首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hackl EV  Blagoi YP 《Biopolymers》2005,77(6):315-324
The work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits. The compaction process is of high positive cooperativity. As temperature increases the divalent metal ion concentration required to induce DNA compaction decreases in the case of Cu(2+)-induced compaction and increases in the case of Ca(2+)-induced compaction. It is suggested that the mechanism of the temperature effect on DNA compaction in the presence of Cu2+ ions possessing higher affinity for DNA bases differs from that of the temperature influence on Ca(2+)-induced DNA compaction. In the case of copper ions the determining factor is the increase of binding constants of the Cu2+ ions interacting with the denatured parts formed on DNA while in the case of calcium ions it is the decreased screening action of counterions upon the increase of their hydration with temperature. The efficiency of divalent metal ions studied in inducing DNA compaction depends on hydration of counterions. DNA compaction occurs in a narrow interval of Cu2+ concentrations. As the Cu2+ ion concentration increases, DNA compaction is replaced with Cu(2+)-induced DNA aggregation. At elevated temperatures Cu(2+)-induced DNA compaction could acquire a phase transition character.  相似文献   

3.
In the present work using the IR spectroscopy method the effect of ethanol on structural transitions of DNA and polyphosphates under the action of Ca2+ ions in mixed solutions containing ethanol (0-25 vol.%) was studied. It was shown that, on its interaction with Ca2+ ions, in aqueous and mixed solutions DNA becomes transformed into compact form. With the increase of concentration of ethanol the degree of Ca2+-induced DNA compactisation rises. It was found that, in mixed solutions containing ethanol, Ca2+-induced DNA compactisation depends not only on the solution's dielectric permeability but also on the solution structure. On stabilisation of the water structure in the presence of low ethanol concentrations a stabilisation of the DNA macromolecule occurs that leads to the increase of the Ca2+ ion concentration necessary for DNA compactisation. Comparison of the effects of ethanol on Ca2+-induced structural transitions in DNA and polyphosphates in mixed solvents permits to suppose that at alcohol concentrations in solution resulting in disruption of the water spatial structure, some peculiarities are observed in the behavior of those molecules whose hydrophobic interactions are essential.  相似文献   

4.
5.
Chromogranin A, the major intravesicular protein of adrenal chromaffin granules, bound Ca2+ in a pH-dependent manner. Both the maximal binding and affinity of chromogranin A for Ca2+ were dependent on pH. Chromogranin A bound 670 nmol of Ca2+/mg (32 mol/mol) and 1150 nmol of Ca2+/mg (55 mol/mol) at pH 7.5 and 5.5, respectively, with dissociation constants (Kd) of 2.7 and 4 mM. This pH dependence probably reflects different conformations of the protein at the two pH values. Conformational differences of chromogranin A at two different pH values were demonstrated by limited tryptic digestion patterns confirming previous results obtained by circular dichroism spectroscopy (Yoo, S. H., and Albanesi, J. P. (1990) J. Biol. Chem. 265, 14414-14421). Sedimentation equilibrium studies revealed the native molecular mass of chromogranin A to be 100 kDa at pH 7.5 and 192 kDa at pH 5.5, indicating dimeric and tetrameric states of the protein at the two pH levels. We postulate that the pH- and Ca2(+)-induced conformational changes of chromogranin A may have a role both in the regulation of Ca2+ release of chromaffin granules and in the early stages of secretory vesicle biogenesis.  相似文献   

6.
Two mechanisms of passive Ca2+ transport, Na+-Ca2+ exchange and Ca2+-Ca2+ exchange, were studied using highly-purified dog heart sarcolemmal vesicles. About 80% of the Ca2+ accumulated by Na+-Ca2+ exchange or Ca2+-Ca2+ exchange could be released as free Ca2+, while up to 20% was probably bound. Na+-Ca2+ exchange was simultaneous, coupled countertransport of Na+ and Ca2+. The movement of anions during Na+-Ca2+ exchange did not limit the initial rate of Na+-Ca2+ exchange. Na+-Ca2+ exchange was electrogenic, with a reversal potential of about -105 mV. The apparent flux ratio of Na+-Ca2+ exchange was 4 Na+:1 Ca2+. Coupled cation countertransport by the Na+-Ca2+ exchange mechanism required a monovalent cation gradient with the following sequence of ion activation: Na+ much greater than Li+ greater than Cs+ greater than K+ greater than Rb+. In contrast to Na+-Ca2+ exchange, Ca2+-Ca2+ exchange did not require a monovalent cation gradient, but required the presence of Ca2+ plus a monovalent cation on both sides of the vesicle membrane. The sequence of ion activation of Ca2+-Ca2+ exchange was: K+ much greater than Rb+ greater than Na+ greater than Li+ greater than Cs+. Na+ inhibited Ca2+-Ca2+ exchange when Ca2+-Ca2+ exchange was supported by another monovalent cation. Both Na+-Ca2+ exchange and Ca2+-Ca2+ exchange were inhibited, but with different sensitivities, by external MgCl2, quinidine, or verapamil.  相似文献   

7.
CD spectroscopic studies on protected peptides containing lysine and serine, or phosphoserine, and on serine-containing fragments of the neurofilament protein midsized subunit, both in the unphosphorylated and phosphorylated form, are reported. The introduction of the phosphoryl group was not found to have a significant spectral effect in aqueous solution. In trifluoroethanol (TFE), spectral shifts toward unordered (type U) spectra or the appearance of distorted spectra likely reflect the adoption of aperiodic polypeptide conformations due to salt bridge(s) between negatively charged phosphoserine and positive lysine side-chain groups. A turn-stabilizing effect of phosphorylation was also observed. CD-monitored titration experiments in TFE revealed a high conformational sensitivity of phosphopeptides toward Ca2+ ions. The appearance of the unordered spectra or spectral shifts were the sign of a bulk disordering effect of Ca2+ ions. Spectra with specific spectroscopic features reflect the formation of Ca2+complexes and the adoption of ordered unique backbone conformations. When ordered structures were obtained on addition of Ca2+ ions, the observed CD curves showed a resemblance to the spectrum of β-pleated sheets. This may originate from chain extension and the formation of β-pleated sheet segments fixed by Ca2+ bridges between PO3H groups of adjacent peptide chains. The data clearly show that the effect of the Ca2+ ions is highly specific: the sequence, chain length, presence and distribution of charged side-chain groups, degree and site of phosphorylation, and environmental factors appear to be determining in the process of chain extension or β-sheet formation. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
pH-induced hysteretic transitions of ovoperoxidase   总被引:3,自引:0,他引:3  
Ovoperoxidase, the enzyme that catalyzes the dityrosine cross-linking of fertilization membranes of eggs from the sea urchin Stronglyocentrotus purpuratus, exhibits slow changes in catalytic activity upon alterations of pH, with attendant changes in spectral properties. For ovoperoxidase pre-equilibratated at pH 8, abrupt decreases in pH are accompanied by a slow loss in activity that is temporally associated with a change in absorbance at the Soret band. With enzyme pre-equilibrated at pH 4.5 and then shifted to higher pH, there was a slow increase in catalytic activity following a rapid change in the Soret band absorbance. These changes were reversible and led to the same equilibrium state, regardless of the direction of pH shift. The rate of approach to the equilibrium state of ovoperoxidase was independent of enzyme concentration, the presence of substrates, or temperature (from 6.5 to 39.7 degrees C). The pH-induced interconversions of catalytic and spectral properties indicate that ovoperoxidase undergoes hysteretic transitions, in which alterations in the heme environment accompany, but are not sufficient for, the expression of catalytic activity. We present a kinetic mechanism for the hysteretic relaxations and suggest how these transitions may have relevance to the assembly of the fertilization membrane in vivo.  相似文献   

9.
10.
We have studied the fluorescence of the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum labelled with fluorescein isothiocyanate. The change in intensity of fluorescein fluorescence caused by addition of Ca2+ to the labelled ATPase can be interpreted in terms of a two-conformation model for the ATPase, one conformation (E1) having a high affinity for Ca2+, the other (E2) a low affinity. Effects of Ca2+ as a function of pH allow an estimate of the effect of pH on the E1/E2 ratio, consistent with kinetic studies. A model is presented for binding of Ca2+ to the ATPase as a function of pH that is consistent both with the data on the E1/E2 equilibrium and with literature data on Ca2+ binding.  相似文献   

11.
DNase A studied by gel filtration on Sephadex G-100 at pH 7.4 in 40 mM Tris-HCl buffer, behaves hydrodynamically as a spherical monomeric macromolecule of around 31,000 molecular weight, with a Stokes radius = 24.7 A, f/fo = 1.19, and D20,W = 8.69. Similar results were obtained by analytical dialysis using zinc chloride-modified cellophane membranes. The elution volume of DNase A decreases as the pH increases between pH 4.7 and pH 9.5. This effect has been attributed to a change in the tridimensional structure of the protein and interpreted as a modification in the axial ratio due to unfolding of the polypeptide chain with increase in the apparent Stokes radius. The addition of Ca2+ produce reversion of the pH-induced changes at pH 9.5. The transition occurs when Ca2+ binds to at least two binding sites (n = 1.66 in a Hill plot) with a Kd = 8.9 X 10(-5) M and the effect appears to be cooperative. These findings support the hypothesis that Ca2+-binding to DNase A causes a conformational change that maintains a more active structure of the enzyme, especially when the pH-induced unfolding reduces its activity.  相似文献   

12.
The effect of ethanol on the structure of DNA confined to mica in the presence of Mg2+was examined by varying the ethanol concentration and imaging the DNA by atomic force microscopy. Contour length measurements of the DNA show a transition from all-B-form at 0% ethanol to all-A-form at >25% ethanol. At intermediate ethanol concentrations, contour lengths suggest that individual molecules of air-dried DNA are trapped with mixed compositions of A-form and B-form. The relative composition depends on the ethanol concentration. Fitting the length distributions at intermediate ethanol concentrations to a simple binomial model results in an upper bound estimate for the A-form and B-form domains of approximately 54 bp in the individual molecules. In addition to length changes, the apparent persistence length of DNA decreases with increasing ethanol concentration. At high concentrations of ethanol (>20%), DNA formed several higher order structures, including flower shaped condensates and toroids.  相似文献   

13.
Neuronal calcium sensor-1 (NCS-1) is a major modulator of Ca2+ signaling with a known role in neurotransmitter release. NCS-1 has one cryptic (EF1) and three functional (EF2, EF3, and EF4) EF-hand motifs. However, it is not known which are the regulatory (Ca2+-specific) and structural (Ca2+- or Mg2+-binding) EF-hand motifs. To understand the specialized functions of NCS-1, identification of the ionic discrimination of the EF-hand sites is important. In this work, we determined the specificity of Ca2+ binding using NMR and EF-hand mutants. Ca2+ titration, as monitored by [15N,1H] heteronuclear single quantum coherence, suggests that Ca2+ binds to the EF2 and EF3 almost simultaneously, followed by EF4. Our NMR data suggest that Mg2+ binds to EF2 and EF3, thereby classifying them as structural sites, whereas EF4 is a Ca2+-specific or regulatory site. This was further corroborated using an EF2/EF3-disabled mutant, which binds only Ca2+ and not Mg2+. Ca2+ binding induces conformational rearrangements in the protein by reversing Mg2+-induced changes in Trp fluorescence and surface hydrophobicity. In a larger physiological perspective, exchanging or replacing Mg2+ with Ca2+ reduces the Ca2+-binding affinity of NCS-1 from 90 nM to 440 nM, which would be advantageous to the molecule by facilitating reversibility to the Ca2+-free state. Although the equilibrium unfolding transitions of apo-NCS-1 and Mg2+-bound NCS-1 are similar, the early unfolding transitions of Ca2+-bound NCS-1 are partially influenced in the presence of Mg2+. This study demonstrates the importance of Mg2+ as a modulator of calcium homeostasis and active-state behavior of NCS-1.  相似文献   

14.
Using the fluorescent dye acridine orange, the feasibility of formation in myometrium sarcolemma of closed inside-out oriented vesicles and of a proton gradient created by the pH-jump method and stable in time, was demonstrated. At the initial value of delta pH = 2, the characteristic time of the gradient dissipation providing for the pH change by one unity is 4 to 5 minutes. The proton gradient oriented from the intravesicular space to the environment stimulated the Ca2+ influx into the vesicles. The transmembrane gradient of H+ with the inside-out oriented sarcolemmal vesicles prevents the Ca2+ influx. It is concluded that plasma membranes of smooth muscle cells contain alongside with the ATP- and Na(+)-dependent Ca2+ transport systems also a mechanism of the delta pH-induced transport of this bivalent cation.  相似文献   

15.
Possible role of electrochemical potential as driving force for exogenous DNA penetration inside Ca2+ treated Escherichia coli was investigated using carbonyl-cyanide-m-chlorophenylhydrasone (CCCP), an uncoupler of oxidative phosphorylation. CCCP at concentrations of 10(-6) -10(-5) M did not affect the number of plague forming units. The inhibitory effect was observed under higher concentrations (5.10(-5) -10(-4). This effect was not due to the loss of cell viability and is attributed to the reduced capacity of the cells to interact with DNA. It is suggested that conformational changes in biomembranes might be at least partially involved. It is concluded that the electrochemical potential is not the driving force for penetration of exogenous DNA inside Ca2+ -treated E. coli cells. Bronian movement is suggest as an alternative.  相似文献   

16.
The amount of linear chromosomal DNA entering Ca2+-treated Escherichia coli K 12 cells was estimated from the degree of degradation of exogenous DNA by intracellular nucleases. At least 40% of DNA adsorbed by the cells in the nucleaso-resistant form (45 MD/cell) was discovered to be as intracellular. No significant difference was found between single- and double-stranded DNA.  相似文献   

17.
The effects of different concentrations of the fluorometric Ca2+ probes, fura-2 and indo-1, on Ca2+ transients in cultured rat aortic smooth muscle cells were examined. When stimulated with the agonists, angiotensin II and arginine vasopressin, cells incubated with low concentrations of fura-2 or indo-1 (less than 1 microM) produced Ca2+ transients characterized by a small increase followed by a dramatic decrease in fluorescence below the original baseline. This effect of agonists was concentration-dependent, reversible, and blocked by receptor antagonists. In contrast to the agonists, stimulation of Ca2+ transients with depolarizing concentrations of K+ or with caffeine did not produce decreases in fluorescence and Ca2+ levels at any loading concentration of probe. The decrease in Ca2+ observed with agonists was dependent on the presence of extracellular Na+. These data suggest that under certain loading conditions, fluorescent Ca2+ indicators measure agonist-stimulated Ca2+ efflux mediated by a Na+/Ca2+ exchange mechanism.  相似文献   

18.
The flickery block of single Ca2+-activated K+ channels that is produced by internally applied Na+ can be relieved by millimolar concentrations of external K+. This effect of K+ on the kinetics of Na+ block was studied by the method of amplitude distribution analysis described in the companion paper (Yellen, G., 1984b, J. Gen. Physiol., 84:157-186). It appears that K+ relieves block by increasing the exit rate of the blocking ion from the channel, not by competitively slowing its entrance rate. This suggests that a K ion that enters the channel from the outside can expel the blocking Na ion, which entered the channel from the inside. Cs+, which cannot carry current through the channel, and Rb+, which carries a reduced current through the channel, are just as effective as K+ in relieving the block by internal Na+. The kinetics of block by internal nonyltriethylammonium (C9) are unaffected by the presence of these ions in the external bathing solution.  相似文献   

19.
Summary The influence of the asymmetric addition of various divalent cations and protons on the properties of active Ca2+ transport have been examined in intact human red blood cells. Active Ca2+ efflux was determined from the initial rate of45Ca2+ loss after CoCl2 was added to block Ca2+ loading via the ionophore A23187. Ca2+-ATPase activity was measured as phosphate production over 5 min in cells equilibrated with EGTA-buffered free Ca2+ in the presence of A23187. The apparent Ca affinity of active Ca2+ efflux (K 0.5=30–40 mol/liter cells) was significantly lower than that measured by the Ca2+-ATPase assay (K 0.5=0.4 m). Possible reasons for this apparent difference are considered. Both active Ca2+ efflux and Ca2+-ATPase activity were reduced to less than 5% of maximal levels (20 mmol/liter cells · hr) in Mg2+-depleted cells, and completely restored by reintroduction of intracellular Mg2+. Active Ca2+ efflux was inhibited almost completely by raising external CaCl2 (but not MgCl2) to 20mm, probably by interaction of Ca2+ at the externally oriented E2P conformation of the pump. Cd2+ was more potent than Ca2+ in this inhibition, while Mn2+ was less potent and 10mm Ba2+ was without effect. A Ca2+: proton exchange mechanism for active Ca2+ efflux was supported by the results, as external protons (pH 6–6.5) stimulated active Ca2+ efflux at least twofold above the efflux rate at pH 7.8 Ca2+ transport was not affected by decreasing the membrane potential across the red cell.  相似文献   

20.
Rabbit muscle troponin C was selectively modified at Cys-98 by 1,3-difluoro-4,6-dinitrobenzene. The second function of the bifunctional reagent was triggered at alkaline pH in the presence and absence of Ca2+. The crosslinked troponin C was hydrolyzed by trypsin and the peptides containing a dinitrobenzene moiety were isolated. When troponin C was crosslinked in the presence of Ca2+, the single dinitrobenzene-containing peptide was Gly-89-Arg-100, in which Cys-98 was crosslinked with Lys-90. When crosslinking was performed in the absence of Ca2+, beside the above peptide two additional peptides containing dinitrobenzene were found. One of these peptides is made up of two fragments, Ser-91-Arg-100 and Asn-105-Arg-120, crosslinked between Cys-98 and Tyr-109. The second peptide, Ala-121-Lys-140, contains modified Lys-136, presumably crosslinked with His-135. The data indicate that the distances between the α-carbon of Cys-98 and those of Lys-90, Tyr-109, Lys-136 and probably the α-carbon distance His-125-Lys-136, do not exceed 14 Å. Comparison with the X-ray structure of troponin C (Herzberg, O, and James, M.N.G. (1985) Nature 313, 653–659) indicates that some of the above distances increase on Ca2+-binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号