首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accuracy of the underwater and airborne horizontal localization of different acoustic signals by the northern fur seal was investigated by the method of instrumental conditioned reflexes with food reinforcement. For pure-tone pulsed signals in the frequency range of 0.5-25 kHz the minimum angles of sound localization at 75% of correct responses corresponded to sound transducer azimuth of 6.5-7.5 degrees +/- 0.1-0.4 degrees underwater (at impulse duration of 3-90 ms) and of 3.5-5.5 degrees +/- 0.05-0.5 degrees in air (at impulse duration of 3-160 ms). The source of pulsed noise signals (of 3-ms duration) was localized with the accuracy of 3.0 degrees +/- 0.2 degrees underwater. The source of continuous (of 1-s duration) narrow band (10% of c.fr.) noise signals was localized in air with the accuracy of 2-5 degrees +/- 0.02-0.4 degrees and of continuous broad band (1-20 kHz) noise, with the accuracy of 4.5 degrees +/- 0.2 degrees.  相似文献   

2.
Underwater differential frequency hearing thresholds in the Black Sea bottle-nosed dolphin (Tursiops truncatus p.) and the northern fur seal (Callorhinus ursinus) were measured depending on signal frequency and sound conduction pathways. The measurements were performed by the method of instrumental conditioned reflexes with food reinforcement under conditions of full and partial (with heads out of water at sound conduction through body tissues) submergence of animals into water. It was shown that in a frequency range of 5-100 kHz, underwater differential frequency hearing thresholds of the bottle-nosed dolphin changed from 0.46-0.60% to 0.21-0.34% and depended little on sound conduction pathways. The minimum underwater differential frequency hearing thresholds of the northern fur seal corresponded to the frequencies of maximum hearing sensitivity, changed from 1.7% to 1-2.3% in a frequency range of 1-20 kHz, sharply increased at the edges of the frequency hearing perception range, and depended little (in a range of 5-40 kHz) on sound conduction pathways. Thus, underwater sounds propagating through the body tissues of dolphin and fur seal reach the inner ear.  相似文献   

3.
Babushina ES 《Biofizika》1999,44(6):1101-1108
The interaction of complex sounds with the body tissues of Black Sea dolphin (Tursiops truncatus) was studied by the method of instrumental conditioned reflexes with food reinforcement. The thresholds of detecting underwater acoustic signals of different frequencies for dolphin and northern fur seal (Callorhinus ursinus) were measured as a function of pulse duration under conditions of full and partial (head above water) submergence of animals into water. It was found that sound conduction through dolphin tissues was more effective than that in a northern fur seal in a wide frequency range. Presumably, the process of sound propagation in dolphin is accompanied by changes in the amplitude-frequency structure of broad-band sounds. The temporal summation in dolphin hearing was observed at all frequencies under conditions of full and partial submergence, whereas in northern fur seal it was nearly absent at a frequency of 5 kHz under the conditions of head lifting above water.  相似文献   

4.
Females of the parasitoid fly Emblemasoma auditrix find their host cicada (Okanagana rimosa) by its acoustic signals. In laboratory experiments, fly phonotaxis had a mean threshold of about 66 dB SPL when tested with the cicada calling song. Flies exhibited a frequency dependent phonotaxis when testing to song models with different carrier frequencies (pulses of 6 ms duration and a repetition rate of 80 pulses s(-1)). However, the phonotactic threshold was rather broadly tuned in the range from 5 kHz to 11 kHz. Phonotaxis was also dependent on the temporal parameters of the song models: repetition rates of 60 pulses s(-1) and 80 pulses s and pulse durations of 5-7 ms resulted in the highest percentages of phonotaxis performing animals coupled with the lowest threshold values. Thus, parasitoid phonotaxis is adapted especially to the temporal parameters of the calling song of the host. Choice experiments revealed a preference of a song model with 9 kHz carrier frequency (peak energy of the host song) compared with 5 kHz carrier frequency (electrophysiologically determined best hearing frequency). However, this preference changed with the relative sound pressure level of both signals. When presented simultaneously, E. auditrix preferred 5-kHz signals, if they were 5 dB SPL louder than the 9-kHz signal.  相似文献   

5.
A Quantitative Analysis of the Sounds of Hector's Dolphin   总被引:1,自引:0,他引:1  
We developed an automatic, computer-based system in which digital signal processing techniques were used to measure 31 variables from digitized Hector's dolphin (Cephalorhynchus hectori) sounds. Principal component analyses of these data were used to investigate the relationships between sounds. Hector's dolphins make only a very few types of pulsed “clicks”, most of which are centred around 125 kHz. None of these had an average frequency of less than 82 kHz, and the only audible sounds were made up of high-frequency clicks repeated at such high rates that the repetition rate was audible to us as a tonal “cry” or “squeal”. In comparison to signal levels recorded from other cetaceans, all the Hector's dolphin signals were low-level; the maximum received sound pressure level was 163 dB (re 1μPa).  相似文献   

6.
杨树木段内光肩星天牛幼虫数量的声学检测   总被引:1,自引:0,他引:1  
光肩星天牛是重要的检疫性林木害虫,由于幼虫在树干内部取食,现有的方法很难检测到幼虫的为害情况。利用声音检测技术在室内对杨树木段中不同数量的光肩星天牛幼虫产生的声音信号进行检测,结果显示:不同数量光肩星天牛幼虫产生的声音信号在时域、频域方面均无显著差异,脉冲持续时间在3-6 ms范围内;信号的频率在7235.20-7924.20 Hz范围内,且主频为7725.00 Hz。但不同数量光肩星天牛幼虫产生的声音信号的脉冲个数之间存在显著的差异(P0.05),且脉冲个数与幼虫数量之间存在线性关系,即y=13.14x-3.55(R2=0.986),利用此数量关系可以在今后的检测中判断光肩星天牛幼虫的虫口数量和危害状况。  相似文献   

7.
The peculiarities of underwater sound conduction through the body of the Black Sea bottlenose dolphin (Tursiops truncatus p.) were investigated to elucidate the mechanisms of acoustic orientation of marine mammals. By using the method of instrumental conditioned reflexes with food reinforcement, underwater hearing thresholds in the bottlenose dolphin depending on signal parameters (tonal pulses and various noises) and sound conduction pathways were measured under conditions of full and partial (with the head out of water and sound being conducted through the body tissues) submergence of the animal into water. The underwater hearing thresholds increased by 6-27 dB upon sound conduction through the body tissues (to the least extent for tonal pulses of 10 and 20 kHz). The hearing thresholds for tonal pulses and narrow-band noises were very similar both under conditions of full and partial submergence of the animal into water.  相似文献   

8.
The precedence effect refers to the fact that humans are able to localize sound sources in reverberant environments. In this study, sound localization was studied with dual sound source: stationary (lead) and moving (lag) for two planes: horizontal and vertical. Duration of lead and lag signals was 1s. Lead-lag delays ranged from 1-40 ms. Testing was conducted in free field, with broadband noise busts (5-18 kHz). The listeners indicated the perceived location of the lag signal. Results suggest that at delays above to 25 ms in horizontal plane and 40 ms in vertical plane subjects localized correctly the moving signal. At short delays (up to 8-10 ms), regardless of the instructions, all subjects pointed to the trajectory near the lead. The echo threshold varied dramatically across listeners. Mean echo thresholds were 7.3 ms in horizontal plane and 10.1 ms in vertical plane. Statistically significant differences were not observed for two planes [F(1, 5) = 5.52; p = 0.07].  相似文献   

9.
The detection and recognition of acoustic communication signals masked by noise was investigated in a grasshopper (Chorthippus biguttulus) whose auditory system exhibits only poor spectral resolution and therefore has to operate in the time domain. The signals of this species consist of numerous identical subunits that enable the receiver, in principle, to make repetitive measurements. We aimed at determining the maximum integration time in this species by using stimuli of different durations under increasing noise levels. As a criterion for recognition the typical phonotactic turning response of the males was evaluated, which is reliably triggered by a female song, and thus is a sensitive indicator for recognition of conspecific signals. When confronted with a long signal (1000 ms) males tolerated a 2.4 dB higher noise level as compared to a short signal (250 ms). Noise tolerance improved with increasing signal duration from 250 ms to 450 ms. Beyond this signal duration, however, no further improvement was observed, indicating an upper limit for temporal integration that corresponds to only five song subunits. The gain in noise tolerance had a slope of 2.7 dB per doubling duration, which corresponds to the expectation derived from an energy detector model (3 dB per doubling duration) rather than to the value expected from signal detection theory (1.5 dB per doubling duration).  相似文献   

10.
2012年6月,对湖南省石门县壶瓶山国家级自然保护区神景洞短嘴金丝燕的回声定位叫声进行研究,在黑暗山洞内使用录音仪器录制其自由飞行状态的声音后使用声音软件进行分析.短嘴金丝燕捕食归巢时,快速飞入洞口,在洞内有光区域不发声,到达洞内黑暗区域后开始发出回声定位叫声,且飞行速度减慢.声音分析结果表明其回声定位叫声为双脉冲组的噪声脉冲串型(noise burst),组内脉冲间隔很短[(6.6±0.42)ms],组间脉冲间隔较长[(99.3±3.86) ms],两者差异显著(P<0.01).对比第一、第二脉冲声音参数发现,主频和脉冲时程差异不显著,第一、第二脉冲主频分别为(6.2±0.08) kHz和(6.2±0.10) kHz (P>0.05);脉冲时程分别为(2.9±0.12) ms和(3.2±0.17) ms (P>0.05);最高和最低频率差异显著,第一、第二脉冲最高频率分别为(20.1±1.10) kHz和(15.4±0.98) kHz (P<0.01),最低频率分别为(3.7±0.12) kHz和(4.0±0.09)kHz (P<0.05);第一脉冲频宽((16.5±1.17) kHz)宽于第二脉冲((11.4±1.01) kHz) (P<0.01);且第一脉冲能量[(-32.5±0.60) dB]高于第二脉冲[(-35.2±0.94) dB] (P<0.05).另外,短嘴金丝燕在黑暗山洞内的回声定位叫声还包含了部分超声波,最高频率可达33.2 kHz.  相似文献   

11.
In 7-12-day rabbits, the auditory neurones respond to a narrow range of tonal signals of low frequency (500 Hz-4 KHz), but do not change at all, or only slightly change their parameters during the increase in stimulation frequency. The range of frequencies increases with age; the number of impulses in a discharge and the duration of the latent period are monotonously dependent on the frequency of a signal. At the end of the 4th week, the auditory neurones respond by non-monotonous patterns of impulsation and latent period to changes in tonal characteristic of the signal.  相似文献   

12.
Summary Doppler shift compensation behaviour in horseshoe bats, Rhinolophus rouxi, was used to test the interference of pure tones and narrow band noise with compensation performance. The distortions in Doppler shift compensation to sinusoidally frequency shifted echoes (modulation frequency: 0.1 Hz, maximum frequency shift: 3 kHz) consisted of a reduced compensation amplitude and/or a shift of the emitted frequency to lower frequencies (Fig. 1).Pure tones at frequencies between 200 and 900 Hz above the bat's resting frequency (RF) disturbed the Doppler shift compensation, with a maximum of intererence between 400 and 550 Hz (Fig. 2). Minimum duration of pure tones for interference was 20 ms and durations above 40 ms were most effective (Fig. 3). Interfering pure tones arriving later than about 10 ms after the onset of the echolocation call showed markedly reduced interference (Fig. 4). Doppler shift compensation was affected by pure tones at the optimum interfering frequency with sound pressure levels down to –48 dB rel the intensity level of the emitted call (Figs. 5, 6).Narrow bandwidth noise (bandwidth from ± 100 Hz to ± 800 Hz) disturbed Doppler shift compensation at carrier frequencies between –250 Hz below and 800 Hz above RF with a maximum of interference between 250 and 500 Hz above resting frequency (Fig. 7). The duration and delay of the noise had similar influences on interference with Doppler shift compensation as did pure tones (Figs. 8, 9). Intensity dependence for noise interference was more variable than for pure tones (-32 dB to -45 dB rel emitted sound pressure level, Fig. 10).The temporal and spectral gating in Doppler shift compensation behaviour is discussed as an effective mechanism for clutter rejection by improving the processing of frequency and amplitude transients in the echoes of horseshoe bats.Abbreviations CF constant frequency - FM frequency modulation - RF resting frequency - SPL sound pressure level  相似文献   

13.
Babushina ES 《Biofizika》2000,45(5):927-934
Underwater audiograms of a northern fur seal, a Caspic seal and a dolphin aphalina were measured under conditions of full or partial (the head above the water) submergence of animals using the method of instrumental conditioned reflexes with food reinforcement. The possibility and peculiarities of sound conduction through the body of marine mammals were investigated by isolating the auricle from the medium of sound spreading (under conditions of partial submergence). By the same technique, the hearing thresholds of Caspic seal were measured in the presence of broad- and narrow-band noises with different central frequencies depending on the medium (underwater or in air) the signal and the noise masker were presented and on the sound-conducting ways (under conditions of full or partial submergence of animals). It was found that aerial and underwater sound-conducting canals of the Caspic seal were functionally connected with each other. The level of hearing masking in the Caspic seal is determined by the tracts of signal and noise conduction, by the differences in sensitivity to the signal and masker, and by their spectral structure. Apparently, the tissues of the seal body considerably change the amplitude-frequency characteristics of the sound.  相似文献   

14.
The temporal parameters of the perception of radially moving sound sources partly masked with broadband internalized noise at an intensity of 40, 46, or 52 dB above the hearing threshold have been studied. The threshold of sound duration necessary for identifying the direction of movement of the sound source (75% correct answers) increases from 135 ms in silence to 285 ms at all intensities of continuous noise studied. The minimum duration of the stimulus beginning with which a subsequent increase in duration does not increase the number of correct responses is the same (385 ms) under all conditions of stimulus presentation. Broadband noise of any intensity increases the time of response to stimuli in the range of durations studied. At a noise of 52 dB, which is close to the threshold of full masking, the reaction time is not increased significantly compared to its estimation at a noise of 46 dB. The minimum duration of the stimulus has proved to be the stablest temporal parameter of the perception of movement of a sound source. Changes in the temporal parameters of sound perception at noise levels close to the threshold of full masking are discussed.  相似文献   

15.
为探讨下丘(Inferior colliculus,IC)回声定位信号主频范围内的神经元的时程选择性,在自由声场刺激条件下,我们在4 只普氏蹄蝠的IC 采用不同时程的声刺激,研究了神经元的时程选择性。通过在体细胞外记录,共获得56 个声敏感下丘神经元,其记录深度、最佳频率和最小阈值的范围分别为1547 - 3967 (2878. 9 ±629.1)μm,20 -68 (49.0 ± 11. 1)kHz 和36.5 -95. 5 (59. 8 ±13. 0)dB SPL。根据所记录到的下丘神经元对不同时程的声刺激的反应,即对不同时程的选择性(Duration selectivity),将其分为6 种类型:短通型(Short-pass,SP,n = 11/56)、带通型(Band-pass,BP,n = 1/56)、长通型(Long-pass,LP,n = 5 /56)、反带通型(Band-reject,BR,n = 3 /56)、多峰型(Multi-peak,MP,n =6 /56)和全通型(All-pass,AP,n =30 /56)或非时程选择型(Nonduration-selective,NDS)。通过比较普氏蹄蝠下丘谐波主频内和主频外神经元的时程选择性,我们发现处于回声定位信号主频范围内神经元(n =32)比主频外神经元(n = 24)具有更短的最佳时程和更高的时程选择性。结果提示,在普氏蹄蝠回声定位过程中谐波主频内神经元较谐波主频外神经元发挥了更为重要的作用。  相似文献   

16.
Summary The directionality of cochlear microphonic potentials in the azimuthal plane was investigated in the pigeon (Columba livia), using acoustic free-field stimulation (pure tones of 0.25–6 kHz).At high frequencies in the pigeon's hearing range (4–6 kHz), changing azimuth resulted in a maximum change of the cochlear microphonic amplitude by about 20 dB (SPL). The directionality decreased clearly with decreasing frequency.Acoustic blocking of the contralateral ear canal could reduce the directional sensitivity of the ipsilateral ear by maximally 8 dB. This indicates a significant sound transmission through the bird's interaural pathways. However, the magnitude of these effects compared to those obtained by sound diffraction (maximum > 15 dB) suggests that pressure gradients at the tympanic membrane are only of subordinate importance for the generation of directional cues.The comparison of interaural intensity differences with previous behavioral results confirms the hypothesis that interaural intensity difference is the primary directional cue of azimuthal sound localization in the high-frequency range (2–6 kHz).Abbreviations CM cochlear microphonic potential - IID interaural intensity difference - IID-MRA minimum resolvable angle calculated from interaural intensity difference - MRA minimum resolvable angle - OTD interaural ongoing time difference - RMS root mean square - SPL sound pressure level  相似文献   

17.
The influence of highly intensive single impulses on the cochlea of guinea pig was studied in an acute experiment. Very short impulses of less than or equal to 0.1 ms duration were produced by a sparknoise generator. The cochlear microphonics (CM) to a test stimulus (sinus tone, 3150 Hz) were recorded from the round window and measured prior to, during, and following impulse treatment. During the impulse treatment, the greatest amplitude reduction of CM occurred after the first impulse, while the further impulses caused a decreasing reduction. At first the number of impulses was varied: 1, 3, and 5 impulses were applied at intervals of 15 s each, at an impulse sound level of 164 dB sound pressure level re. 0.002 mubar (SPL). After these impulse treatments, in all cases a continual decrease of CM amplitudes up to a constant end value without recovery was found within a 2-hrs period of observation. The height of the end value depends on the number of impulses applied. Subsequently, at an exposure to 5 impluses the impulse sound level was stepwise reduced (164, 153, 144, 139 and 133 dB SPL). Again, a characteristic decrease of CM amplitudes was observed during the 2-hrs period of observation. The height of the end value is now dependent on the impluse sound level. Impulses of 164, 153 and 144 dB SPL cause a strong decrease of CM while the effect of impulses of 139 and 133 dB SPL is distinctly lower.  相似文献   

18.
Using the patch-voltage-clamp method kinetics of the fast potential-dependent K+-channels in molluscan neurones was investigated. It was found that under given experimental conditions the amplitudes of single current impulses have a wide spectrum. The amplitudes are proportional to a number of the current substates involved. Averaged fronts of the current impulses are S-shaped, and have duration greater than 1 ms. Averaged duration of the current impulses increases (from 0.25 to 30-40 ms) with the impulse amplitude (or with the number of the substates involved). There is a sharp bend of the dependence at the impulse amplitude 0.6-0.7 of maximal value. The phenomena investigated reflect, probably, cooperativity of the channel transitions between the substates. The degree of the cooperativity depends on the membrane potential value.  相似文献   

19.
The precedence effect in the localization of a moving lagging sound source was studied in experiments on humans under the free field conditions in the presence of a stationary (lead) sound source. Broad-band noise (5–18 kHz) bursts 1 s in duration presented in the horizontal and vertical planes were used as signals. The lead-lag delays ranged from 1 to 40 ms. The results showed that, if the signals were presented in the horizontal plane, the probability of correct localization of the moving lagging signal was decreased for delays shorter than 25 ms; if the signals were presented in the vertical plane, it was decreased for delays shorter than 40 ms. If the delays were shorter than 8–10 ms, the subjects could not localize the moving lagging signal at all. In this interval of delays, the subjects could localize only the lead signal. The mean echo threshold for signals presented in the horizontal plane was smaller than for signals presented in the vertical plane (7.3 and 10.1 ms, respectively). However, comparison of these values across the sample of subject did not show significant differences [F(1, 5) = 5.52, p = 0.07]. The results of the study suggest that the precedence effect causes a tendency towards a stronger suppression of a moving lagging signal in the vertical plane than in the horizontal plane.  相似文献   

20.
Australian fur seals breed on thirteen islands located in the Bass Strait, Australia. Land access to these islands is restricted, minimising human presence but boat access is still permissible with limitations on approach distances. Thirty-two controlled noise exposure experiments were conducted on breeding Australian fur seals to determine their behavioural response to controlled in-air motor boat noise on Kanowna Island (39°10'S, 146°18'E). Our results show there were significant differences in the seals' behaviour at low (64-70 dB) versus high (75-85 dB) sound levels, with seals orientating themselves towards or physically moving away from the louder boat noise at three different sound levels. Furthermore, seals responded more aggressively with one another and were more alert when they heard louder boat noise. Australian fur seals demonstrated plasticity in their vocal responses to boat noise with calls being significantly different between the various sound intensities and barks tending to get faster as the boat noise got louder. These results suggest that Australian fur seals on Kanowna Island show behavioural disturbance to high level boat noise. Consequently, it is recommended that an appropriate level of received boat sound emissions at breeding fur seal colonies be below 74 dB and that these findings be taken into account when evaluating appropriate approach distances and speed limits for boats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号