首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Changes in the actin filament and microtubule cytoskeleton were examined during heat- and cytochalasin D-induced embryogenesis in microspores ofBrassica napus cv. Topas by rhodamine phalloidin and immunofluorescence labelling respectively. The nucleus was displaced from its peripheral to a more central position in the cell, and perinuclear actin microfilaments and microtubules extended onto the cytoplasm. Heat treatment induced the formation of a preprophase band of microtubules in microspores; preprophase bands are not associated with the first pollen mitosis. Actin filament association with the preprophase band was not observed. The orientation and position of the mitotic spindle were altered, and it was surrounded with randomly oriented microfilaments. The phragmoplast contained microfilaments and microtubules, as in pollen mitosis I, but it assumed a more central position. Cytoskeletal reorganisation also occurred in microspores subjected to a short cytochalasin D treatment, in the absence of a heat treatment. Cytochalasin D treatment of microspores resulted in dislocated mitotic spindles, disrupted phragmoplasts, and symmetric divisions and led to embryogenesis, confirming that a normal actin cytoskeleton has a role in preventing the induction of embryogenesis.Abbreviations CD cytochalasin D - MF actin microfilament - MT microtubule - PPB preprophase band  相似文献   

2.
Summary Populations of highly homogeneous uninucleate and binucleate microspores ofBrassica napus cv. Topas were obtained by bud selection and percoll fractionation. The development of the uninucleate and the binucleate microspores in culture was compared to thosein vivo using the fluorochrome DAPI to stain DNA. The major developmental pathway of the uninucleate microsporesin vitro resulted in embryo formation. The characteristic of this pathway was that the first division produced two diffusely stained nuclei and subsequent divisions gave rise to a multinucleate embryoid. The second pathway which occurred in a small number of the uninucleate microspores led to callus formation. The majority of the binucleate microsporesin vitro followed the developmental pattern of their counterpartsin vivo and were not embryogenic. The embryogenic binucleate microspores produced embryos through the divisions of the vegetative nucleus.Plant Research Centre Contribution # 1147  相似文献   

3.
Summary Brassica napus cv. Topas microspores, isolated and cultured near the time of the first pollen mitosis and subjected to a heat treatment of 24 h, can be induced to develop into haploid embryos. This is a study of microspore structure during induction and embryo determination. Early during the 32.5 °C incubation period the nucleus moved away from the edge of the cell, and granules, 30 to 60 nm in diameter, appeared in the mitochondria and as a cluster in the cytoplasm. Cells divided symmetrically and at the end of the heat treatment, acquired the features of induced bicellular structures described previously. The features persisted as the cells divided randomly within the exine for 4–7 days following heat induction. Multicellular structures released from the exine underwent periclinal divisions resulting in protoderm differentiation of the globular embryo, thus determining embryo development. The cytoplasm of early heart-stage embryos contains abundant polyribosomes. Non-embryogenic development was indicated by large accumulations of starch and/or lipid and thickened cell walls or an unorganized pattern of cell division following release of the multicellular structures from the exine. Embryogenesis is discussed in terms of induction, embryo determination and development.  相似文献   

4.
Summary Brassica napus cv. Topas microspores isolated and cultured near the first pollen mitosis and subjected to a heat treatment develop into haploid embryos at a frequency of about 20%. In order to obtain a greater understanding of the induction process and embryogenesis, transmission electron microscopy was used to study the development of pollen from the mid-uninucleate to the bicellular microspore stage. The effect of 24 h of high temperature (32.5 °C) on microspore development was examined by heat treating microspore cultures or entire plants. Mid-uninucleate microspores contained small vacuoles. Late-uninucleate vacuolate microspores contained a large vacuole. The large vacuole of the vacuolate stage was fragmented into numerous small vacuoles in the late-uninucleate stage. The late-uninucleate stage contained an increased number of ribosomes, a pollen coat covering the exine and a laterally positioned nucleus. Prior to the first pollen mitosis the nucleus of the lateuninucleate microspore appeared to be appressed to the plasma membrane; numerous perinuclear microtubules were observed. Microspores developing into pollen divided asymmetrically to form a large vegetative cell with amyloplasts and a small generative cell without plastids. The cells were separated by a lens-shaped cell wall which later diminished. At the late-bicellular stage the generative cell was observed within the vegetative cell. Starch and lipid reserves were present in the vegetative cell and the rough endoplasmic reticulum and Golgi were abundant. The microspore isolation procedure removed the pollen coat, but did not redistribute or alter the morphology of the organelles. Microspores cultured at 25 °C for 24 h resembled late-bicellular microspores except more starch and a thicker intine were present. A more equal division of microspores occurred during the 24 h heat treatment (32.5 °C) of the entire plant or of cultures. A planar wall separated the cells of the bicellular microspores. Both daughter cells contained plastids and the nuclei were of similar size. Cultured embryogenie microspores contained electron-dense deposits at the plasma membrane/cell wall interface, vesicle-like structures in the cell walls and organelle-free regions in the cytoplasm. The results are related to embryogenesis and a possible mechanism of induction is discussed.Abbreviations B binucleate - LU late uninucleate - LUV late uninucleate vacuolate - M mitotic - MU mid-uninucleate - RER rough endoplasmic reticulum - TEM transmission electron micrograph  相似文献   

5.
Summary Development of asparagus microspores in cold-treated buds of varying sizes and shed microspores from these buds in in vitro culture were observed cytologically for the G459 genotype. Before cold pretreatment, more than 75% of the microspores in flower buds of the 1.4–1.6, 1.7–1.9, 2.0–2.2, 2.3–2.5, and 2.6–2.8 mm size classes were at the early-, mid-, late-uninucleate, early-, and late-binucleate stages, respectively. After 7 d in cold treatment, percentages of microspores at different stages changed in all flower buds. Most notable was the appearance of binucleate microspores resulting from symmetric rather than asymmetric division. For flower buds of 1.7–1.9, 2.0–2.2, and 2.3–2.5 mm size classes, 4.9%, 27.2%, and 11.4% of the microspores had divided symmetrically, respectively. When microspores from buds of each size category were cultured in androgenesis induction medium, only microspores completing symmetric pollen mitosis I during cold treatment were observed to divide further, and calluses were only obtained from microspores of flower bud size classes where symmetric divisions were observed after several days of cold treatment. Significant correlations existed among microspore callus yield, the percentage of late-uninucleate microspores in vivo before cold treatment, and the frequency of symmetric pollen mitosis I after 7 d of cold treatment. Consequently, asparagus microspore androgenesis may occur through one developmental pathway, where a symmetric first mitotic division is a prerequisite for continued development.  相似文献   

6.
Prior to this report, heat treatment (32.5°C, 24 h) was the method used to induce embryogenesis fromBrassica napus microspores. Continuous culture at 25°C results in pollen development. This study shows that colchicine alone, at the non-inductive temperature of 25°C, can induce embryogenesis, thus demonstrating that heat shock is not required for embryogenic induction inB. napus cv. Topas. Embryogenic frequencies of over 15% were obtained by culturing isolated microspores with 25 M colchicine for 42 h at 25°C. The microspore developmental stages responsive to colchicine were unicellular vacuolate and late unicellular, somewhat earlier stages than the population responsive to heat induction. Other groups have reported that heat-shock proteins are essential to the induction of embryogenesis. The present study offers a method of embryogenic induction without the use of heat which will allow discrimination between the factors associated with response to heat shock and those involved with changing cell development.Abbreviations LU Late-unicellular - PPB Preprophase band - UV unicellular-vacuolate The authors wish to thank C. Bornman for his interest and encouragement. We gratefully acknowledge support from the School of Graduate Studies and Research, Queen's University to J.-P. Z., from Hilleshog AB, Sweden to D.H.S., and from the Natural Sciences and Engineering Research Council of Canada to D.H.S. and W.N. Plant Research Centre contribution No. 1595.  相似文献   

7.
Oribe Y  Funada R  Shibagaki M  Kubo T 《Planta》2001,212(5-6):684-691
A study was made of cambial activity, the localization of storage starch around the cambium, and the localization and occurrence of microtubules in cambial cells from dormancy to reactivation in locally heated (22–26 °C) stems of the evergreen conifer Abies sachalinensis. Heating induced localized reactivation of the cambium in the heated portions of the stem. Erect ray cambial cells resumed cell division 1 d prior to the reactivation of fusiform cambial cells and procumbent ray cambial cells. The re-initiation of the division of fusiform cambial cells occurred first on the phloem side. During the heat treatment, the amount of storage starch decreased in procumbent ray cambial cells and in the phloem parenchyma adjacent to the cambium but increased in fusiform cambial cells. Preprophase bands of microtubules, spindle microtubules and phragmoplast microtubules were observed both in erect ray cambial cells and in procumbent ray cambial cells. By contrast, no evidence of the presence of such preprophase bands of microtubules was detected in fusiform cambial cells. The results suggest that the localized heating of stems of evergreen conifers might provide a useful experimental model system for studies of the dynamics of cambial reactivation in intact trees. Received: 25 May 2000 / Accepted: 12 July 2000  相似文献   

8.
Microspore culture for the purpose of developing doubled haploid plants is routine for numerous plant species; however, the embryo yield is still very low compared with the total available microspore population. The ability to select and isolate highly embryogenic microspores would be desirable for high embryo yield in microspore culture. To maximize the efficiency of canola microspore culture, a combination of bud size selection and microspore fractionation using a Percoll gradient was followed. This approach has consistently given high embryo yields and uniform embryo development. Microspores isolated from buds 1.5 to 4.4 mm in length of Brassica napus genotypes Topas 4079, DH12075, Westar and 0025 formed embryos at different frequencies. The most embryogenic bud size range varied with each cultivar: Topas 4079 3.5–3.9 mm, DH12075 2.0–2.4 mm, and Westar and 0025 2.5–2.9 mm. When the microspores from 2.0 to 2.4 mm buds of DH12075 were carefully layered on top of a discontinuous Percoll gradient of 10, 20 and 40%, and subsequently spun through the Percoll layers by centrifugation, bands were formed containing populations of microspores of uniform developmental stage. The middle layer of the gradient contained the late uninucleate and early binucleate microspores that were the most embryogenic. In addition, the relationship between the bud size, developmental stage of isolated microspores, Percoll gradient concentration and the embryogenic frequency of each cultivar were studied. Optimization of these factors is required for each genotype evaluated.  相似文献   

9.
Summary The organization of actin microfilaments (MFs) was studied during pollen development ofBrassica napus cv. Topas. Cells were prepared using three techniques and double labelled for fluorescence microscopy with rhodamine-labelled phalloidin for MFs and Hoechst 33258 for DNA. Microfilaments are present at all stages of pollen development with the exception of tricellular pollen just prior to anthesis. Unicellular microspores contain MFs which radiate from the surface of the nuclear envelope into the cytoplasm. During mitosis MFs form a network partially surrounding the mitotic apparatus and extend into the cytoplasm. Both cytoplasmic and phragmoplast-associated MFs are present during cytokinesis. Nuclear associated-, cytoplasmic, and randomly oriented cortical MFs appear in the vegetative cell of the bicellular microspore. Cortical MFs in the vegetative cell organize into parallel MF bundles (MFBs) aligned transverse to the furrows. The MFBs disappear prior to microspore elongation. At anthesis MFs are restricted to the cortical areas subjacent to the furrows of the vegetative cell. The use of cytochalasin D to disrupt MF function resulted in: (1) displacement of the acentric nucleus in the unicellular microspore; (2) displacement of the spindle apparatus in the mitotic cell; (3) symmetrical growth of the bicellular microspore rather than elongation and (4) inhibition of pollen tube germination in the mature pollen grain. This suggests that MFs play an important role in anchoring the nucleus in the unicellular microspore as well as the spindle apparatus during microspore mitosis, in microspore shape determination and in pollen tube germination.Abbreviations MF microfilament - MFB microfilament bundle - rhph rhodamine phalloidin Dedicated to the memory of Professor John G. Torrey  相似文献   

10.
The dynamics of nuclear DNA synthesis were analysed in isolated microspores and pollen of Brassica napus that were induced to form embryos. DNA synthesis was visualized by the immunocytochemical labelling of incorporated Bromodeoxyuridine (BrdU), applied continuously or as a pulse during the first 24 h of culture under embryogenic (32 °C) and non-embryogenic (18 °C) conditions. Total DNA content of the nuclei was determined by microspectrophotometry. At the moment of isolation, microspore nuclei and nuclei of generative cells were at the G1, S or G2 phase. Vegetative nuclei of pollen were always in G1 at the onset of culture. When microspores were cultured at 18 °C, they followed the normal gametophytic development; when cultured at 32 °C, they divided symmetrically and became embryogenic or continued gametophytic development. Because the two nuclei of the symmetrically divided microspores were either both labelled with BrdU or not labelled at all, we concluded that microspores are inducible to form embryos from the G1 until the G2 phase. When bicellular pollen were cultured at 18 °C, they exhibited labelling exclusively in generative nuclei. This is comparable to the gametophytic development that occurs in vivo. Early bicellular pollen cultured at 32 °C, however, also exhibited replication in vegetative nuclei. The majority of vegetative nuclei re-entered the cell cycle after 12 h of culture. Replication in the vegetative cells preceded division of the vegetative cell, a prerequisite for pollen-derived embryogenesis.  相似文献   

11.
Nuclear divisions of carpospores, conchocelis and conchospores of Porphyra yezoensis, P. haitanensis, P. katadai var. hemiphylla and P. oligospermatangia from China were investigated. The observations showed diploid chromosome numbers of 2n = 6 for P. yezoensis and P. oligospermatangia, and 2n = 10 for P. haitanensis and P. katadai var. hemiphylla. For all four species, somatic pairing of chromosome sets was observed in late prophase. Sister chromosomes separated at anaphase as mitosis took place in carpospores, conchocelis filamentous cells, conchosporangial branch cells and sporangial cells (conchospore formation). Chromosome configurations of tetrad and ring-shaped in conchospore germination were observed, demonstrating the occurrence of meiosis. The characteristics of diploid nuclear division in 2n = 6 species are the same as those of 2n = 10 species. The influence of somatic pairing on nuclear division of diploid cells in Porphyra was discussed.  相似文献   

12.
Anthers of Capsicum annuum L. were cultured on Murashige and Skoog (MS) medium containing 0.1 mg l−1 NAA and 0.1 mg l−1 kinetin. Inoculated anthers were subjected to 31 °C and development of microspores in anthers of varying stages was observed cytologically using 4′-6-diamidino-2-phenylindol-2HCl (DAPI). Pepper was characterized by a strong asynchrony of pollen development within a single anther. Percentage of pollen at different stages changed with the culture period, and the proportion of dead pollen increased drastically from day 2 after culture. Microspores that were cultured at the late-uninucleate stage followed one of two developmental pathways. In the more common route, the first sporophytic division was asymmetric and produced what appeared to be a typical bicellular pollen. Embryogenic pollen was formed by repeated divisions of the vegetative nucleus. In the second pathway, which occurred in fewer microspores, the first division was symmetric and both nuclei divided repeatedly to form embryogenic pollen. In early-bicellular pollen, sporophytic pollen was produced through division of the vegetative nucleus. In mid-bicellular pollen, the generative nucleus may undergo division to produce two or more sperm-like nuclei. However, division of the generative nucleus alone to form the embryo was never observed. The anther stage optimal for embryo production contained a large proportion (>75%) of early-binucleate pollen. Associations were found among the percentage of early-binucleate pollen, the frequency of embryogenic multinucleate pollen, and the yield of pollen embryos.  相似文献   

13.
The effect of media composition on microspore culture was investigated in one tetraploid and two diploid potatoes. The viability of microspores isolated from 4.5 to 5 mm buds was in the range of 33 to 52%. In media for anther culture, microspores showed no further development and lost viability within 2 days. In M1 medium containing mineral components, sucrose, uridine, cytidine, myo-inositol, glutamine and lactalbumin hydrolysate, 18 to 37% of microspores underwent mitosis within 14 days. Up to 95% of the divisions were symmetric and produced equal nuclei. Some symmetrically divided microspores eventually produced structures with 3 to 10 nuclei. The proportion of the total microspore population producing multinuclear structures reached 9% in diploid clones responsive to anther culture and 1 to 2% in recalcitrant cv. Borka. Symmetric mitoses in M1 medium were induced in the presence of glutamine and lactalbumin hydrolysate. Nucleosides and myo-inositol had no effect on microspore division. In the absence of all organic components except sucrose, most mitoses were asymmetric, formation of multinuclear structures was reduced and most pollen accumulated starch indicative of gametophytic fate. In complete M1 medium, starch accumulation was suppressed. Suppression also occurred in asymmetrically divided microspores, indicating a direct inhibition of pollen development independent of the mode of microspore division. This inhibitory effect of M1 medium might present a stress which triggers the induction of symmetric microspore division and subsequent formation of multinuclear structures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Continuous suspension cultures of the marsh grass Spartina pectinata grow as either unorganized colonies or files of cells. Immunofluorescence of tubulin revealed microtubule (MT) structures similar to those encountered in meristematic cells, including cortical microtubule (MT) bands in some interphase cells and in all prophase cells. These MT bands were judged to be preprophase bands (PPBs) on the basis of their temporal appearance in the cell cycle and their position and orientation relative to division planes. Although PPBs are widely thought to be associated with organized tissues and polarized divisions, there are reports of PPBs in suspension cultures of four dicot species. This is the first report of a PPB in suspension cultures of a monocot species.  相似文献   

15.
Summary The monoclonal antibody MPM-2, which interacts with a mitosis-specific phosphorylated epitope, has been used to study phosphorylation of proteins in microspores and pollen ofBrassica napus. One- (1-D) and two-dimensional (2-D) immunoblots revealed that MPM-2 recognized a family of phosphorylated proteins in freshly isolated microspores and pollen. The same set of phosphorylated proteins was found after 8 h of culture at embryogenie (32 °C) and non-embryogenic (18 °C) conditions. Two major spots were observed on 2-D immunoblots, one of which (Mr75 kDa, pI5.1) co-localized with the 70 kDa heat shock protein. Immunolabelling of sectioned microspores and pollen showed that MPM-2 reactive epitopes were predominantly observed in the nucleoplasm from G1 until G2-phase, and in the cytoplasm during mitosis. This may be due to a cell cycle related translocation of phosphoproteins from the nucleus to the cytoplasm, or alternate phosphorylation and dephosphorylation in nucleus and cytoplasm. Detectability of epitopes on sections depended on the embedding procedure. Cryo processing revealed epitope reactivity in all stages of the cell cycle whereas polyethylene glycol embedded material showed no labelling in the cytoplasm during mitosis. Processing might reduce the antigenicity of cytoplasmic MPM-2 detectable proteins, probably due to dephosphorylation. The MPM-2 detectable epitope was observed in all cells investigated, irrespective of culture conditions, and its intracellular distribution depended on the cell cycle stage and was not related to the developmental fate of the microspores and pollen.  相似文献   

16.
Summary The organization of microtubules during interphase and prophase in embryogenic cultures of black spruce (Picea mariana) was investigated by indirect immunofluorescence. Somatic embryos of black spruce possessed an extensively branched and interconnecting network of fine interphase cortical microtubules. The development of pre-prophase bands (PPBs) in embryogenic black spruce cultures was compared with that in non-embryogenic cell cultures of jack pine (Pinus banksiana). PPBs in both species were initially arranged as a very broad array of microtubules, later (early to mid-prophase) becoming narrower and more intensely fluorescent. The occurrence of pre-prophase bands in relation to the number of phragmoplasts (i.e. PPB index) of black spruce somatic embryos was significantly higher (p<0.01) than that found for jack pine cells.  相似文献   

17.
In an attempt to discover the biological basis of microspore derived embryogenesis, the effect of the antimicrotubule agent colchicine on anther and free microspore embryogenesis was investigated. The microtubule inhibitor colchicine promoted embryogenesis from cultured anthers, both with regard to the number of anthers responding and the number of embryos being produced per anther. A similar promotional response was also observed with cultured microspores. Although the parameters for cultured anthers and free microspores differed, administration of the drug for a short period immediately prior to pollen mitosis I seems to exert the maximum promotional effect. Of the five cultivars of Brassica napus studied, all responded to colchicine treatment. However, the drug did release more embryogenic potential in poor-responding varieties (i.e. Lirawell and Optima) than in the highest responding variety (Topas). Colchicine also resulted in increased embryogenic response in microspores cultured at lower temperatures.These results are considered in terms of models proposed to explain the switch in microspore development from a gametophytic to a sporophytic pathway. The use ofcolchicine as agent to promote embryogenesis in previously recalcitrant species other than Brassica is also discussed.  相似文献   

18.
19.
Isolated microspores of Brassica napus were cultured on high concentrations of mannitol or polyethylene glycol (PEG 4000), with only a very limited amount of sucrose (0.08–0.1%) provided as carbohydrate source in the medium. While microspores cultured on high mannitol yielded no embryos and no embryogenic cell divisions were observed, microspores on high PEG developed into embryos within 2 weeks, and the embryo yield appeared comparable to that of the sucrose control. When placed under light, PEG embryos quickly changed color from yellow to dark green, while sucrose embryos first remained yellowish and then slowly changed color to pale green. Three-week-old PEG embryos were strikingly similar to immature zygotic embryos developed in ovulo, dissected at 14–15 days post-anthesis (DPA), while sucrose embryos differed from the latter in the size and shape, color and morphology of their cotyledons. These results demonstrate that in microspore embryogenesis of Brassica napus: (1) the level of metabolizable carbohydrate required for microspore embryo induction and formation appears to be substantially less than commonly used amounts, (2) sucrose as an osmoticum can be replaced with high-molecular-weight PEG. With further improvement the new method described here might be suitable for other Brassica species and would have a great potential application in breeding programs. Received: 29 May 1997 / Revision received: 12 August 1997 / Accepted: 2 September 1997  相似文献   

20.
Uninucleate microspores of Triticum aestivum cv. Pavon can be induced in vitro to alter their development to produce embryoids rather than pollen. Microspores expressed their embryogenic capacity through one of two division pathways. In the more common route, the first sporophytic division was asymmetric and produced what appeared to be a typical bicellular pollen grain. Here the generative cell detached from the intine, migrated to a central position in the pollen grain, and underwent a second haploid mitosis as the vegetative cell divided to give rise to the embryoid. In the second pathway, the first division was symmetric and both nuclei divided repeatedly to form the embryoid. This comparative analysis of normal pollen ontogeny and induced embryogenesis provided no evidence for the existence of predetermined embryogenic microspores in vitro or in vivo. Instead, microspores are induced at the time of culture, and embryogenesis involves continued metabolic activity associated with the gradual cessation of the gametophytic pathway and a redifferentiation into the sporophytic pathway. In conjunction with a previous study, it appears that embryogenic induction of wheat microspores involves switching off gametophytic genes and derepressing sporophytic genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号