggest that Ang-(1-7) selectively modulates the Na+-ATPase activity present in basolateral membranes of kidney proximal tubules through a losartan-sensitive receptor. This receptor is probably different from the receptor involved in the stimulation of the Na+-ATPase activity by angiotensin II.  相似文献   

10.
The present study was designed to evaluate the learning and memory, in an altered physiological state associated with increased blood pressure and activated renin angiotensin system in Wistar rats. The role of angiotensin in cognitive function was assessed by treatment with angiotensin converting enzyme (ACE) inhibitor enalapril (2 mg/kg), angiotensin 1 receptor (AT(1)) antagonist losartan (5 mg/kg) and their combination. The experimental renal hypertension was induced by the method of Goldblatt. Learning and memory was assessed using the radial arm maze test. Acetylcholine esterase (AChE) levels in the pons medulla, hippocampus, striatum and frontal cortex were measured as a cholinergic marker of learning and memory. Results indicate that in comparison to normotensive rats, renal hypertensive rats committed significantly higher number of errors and took more trials and days to learn the radial arm maze learning and exhibited memory deficit in the radial arm maze retrieval after two weeks of retention interval, indicating impaired acquisition and memory. Treatment with enalapril, losartan and their combination attenuated the observed memory deficits indicating a possible role of renin angiotensin system in cognitive function. AChE level was reduced in hippocampus and frontal cortex of renal hypertensive rats which could be attributed to the observed memory deficit in hypertensive rats. It can be concluded that, renal hypertensive rats had a poor acquisition, retrieval of the learned behavior, perhaps a possible disturbance in memory consolidation process and that this state was reversed with ACE inhibitor enalapril and AT 1 receptor antagonist losartan.  相似文献   

11.
Hafizi S  Chester AH  Yacoub MH 《Peptides》2004,25(6):1031-1033
The vasoactive peptide angiotensin II (Ang II) has been implicated as a mediator of myocardial fibrosis. We carried out a comparative investigation of the effects of Ang II and its precursor Ang I on collagen metabolism and proliferation in cultured human cardiac fibroblasts. Cardiac fibroblasts responded to both Ang I and Ang II with concentration-dependent increases in collagen synthesis but no proliferation. The stimulatory effect of Ang II was abolished by the AT(1) receptor antagonist losartan but not the AT(2) receptor antagonist PD123319. The response to Ang I was not affected by either antagonist, nor by the angiotensin-converting enzyme (ACE) inhibitor captopril. In conclusion, Both Ang I and Ang II stimulate collagen synthesis of human cardiac fibroblasts, the effect of Ang II occurring via the AT(1) receptor whilst Ang I appears to exert a direct effect through non-Ang II-dependent mechanisms. These results suggest distinct roles for angiotensin peptides in the development of cardiac fibrosis.  相似文献   

12.
We tested the hypothesis that activation of angiotensin type 2 (AT(2)) receptors, by both exogenous and endogenous ANG II, modulates neurally mediated vasoconstriction in the renal cortical and medullary circulations. Under control conditions in pentobarbital-anesthetized rabbits, electrical stimulation of the renal nerves (RNS; 0.5-8 Hz) reduced renal blood flow (RBF; -88 +/- 3% at 8 Hz) and cortical perfusion (CBF; -92 +/- 2% at 8 Hz) more than medullary perfusion (MBF; -67 +/- 6% at 8 Hz). Renal arterial infusion of ANG II, at a dose titrated to reduce RBF by approximately 40-50% (5-50 ng.kg(-1).min(-1)) blunted responses of MBF to RNS, without significantly affecting responses of RBF or CBF. Subsequent administration of PD123319 (1 mg/kg plus 1 mg.kg(-1).h(-1)) during continued renal arterial infusion of ANG II did not significantly affect responses of RBF or CBF to RNS but enhanced responses of MBF, so that they were similar to those observed under control conditions. In contrast, administration of PD123319 alone blunted responses of CBF and MBF to RNS. Subsequent renal arterial infusion of ANG II in PD123319-pretreated rabbits restored CBF responses to RNS back to control levels. In contrast, ANG II infusion in PD123319-pretreated rabbits did not alter MBF responses to RNS. These data indicate that exogenous ANG II can blunt neurally mediated vasoconstriction in the medullary circulation through activation of AT(2) receptors. However, AT(2)-receptor activation by endogenous ANG II appears to enhance neurally mediated vasoconstriction in both the cortical and medullary circulations.  相似文献   

13.
Previous studies showed that a local pancreatic renin-angiotensin system (RAS) was upregulated in experimental acute pancreatitis. RAS inhibition could attenuate pancreatic inflammation and fibrosis, which casts a new light on the role of the pancreatic RAS in pancreatitis. The present study explores the prophylactic and therapeutic potentials, and possible molecular mechanism for the antagonism of angiotensin II receptors on the changes in the severity of pancreatic injury induced by acute pancreatitis. Experimental pancreatitis was induced by an intraperitoneal injection of supra-maximal dose of cerulein. The differential effects of angiotensin II receptors inhibitors losartan and PD123319 on the pancreatic injury were assessed by virtue of using the pancreatic water content, biochemical and histological analyses. Blockade of the AT(1) receptor by losartan at a dose of 200microg/kg could markedly ameliorate the pancreatic injury induced by cerulein, as evidenced by biochemical and histopathological studies. However, blockade of the AT(2) receptor by PD123319 appeared not to provide any beneficial role in cerulein-induced pancreatic injury. Both prophylactic and therapeutic treatments with losartan were effective against cerulein-induced pancreatic injury. The protective action of losartan was linked to an inhibition of NAD(P)H oxidase activity, thus consequential oxidative modification of pancreatic proteins in the pancreas. Inhibition of the AT(1) receptor, but not AT(2) receptor, may play a beneficial role in ameliorating the severity of acute pancreatitis. The differential effects of AT(1) and AT(2) inhibitors on cerulein-induced pancreatic injury might be due to the distinctive mechanism of the AT(1) and AT(2) receptors on the activation of NAD(P)H oxidase. Thus the protective role of AT(1) receptor antagonist, losartan, could be mediated by the inhibition of NAD(P)H oxidase-dependent generation of reactive oxygen species (ROS).  相似文献   

14.
Parlakpinar H  Ozer MK  Acet A 《Cytokine》2011,56(3):688-694
The renin-angiotensin system (RAS) plays a major role in regulating the cardiovascular system, and disorders of the RAS contribute largely to the cardiac pathophysiology, including myocardial ischemia-reperfusion (MI/R) injury. Two subtypes of angiotensin II (Ang II) receptors have been defined on the basis of their differential pharmacological properties. The current study was undertaken to address the question as to whether the inhibition of the angiotensin converting enzyme (ACE) by captopril and the AT1 and AT2 receptor blockers losartan and PD123319 modulate MI/R-induced infarct size in an in vivo rat model. To produce necrosis, a branch of the descending left coronary artery was occluded for 30 min followed by two hours of reperfusion. ECG changes, blood pressure, and heart rate were measured during the experiment. Captopril (3 mg/kg), losartan (2 mg/kg), and PD123319 (20 μg/kg/min) were given in an IV 10 min before ischemia and were continued during the ischemic period. The infarcted area was measured by TTC staining. The volume of infarct and the risk zone was determined by planimetry. Compared to the control group (55.62±4.00%) both captopril and losartan significantly reduced the myocardial infarct size (30.50±3.26% and 37.75±4.44%), whereas neither PD123319 nor PD123319+losartan affected the infarct size volume (46.50±3.72% and 54.62±2.43%). Our data indicates that captopril and losartan exert cardioprotective activity after an MI/R injury. Also, infarct size reduction by losartan was halted by a blockade of the AT2 receptor. Therefore, the activation of AT2 receptors may be potentially protective and appear to oppose the effects mediated by the AT1 receptors.  相似文献   

15.
Background:Angiotensin II regulates blood volume via AT1 (AT1R) and AT2 (AT2R) receptors. As cell integrity is an important feature of mature erythrocyte, we sought to evaluate, in vitro, whether angiotensin II modulates resistance to hemolysis and the signaling pathway involved.Methods:Human blood samples were collected and hemolysis assay and angiotensin II signaling pathway profiling in erythrocytes were done.Results:Hemolysis assay created a hemolysis curve in presence of Ang II in several concentrations (10-6 M, 10-8 M, 10-10 M, 10-12 M). Angiotensin II demonstrated protective effect, both in osmotic stressed and physiological situations, by reducing hemolysis in NaCl 0.4% and 0.9%. By adding receptors antagonists (losartan, AT1R antagonist and PD 123319, AT2R antagonist) and/or signaling modulators for AMPK, Akt/PI3K, p38 and PKC we showed the protective effect was enhanced with losartan and abolished with PD 123319. Also, we showed activation of p38 as well as PI3K/Akt pathways in this system.Conclusion:Ang II protects human erythrocytes from hypo-osmotic conditions-induced hemolysis by activating AT2 receptors and triggering intracellular pathways.Key Words: Angiotensin II, Erythrocyte, Osmotic fragility, Signaling pathway  相似文献   

16.
17.
Resveratrol (3,5,4'-trihydroxystilbene), a polyphenol abundant in red wine, is known to extend the life span of diverse species. On the contrary, it was reported that angiotensin (Ang) II enhances senescence of vascular smooth muscle cells (VSMCs). We, therefore, examined whether resveratrol attenuates Ang II-induced senescence of VSMC. Senescence-associated β-galactosidase (SA β-gal) assay showed that Ang II induced senescence of VSMC. The Ang II-induced senescence was inhibited by losartan, an Ang II type 1 receptor (AT1R) antagonist but not by PD123319, Ang II type 2 receptor antagonist, indicating that AT1R is responsible for the induction of senescence. Resveratrol suppressed Ang II-induced senescence of VSMC in a dose-dependent manner. In addition, resveratrol suppressed Ang II-induced induction of p53 and its downstream target gene p21, both of which play an important role in the induction of senescence. Resveratrol suppressed senescence of VSMC possibly through inhibition of AT1R-dependent induction of p53/p21. Suppression of p53 induction may be involved in the longevity by resveratrol.  相似文献   

18.
Angiotensin II is a modulator of myometrial activity; both AT(1) and AT(2) receptors are expressed in myometrium. Since in other tissues angiotensin II has been reported to activate intracellular receptors, we assessed the effects of intracellular administration of angiotensin II via microinjection on myometrium, using calcium imaging. Intracellular injection of angiotensin II increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in myometrial cells in a dose-dependent manner. The effect was abolished by the AT(1) receptor antagonist losartan but not by the AT(2) receptor antagonist PD-123319. Disruption of the endo-lysosomal system, but not that of Golgi apparatus, prevented the angiotensin II-induced increase in [Ca(2+)](i). Blockade of AT(1) receptor internalization had no effect, whereas blockade of microautophagy abolished the increase in [Ca(2+)](i) produced by intracellular injection of angiotensin II; this indicates that microautophagy is a critical step in transporting the peptide into the endo-lysosomes lumenum. The response to angiotensin II was slightly reduced in Ca(2+)-free saline, indicating a major involvement of Ca(2+) release from internal stores. Blockade of inositol 1,4,5-trisphosphate (IP(3)) receptors with heparin and xestospongin C or inhibition of phospholipase C (PLC) with U-73122 abolished the response to angiotensin II, supporting the involvement of PLC-IP(3) pathway. Angiotensin II-induced increase in [Ca(2+)](i) was slightly reduced by antagonism of ryanodine receptors. Taken together, our results indicate for the first time that in myometrial cells, intracellular angiotensin II activates AT(1)-like receptors on lysosomes and activates PLC-IP(3)-dependent Ca(2+) release from endoplasmic reticulum; the response is further augmented by a Ca(2+)-induced Ca(2+) release mechanism via ryanodine receptors activation.  相似文献   

19.
We assessed ANG II type 1 (AT(1)) and type 2 (AT(2)) receptor (R) expression and functional recovery after ischemia-reperfusion with or without AT(1)R/AT(2)R blockade in isolated working rat hearts. Groups of six hearts were subjected to global ischemia (30 min) followed by reperfusion (30 min) and exposed to no drug and no ischemia-reperfusion (control), ischemia-reperfusion and no drug, and ischemia-reperfusion with losartan (an AT(1)R antagonist; 1 micromol/l), PD-123319 (an AT(2)R antagonist; 0.3 micromol/l), N(6)-cyclohexyladenosine (CHA, a cardioprotective adenosine A(1) receptor agonist; 0.5 micromol/l as positive control), enalaprilat (an ANG-converting enzyme inhibitor; 1 micromol/l), PD-123319 + losartan, ANG II (1 nmol/l), or ANG II + losartan. Compared with controls, ischemia-reperfusion decreased AT(2)R protein (Western immunoblots) and mRNA (Northern immunoblots, RT-PCR) and impaired functional recovery. PD-123319 increased AT(2)R protein and mRNA and improved functional recovery. Losartan increased AT(1)R mRNA (but not AT(1)R/AT(2)R protein) and impaired recovery. Other groups (except CHA) did not improve recovery. The results suggest that, in isolated working hearts, AT(2)R plays a significant role in ischemia-reperfusion and AT(2)R blockade induces increased AT(2)R protein and cardioprotection.  相似文献   

20.
Handa RK 《Regulatory peptides》2006,136(1-3):23-29
Our aim was to investigate the changes in renal blood flow during brief exposure of the renal vasculature to angiotensin IV (Ang IV). Total renal blood flow was measured by electromagnetic flowmetry in pentobarbital-anesthetized male Sprague Dawley rats. Intrarenal injection of Ang I, Ang II and Ang III produced a dose-dependent vasoconstriction. In contrast, Ang IV and Ang-(3-10) produced a dose-dependent rapid vasoconstriction (lasting seconds) followed by a transient vasodilatation (lasting minutes). The biphasic response to Ang IV was unchanged in rats pre-treated with captopril, whereas the Ang-(3-10) response was abolished implying that its vasoactive activity was due to the generation of Ang IV. The vasodilatory component of Ang IV was unaffected by indomethacin. The biphasic vasoactive response of Ang IV was unaffected by divalinal-Ang IV (AT(4) receptor antagonist) or PD 123319 (AT(2) receptor antagonist), but greatly reduced by losartan or L-158,809 (AT(1) receptor antagonists). These results suggest that Ang IV is distinct from other angiotensins in that it possesses non-prostaglandin mediated renal vasodilatory activity that is apparently linked to the renal vascular AT(1) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号