首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Membrane preparations, obtained from Bacillus strains which have N-acetylglucosamine-linked lipoteichoic acids in their membranes, were shown to catalyze the transfer of N-[14C]acetylglucosamine (GlcNAc) from beta-[14C]GlcNAc-P-undecaprenol to endogenous polymer. In this reaction, alpha-GlcNAc-P-undecaprenol or alpha-GlcNAc-PP-undecaprenol could not substitute for beta-GlcNAc-P-undecaprenol as the N-acetylglucosamine donor. This enzyme was most active at pH 6.0 and in the presence of 40 mM MgCl2. The apparent Km for beta-GlcNAc-P-undecaprenol was 2 microM. The radioactive polymer products, solubilized by hot phenol treatment, coincided with lipoteichoic acids in chromatographic behavior. Hydrogen fluoride treatment of the polymer products gave a major fragment identical with GlcNAc(alpha 1----2)glycerol, which corresponded to the dephosphorylated repeating units of the lipoteichoic acids in the examined strains. Thus it is concluded that beta-GlcNAc-P-undecaprenol serves as the donor of N-acetylglucosamine in the biosynthesis of lipoteichoic acids in a group of Bacillus strains.  相似文献   

2.
D-[alpha-14C]]glucosyl phosphorylpolyprenol ([ 14C]Glc-P-prenol) was formed from UDP-D-[14C]glucose in each of the membrane systems obtained from Bacillus coagulans AHU 1631 and AHU 1634 and two Bacillus megaterium strains. Membranes of these B. coagulans strains, which possess beta-D-glucosyl branches on the repeating units in their major cell wall teichoic acids, were shown to catalyze the transfer of the glucose residue from [14C]Glc-P-prenol to endogenous polymer. On the other hand, membranes of B. coagulans AHU 1366, which has no glucose substituents in the cell wall teichoic acid, exhibited neither [14C]Glc-P-prenol synthetase activity nor the activity of transferring glucose from [14C]Glc-P-prenol to endogenous acceptor. The enzyme which catalyzes the polymer glycosylation in the former two B. coagulans strains was most active at pH 5.5 and in the presence of the Mg2+ ion. The apparent Km for [14C]Glc-P-prenol was 0.6 microM. Hydrogen fluoride hydrolysis of the [14C]glucose-linked polymer product yielded a major fragment identical to D-galactosyl-alpha(1----2)(D-glucosyl-beta(1----1/3)) glycerol, the dephosphorylated repeating unit in the major cell wall teichoic acids of these B. coagulans strains. This result, together with the behavior of the radioactive polymer in chromatography on Sepharose CL-6B, DEAE-Sephacel, and Octyl-Sepharose CL-4B, led to the conclusion that [14C]Glc-P-prenol serves as an intermediate in the formation of beta-D-glucosyl branches on the polymer chains of cell wall teichoic acids in B. coagulans.  相似文献   

3.
Biosynthesis of poly(galactosylglycerol phosphate) in Bacillus coagulans   总被引:4,自引:0,他引:4  
The pathway for the de novo synthesis of a teichoic acid, poly(galactosylglycerol phosphate), in Bacillus coagulans AHU 1366 was studied by means of characterization and stepwise conversion of lipid-linked intermediates. Incubation of membranes with UDP-N-acetylglucosamine and UDP-glucose yielded a disaccharide-linked polyprenylpyrophosphate, whose sugar moiety was characterized as glucosyl(beta 1----4)N-acetylglucosamine (Glc-GlcNAc). By incubation with membranes and CDP-glycerol, Glc-GlcNAc-PP-prenol was converted to a series of glycolipids characterized as (Gro-P)1-6-Glc-GlcNAc-PP-prenol (Gro = glycerol). Glc-[14C]GlcNAc-PP-prenol was converted to polymer by incubation with membranes, CDP-glycerol and UDP-galactose. Smith degradation of the polymer gave two radioactive fragments corresponding to (Gro-P)3-Glc-GlcNAc and (Gro-P)4-Glc-GlcNAc. These results, together with data on gel chromatography of radioactive polymer synthesized from UDP-[3H]galactose, CDP-glycerol and Glc-[14C]GlcNAc-PP-prenol, led to the conclusion that in this strain poly(galactosylglycerol phosphate) is probably synthesized through the following pathway: GlcNAc-PP-prenol----Glc-GlcNAc-PP-prenol----(Gro-P)3-4 -Glc-GlcNAc-PP-prenol----(Gro-P-Gal)n- (Gro-P)3-4-Glc-GlcNAc-PP-prenol----(Gro-P-Gal)n- (Gro-P)3-4-Glc-GlcNAc-P-peptidoglycan complex.  相似文献   

4.
Structural studies were carried out on lipoteichoic acids obtained from defatted cells of 10 Bacillus strains by phenol-water partition followed by chromatography on DEAE-Sephacel and Octyl-Sepharose columns. A group of the tested bacteria (group A), Bacillus subtilis, Bacillus licheniformis, and Bacillus pumilus, was shown to have a diacyl form of lipoteichoic acids which contained D-alanine, D-glucose, D-glucosamine, fatty acids, and glycerol in molar ratios to phosphorus of 0.35 to 0.69, 0.07 to 0.15 to 0.43, 0.06 to 0.11, and 0.95 to 1.18, respectively, whereas the other group (group B), Bacillus coagulans and Bacillus megaterium, had diacyl lipoteichoic acids which contained D-galactose, fatty acids, and glycerol in molar ratios to phosphorus of 0.05 to 0.42, 0.06 to 0.12, and 0.96 to 1.07, respectively. After treatment with 47% hydrogen fluoride, the lipoteichoic acids obtained from group A strains commonly gave a hydrophobic fragment, gentiobiosyl-beta (1----1 or 3)diacylglycerol, in addition to dephosphorylated repeating units, glycerol, 2-D-alanylglycerol, N-acetyl-D-glucosaminyl-alpha (1----2)glycerol, and D-alanyl-N-acetyl-D-glucosaminyl-alpha (1----2)glycerol, whereas the lipoteichoic acids from group B strains yielded diacylglycerol in addition to glycerol and D-galactosyl-alpha (1----2)glycerol. The results together with data from Smith degradations indicate that in the lipoteichoic acids of group A strains the polymer chains, made up of partially alanylated glycerol phosphate and glycosylglycerol phosphate units, are joined to the acylglycerol anchors through gentiobiose. However, in the lipoteichoic acids of group B strains, the partially galactosylated poly(glycerolphosphate) chains are believed to be directly linked to the acylglycerol anchors.  相似文献   

5.
Pentose cycle and reducing equivalents in rat mammary-gland slices   总被引:14,自引:13,他引:1       下载免费PDF全文
1. Slices of mammary gland of lactating rats were incubated with glucose labelled uniformly with (14)C and in positions 1, 2, 3 and 6, and with (3)H in all six positions. Glucose carbon atoms are incorporated into CO(2), fatty acids, lipid glycerol, the glucose and galactose moieties of lactose, lactate, soluble amino acids and proteins. C-3 of glucose appears in fatty acids. The incorporation of (3)H into fatty acids is greatest from [3-(3)H]glucose. (3)H from [5-(3)H]glucose appears, apart from in lactose, nearly all in water. 2. The specific radioactivity of the galactose moiety of lactose from [1-(14)C]- and [6-(14)C]-glucose was less, and that from [2-(14)C]- and [3-(14)C]-glucose more, than that of the glucose moiety. There was no randomization of carbon atoms in the glucose moiety, but it was extensive in galactose. 3. The pentose cycle was calculated from (14)C yields in CO(2) and fatty acids, and from the degradation of galactose from [2-(14)C]glucose. A method for the quantitative determination of the contribution of the pentose cycle, from incorporation into fatty acids from [3-(14)C]glucose, is derived. The rate of the reaction catalysed by hexose 6-phosphate isomerase was calculated from the randomization pattern in galactose. 4. Of the utilized glucose, 10-20% is converted into lactose, 20-30% is metabolized via the pentose cycle and the rest is metabolized via the Embden-Meyerhof pathway. About 10-15% of the triose phosphates and pyruvate is derived via the pentose cycle. 5. The pentose cycle is sufficient to provide 80-100% of the NADPH requirement for fatty acid synthesis. 6. The formation of reducing equivalents in the cytoplasm exceeds that required for reductive biosynthesis. About half of the cytoplasmic reducing equivalents are probably transferred into mitochondria. 7. In the Appendix a concise derivation of the randomization of C-1, C-2 and C-3 as a function of the pentose cycle is described.  相似文献   

6.
Estimation of the pentose cycle in the perfused cow''s udder   总被引:4,自引:3,他引:1       下载免费PDF全文
1. The distributions of (14)C have been compared in the glucose and galactose moieties of lactose obtained from cows' udders perfused with blood containing [1-(14)C]-, [2-(14)C]- and [6-(14)C]-glucose. The (14)C of the glucose moiety was found in the same position as that of the administered glucose, but in the galactose moiety the (14)C from [2-(14)C]glucose was extensively randomized into positions 1 and 3. It is concluded that the glucose moiety arose from free glucose and the galactose moiety from hexose phosphate intermediates and that the latter reflected the randomization occurring through reactions of the pentose cycle. 2. The proportion of the glucose metabolized via the pentose cycle for those cells making lactose was estimated from the distribution of (14)C in the galactose moiety and found to be about 23% in one experiment and 30% in another experiment. 3. The yield and distribution of (14)C were determined in the glycerol of fat from the tissue in experiments with [2-(14)C]- and [6-(14)C]-glucose. There was a greater randomization of (14)C in the glycerol than in C-1, C-2 and C-3 of the galactose moiety of lactose. The ratio of the yield of (14)C in the glycerol from [2-(14)C]glucose to that of [6-(14)C]glucose was very low and from this ratio it was calculated that less than 10% of the glucose was metabolized by the Embden-Meyerhof pathway and approx. 60-70% was converted into lactose. 4. [6-(14)C]Glucose and [6-(3)H]glucose were used to determine whether the (3)H at the C-6 position remained stable during its conversion into glyceride of fat from the tissue. Twenty-seven per cent of the (3)H was labilized during this conversion. Therefore it was not possible to use [2-(14)C]glucose and [6-(3)H]glucose in a single experiment to measure the relative conversion of the C-2 and C-6 positions of glucose to glycerol.  相似文献   

7.
The thrombin-dependent enrichment of alkenylacyl ethanolamine phosphoglyceride in [14C]eicosapentaenoic acid [( 14C]EPA) was demonstrated and compared with [3H]arachidonic acid [( 3H]AA) following the simultaneous prelabelling of individual human platelet phospholipids with these two fatty acids. The alkenylacyl, diacyl, and alkylacyl classes of ethanolamine phosphoglycerides (PE) were separated by thin-layer chromatography as their acetylated derivatives after hydrolysis of the parent phospholipid with phospholipase C. The ratios of [3H]/[14C] for the increased radioactivity appearing in alkenylacyl PE following 60 and 120 s of thrombin stimulation were the same as the corresponding ratio (2.0) found in the choline phosphoglycerides (PC) from control (unstimulated) platelets. These results suggest no significant selectivity between EPA and AA in the thrombin-stimulated transfer of these fatty acids from diacyl PC to alkenylacyl PE. The present findings may possibly bear some relevance to the altered platelet reactivity and (or) decreased thromboxane A2 formation observed in human subjects following the ingestion of marine lipid containing EPA.  相似文献   

8.
Rat liver microsomes labeled with spin-labeled phosphatidylcholine release the label into the aqueous phase during the aerobic incubation with NADPH (Biochem. Biophys. Res. Commun. (1979) 87, 300-307). To establish the chemical nature of the released moiety, microsomes were labeled with [14C]phosphatidylcholine. When the 14C-labeled microsomes were incubated with NADPH under aerobic conditions, a few percent of the radioactivity was liberated into the aqueous phase within 60 min. Thin-layer chromatographic analysis of the radioactive substance liberated showed the presence of hydroxylated fatty acids derived from the 2-position of glycerol moiety. About one-third of the fatty acids formed from [14C]phosphatidylcholine during the incubation were converted into hydroxy-derivatives. Gas chromatography/mass spectrometry analysis further confirmed an NADPH-dependent formation of 16-hydroxypalmitic acid, 15-hydroxypalmitic acid, and hydroxy-derivatives of other fatty acids from the phospholipids of the microsomal membrane. Evidence was also obtained indicating the formation of ketopalmitic acid.  相似文献   

9.
Pulse-chase experiments with [2-3H]glycerol and [14C]acetate revealed that in Staphylococcus aureus lipoteichoic acid biosynthesis plays a dominant role in membrane lipid metabolism. In the chase, 90% of the glycerophosphate moiety of phosphatidylglycerol was incorporated into the polymer: 25 phosphatidylglycerol + diglucosyldiacylglycerol leads to (glycerophospho)25-diglucosyldiacylglycerol + 25 diacylglycerol. Glycerophosphodiglucosyldiacylglycerol was shown to be an intermediate, confirming that the hydrophilic chain is polymerized on the final lipid anchor. Total phosphatidylglycerol served as the precursor pool and was estimated to turn over more than twice for lipoteichoic acid synthesis in one bacterial doubling. Of the resulting diacylglycerol approximately 10% was used for the synthesis of glycolipids and the lipid anchor of lipoteichoic acid. The majority of diacylglycerol recycled via phosphatidic acid to phosphatidylglycerol. Synthesis of bisphosphatidylglycerol was negligible and only a minor fraction of phosphatidylglycerol passed through the metabolically labile lysyl derivative. In contrast to normal growth, energy deprivation caused an immediate switch-over from the synthesis of lipoteichoic acid to the synthesis of bisphosphatidylglycerol.  相似文献   

10.
Biosynthetic studies on an acidic polysaccharide, comprising galactose, rhamnose, N-acetylglucosamine and sn-glycerol 1-phosphate, were carried out with a membrane system obtained from Bacillus cereus AHU 1356. Incubation of the membranes with UDP-[14C]Gal, TDP-[14C]Rha and UDP-[14C]GlcNAc resulted in the formation of four or more labeled-sugar-linked lipids and a labeled polysaccharide. Data on structural analysis of the sugar moieties released from the glycolipids, together with results of enzymatic conversion of [14C]galactose-linked lipid and [14C]Rha-Gal-linked lipid to higher-oligosaccharide-linked lipids and polysaccharide, led to the conclusion that the acidic polysaccharide is probably synthesized through the following pathway: (sequence in text) The glycerophosphate residues seem to be derived from phosphatidylglycerol.  相似文献   

11.
A galactosyltransferase activity is located in the cell-sap of aortic intima-media cells. This enzymatic system calatyzes [14C]galactose transfer from UDP-[14C]galactose into endogenous and exogenous proteinic acceptors. Labelled products are isolated from the proteinic fraction obtained in 20% trichloroacetic acid pellet or from organic solvent extractions. Maximal [14C]galactose incorporation occurs at pH 7.8 in Tris-HCl buffer in the presence of 0.1 mM MnCl2 at 30 degrees C. The enzymatic activity is modified by phospholipids, particularly by phosphatidic acid and lysophosphatidylcholine, which behave as mixed inhibitors, while L-alpha-phosphatidylserine interacts as a competitive inhibitor. The effect of phospholipids is not stereospecific but appeared to be closely related to their polar headgroups, especially the acidic headgroups of phosphatidylcholine and phosphatidic acid. The chain length and the unsaturation degree of fatty acids involved in phospholipid structures are not a main factor of regulation. The lysophosphatidylcholine effect could be explained by its solubilization properties, as non-ionic detergents interact in the same way with galactosyltransferase activity. Exogenous phospholipids probably interact with the enzymatic environment by their own molecular arrangement and so could exert a control on galactosyltransferase activity or lead to a conformation change of this enzyme.  相似文献   

12.
A crude membrane preparation of the unicellular green alga Chlamydomonas reinhardii was found to catalyse the incorporation of D-[14C]mannose from GDP-D-[14C]-mannose into a chloroform/methanol-soluble compound and into a trichloroacetic acid-insoluble polymer fraction. The labelled lipid revealed the chemical and chromatographic properties of a short-chain (about C55-C65) alpha-saturated polyprenyl mannosyl monophosphate. In the presence of detergent both long-chain (C85-C105) dolichol phosphate and alpha-unsaturated undecaprenyl phosphate (C55) were found to be effective as exogenous acceptors of D-mannose from GDP-D-[14C]mannose to yield their corresponding labelled polyprenyl mannosyl phosphates. Exogenous dolichyl phosphate stimulated the incorporation of mannose from GDP-D-[14C]mannose into the polymer fraction 5-7-fold, whereas the mannose moiety from undecaprenyl mannosyl phosphate was not further transferred. Authentic dolichyl phosphate [3H]mannose and partially purified mannolipid formed from GDP-[14C]mannose and exogenous dolichyl phosphate were found to function as direct mannosyl donors for the synthesis of labelled mannoproteins. These results clearly indicate the existence of dolichol-type glycolipids and their role as intermediates in transglycosylation reactions of this algal system. Both the saturation of the alpha-isoprene unit and the length of the polyprenyl chain may be regarded as evolutionary markers.  相似文献   

13.
Mitochondrial outer membranes were prepared from mouse liver homogenates by swelling purified mitochondria in phosphate buffer and were purified on a discontinuous sucrose gradient. Assays for marker enzymes and controls in electron microscopy confirmed the purity and homogeneity of this subfraction. Mitochondrial outer membranes had significant galactosyltransferase activity when incubated with UDP-[14C]galactose: 14C-labelling was found in products extractable with organic solvents and in a residual precipitate. Addition of exogenous dolichylmonophosphate loaded into phosphatidylcholine liposomes strongly enhanced the incorporation of [14C]galactose into chloroform/methanol (2:1, v/v) -extractable products. Thin-layer chromatography of these 2:1 extracts showed that the increase of [14C]galactose incorporation was attributable to the synthesis of a new galactosylated lipid, 'lipid L'. This 'lipid L' has been purified on silicic acid columns by elution with chloroform/methanol (1:1, v/v). The purified 'lipid L' was labile in acid and released [14C]galactose. It had the same chromatographic behaviour as dolichylmonophosphate-mannose in neutral, acid and alkaline solvent systems. Upon incubation in presence of [3H]dolichylmonophosphate and UDP-[14C]galactose, purified 'lipid L' contained both 3H- and 14C-labelling. 'Lipid L', synthesized by mitochondrial outer membranes, was therefore characterized as dolichylmonophosphate-galactose.  相似文献   

14.
Reactivity of N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) was studied in comparison with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The radioactivity of [guanidino-14C]-ENNG was incorporated only into the protein fraction and that of [ethyl-14C]ENNG was incorporated into DNA, RNA and protein fractions in ascites hepatoma AH7974 cells, as were those of [guanidino-14C]- and [methyl-14C]MNNG, respectively. The amounts of the binding of ENNG were less than those of MNNG, especially in the corporation of the ethyl moiety of ENNG into nucleic acid fractions. In a non-cellular system, the radioactivity of [guanidino-14C]ENNG was incorporated into proteins, preferentially into basic proteins such as cytochrome c, but was not incorporated into nucleic acids. This behavior is similar to that of [guanidino-14C]MNNG, while the amount of binding of the former was about half of that of the latter. The radioactivity of [ethyl-14C]ENNG was also incorporated into basic proteins to almost the same extent as that of [methyl-14C]MNNG. However, the binding of the ethyl moiety of ENNG to nucleic acids was much lower than that of the methyl moiety of MNNG. Horse heart cytochrome c, bovine pancreatic RNase A and regenerating rat liver chromatin had altered their biological activities to various degrees after modification by ENNG or MNNG.  相似文献   

15.
S Soulier  P Gaye 《Biochimie》1981,63(7):619-628
The results of subcellular fractionation of sheep mammary gland membranes indicate that N-acetylgalactosaminyl polypeptide transferase and galactosyl-N-acetylgalactosaminyl transferase, which are involved in the assembly of disaccharide units of kappa-casein, are localized chiefly in Golgi membranes. The glycosyltransferase activities incorporating N-acetyl [1-14C] galactosamine and [U-14C] galactose from uridine diphosphate N-acetyl [1-14C] galactosamine and uridine diphosphate [U-14C] galactose, respectively, were measured after membrane solubilization with Triton X-100 either with unglycosylated caseinomacropeptide, or with this polypeptide containing the N-acetylgalactosamine side chain residues (desialylated and degalactosylated caseinomacropeptide). Radioactive N-acetylgalactosamine was incorporated in the unglycosylated acceptor peptide, and the glycosidic bonds in the product were alkali labile, suggesting that they were linked to the hydroxyamino acid residues. In addition radioactive N-acetylgalactosamine was released after alpha N-acetyl-D-galactosaminidase treatment of labelled caseinomacropeptide. [U-14C] galactose was incorporated in the desialylated and degalactosylated acceptor peptide. Reductive alkaline treatment of [U-14C] galactose peptide resulted in the release of a major product, the chromatographic properties of which in TLC were identical with authentic galactosyl (1 leads to 3) N-acetylgalactosaminitol. The structure of the labelled disacchariditol determined after periodate oxidation (two equivalents) by gas liquid chromatography-mass spectrometry revealed that the [U-14C] galactose was linked to position C-3 on the N-acetylgalactosaminyl-residue. The anomery of the galactose, as determined by a chemical method, indicates unambiguously a beta configuration.  相似文献   

16.
Starved cells of Streptococcus lactis ML3 grown previously on lactose, galactose, or maltose were devoid of adenosine 5'-triphosphate contained only three glycolytic intermediates: 3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate (PEP). The three metabolites (total concentration, ca 40 mM) served as the intracellular PEP potential for sugar transport via PEP-dependent phosphotransferase systems. When accumulation of [14C]lactose by iodoacetate-inhibited starved cells was abolished within 1 s of commencement of transport, a phosphorylated disaccharide was identified by autoradiography. The compound was isolated by ion-exchange (borate) chromatography, and enzymatic analysis showed that the derivative was 6-phosphoryl-O-beta-D-galactopyranosyl (1 leads to 4')-alpha-D-glucopyranose (lactose 6-phosphate). After maximum lactose uptake (ca. 15 mM in 15 s) the cells were collected by membrane filtration and extracted with trichloroacetic acid. Neither free nor phosphorylated lactose was detected in cell extracts, but enzymatic analysis revealed high levels of galactose 6-phosphate and glucose 6-phosphate. The starved organisms rapidly accumulated glucose, 2-deoxy-D-glucose, methyl-beta-D-thiogalactopyranoside, and o-nitrophenyl-beta-D-galactopyranoside in phosphorylated form to intracellular concentrations of 32, 32, 42, and 38.5 mM, respectively. In contrast, maximum accumulation of lactose (ca. 15 mM) was only 40 to 50% that of the monosaccharides. From the stoichiometry of PEP-dependent lactose transport and the results of enzymatic analysis, it was concluded that (i) ca. 60% of the PEP potential was utilized via the lactose phosphotransferase system for phosphorylation of the galactosyl moiety of the disaccharide, and (ii) the residual potential (ca. 40%) was consumed during phosphorylation of the glucose moiety.  相似文献   

17.
The incorporation of radiolabeled arachidonic acid and saturated fatty acids into choline-linked phosphoglycerides (PC) of rabbit and human neutrophils was investigated by resolving the individual molecular species by reversed-phase high performance liquid chromatography. PC from neutrophils incubated with a mixture of [3H]arachidonic acid and [14C]stearic or [14C]palmitic acid contains both radiolabels; however, double labeling of individual molecular species is minimal. After labeling for 2 h, the [3H]arachidonate is distributed almost equally between diacyl and 1-O-alkyl-2-acyl species, but it is incorporated into diacyl species containing unlabeled stearate or palmitate at the sn-1 position. In contrast, labeled saturated fatty acids are incorporated only into diacyl species and contain predominantly oleate and linoleate at the sn-2 position. Labeled linoleate is not incorporated into ether-linked species, but is found in the same species as labeled stearate. The findings suggest that mechanisms exist in neutrophils for specific shunting of exogenous arachidonic acid into certain phospholipid molecular species and support the concept that the 1-O-alkyl-2-arachidonoyl species may be a functionally segregated pool of arachidonic acid within the PC of neutrophils.  相似文献   

18.
Although Streptococcus thermophilus accumulated [14C]lactose in the absence of an endogenous energy source, galactose-fermenting (Gal+) cells were unable to accumulate [14C]galactose unless an additional energy source was added to the test system. Both Gal+ and galactose-nonfermenting (Gal-) strains transported galactose when preincubated with sucrose. Accumulation was inhibited 50 or 95% when 10 mM sodium fluoride or 1.0 mM iodoacetic acid, respectively, was added to sucrose-treated cells, indicating that ATP was required for galactose transport activity. Proton-conducting ionophores also inhibited galactose uptake, although N,N'-dicyclohexyl carbodiimide had no effect. The results suggest that galactose transport in S. thermophilus occurs via an ATP-dependent galactose permease and that a proton motive force is involved. The galactose permease in S. thermophilus TS2b (Gal+) had a Km for galactose of 0.25 mM and a Vmax of 195 micromol of galactose accumulated per min per g (dry weight) of cells. Several structurally similar sugars inhibited galactose uptake, indicating that the galactose permease had high affinities for these sugars.  相似文献   

19.
Galactose transport in Streptococcus thermophilus.   总被引:4,自引:2,他引:2       下载免费PDF全文
Although Streptococcus thermophilus accumulated [14C]lactose in the absence of an endogenous energy source, galactose-fermenting (Gal+) cells were unable to accumulate [14C]galactose unless an additional energy source was added to the test system. Both Gal+ and galactose-nonfermenting (Gal-) strains transported galactose when preincubated with sucrose. Accumulation was inhibited 50 or 95% when 10 mM sodium fluoride or 1.0 mM iodoacetic acid, respectively, was added to sucrose-treated cells, indicating that ATP was required for galactose transport activity. Proton-conducting ionophores also inhibited galactose uptake, although N,N'-dicyclohexyl carbodiimide had no effect. The results suggest that galactose transport in S. thermophilus occurs via an ATP-dependent galactose permease and that a proton motive force is involved. The galactose permease in S. thermophilus TS2b (Gal+) had a Km for galactose of 0.25 mM and a Vmax of 195 micromol of galactose accumulated per min per g (dry weight) of cells. Several structurally similar sugars inhibited galactose uptake, indicating that the galactose permease had high affinities for these sugars.  相似文献   

20.
The metabolic flow of trace amounts of D-[14C]-galactose was followed in cultures of transformed and untransformed hamster cells over a period ranging from five minutes to two hours. The results of chromatographic and enzymatic analyses of the soluble pools are described. Non-glycolytic cells(previously deprived of sugar periods of up to 24 hours) convert D-galactose to galactose-1-phosphate and uridine diphosphoglucuronic acid in 10 to 20 minutes. In the same short assay time, glycolytic cells which have been maintained for 24 hours in media containing glucose or galactose convert D-galactose to uridine diphsphogalactose and uridine diphosphoglucose (ratio 1.4:1). Long term diprivation of sugar also results in 3- to 4-fold increases in the uptake of galactose. In addition, the incorporation of galactose label into chloroformethanol soluble material appears to be influenced by the culture conditions of the untransformed cells while incorporation in the transformed cells appears unaffected. When cycloheximide is included in the maintenance medium for extended periods, the non-glycolytic cells also show increases in galactose uptake rates but the glucose-fed, glycolytic cells llose uptake ability. UDPhexose is the main galactose metabolic peak in the soluble pools of the cycloheximide-treated, glycolytic and the cycloheximide-treated, non-glycolytic cells. The results of these experiments suggests that uptake of galactose and its subsequent metabolism are under separate control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号