首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine whether cyclic strain could promote human umbilical vein endothelial cells (HUVECs) to express markers in common with the mature smooth muscle cell (SMC) phenotype, suggesting endothelial cell to SMC transdifferentiation. HUVECs were cultured on stretched membranes at 10% stretch and 60 cycles/min for 24-96 hr, and demonstrated elongation with enhanced and organized F-actin distribution. By using real-time polymerase chain reaction analysis, the mRNA levels of five specific SMC markers, SM22-alpha, alpha-smooth muscle actin (alpha-SMA), caldesmon-1, smooth muscle myosin heavy chain (SMMHC), and calponin-1 were significantly increased in cyclic strain-treated HUVECs as compared with those in static control cells. Protein levels of SM22-alpha and alpha-SMA were also substantially increased by Western blot and immunofluorescence staining. In addition, two specific endothelial markers, von Willebrand factor (vWF) and vascular endothelial growth factor receptor-2 (VEGFR-2), showed a reduction in mRNA expression. In addition, cyclic strain-induced increase of SM22-alpha and alpha-SMA expression were reversible when cells were cultured back to the static condition. These results demonstrate a possible endothelial cell to SMC transdifferentiation in response to cyclic strain. Hemodynamic forces in modulating endothelial phenotype may play an important role in the vascular system.  相似文献   

2.
Human intestinal smooth muscle in culture produces insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3, IGFBP-4, and IGFBP-5, which modulate the effects of IGF-I. This study examined the regulation of IGFBP production by endogenous IGF-I. R3-IGF-I, an agonist unaffected by IGFBPs, elicited concentration-dependent increase in growth, measured by [(3)H]thymidine incorporation, and production of IGFBP-3, IGFBP-4, and IGFBP-5, measured by Western blot. Antagonists of the IGF-I receptor, IGF-I Analog or monoclonal antibody 1H7, elicited concentration-dependent inhibition of growth and decrease in IGFBP-3, IGFBP-4, and IGFBP-5 production, implying that endogenous IGF-I stimulated growth and IGFBP production. R3-IGF-I-induced increase in IGFBP-3, IGFBP-4, and IGFBP-5 production was partially inhibited by a mitogen-activated protein (MAP) kinase or a phosphatidylinositol-3-kinase (PI 3-kinase) inhibitor and abolished by the combination. We conclude that endogenous IGF-I stimulates growth and IGFBP-3, IGFBP-4, and IGFBP-5 production in human intestinal smooth muscle cells. Regulation of IGFBP production by IGF-I is mediated by activation of distinct MAP kinase and PI 3-kinase pathways, the same pathways through which IGF-I stimulates growth.  相似文献   

3.
Summary To study mechanisms controlling growth and phenotype in human vascular smooth muscle cells, we established culture conditions under which these cells proliferate rapidly and achieve life-spans of 50–60 population doublings. In medium containing heparin and heparin-binding growth factors, growth rate and life-span of human vascular smooth muscle cells increased more than 50% relative to cultures with neither supplement, and more than 20% compared to cultures supplemented only with heparin-binding growth factors. In contrast to observations made in rat vascular smooth muscle cells, smooth muscle-specific α-actin in the human cells was expressed only in the presence of heparin and colocalized with β/γ nonmuscle actins in stress fibers, not in adhesion plaques. Heparin, in the presence of heparin-binding growth factors, also caused more than 170% stimulation of tracer glucosamine incorporation into hyaluronic acid and a 7.5-fold increase in hyaluronic acid accumulation. In comparison, total sulfate incorporation into sulfated glycosaminoglycans increased by less than 40%. In light of our previous findings that heparin suppresses collagen gene expression, we conclude that heparin induces human vascular smooth muscle cells exposed to heparin-binding growth factors to remodel their extracellular matrix by altering the relative rates of hyaluronic acid (HA) and collagen synthesis. The resulting hyaluronic-acid-rich, collagen-poor matrix may enhance infiltration of CD44/hyaluronate-receptor-bearing T-lymphocytes and monocytes into the vascular wall, an early event in atherogenesis.  相似文献   

4.
Isolation and culture of human intestinal smooth muscle cells   总被引:3,自引:0,他引:3  
Intestinal smooth muscle cells were isolated from human bowel and maintained in culture through several passages. These cells were obtained by enzyme digestion of slices taken from the circular layer of the muscularis propria of human jejunum. When subcultured, they initially flattened out and then began proliferating after 3 days. After 3 weeks in culture, they began aggregating into ridges. Fluorohistochemical staining revealed numerous prominent actin stress fibers. When these cells were exposed to the C-terminal octapeptide of cholecystokinin they contracted in a dose-dependent fashion. The availability of human intestinal smooth muscle cells in culture will considerably enhance our ability to study the contractile, proliferative and connective tissue responses of the smooth muscle of the human gastrointestinal tract.  相似文献   

5.
Hypertrophy and hyperplasia lead to excess accumulation of smooth muscle in the airways of human asthmatic subjects. However, little is known about mechanisms that might counterbalance these processes, thereby limiting the quantity of smooth muscle in airways. Ligation of Fas on the surface of vascular smooth muscle cells and nonmuscle airway cells can lead to apoptotic cell death. We therefore tested the hypotheses that 1) human airway smooth muscle (HASM) expresses Fas, 2) Fas cross-linking induces apoptosis in these cells, and 3) tumor necrosis factor (TNF)-alpha potentiates Fas-mediated airway myocyte killing. Immunohistochemistry using CH-11 anti-Fas monoclonal IgM antibody revealed Fas expression in normal human bronchial smooth muscle in vivo. Flow cytometry using DX2 anti-Fas monoclonal IgG antibody revealed that passage 4 cultured HASM cells express surface Fas. Surface Fas decreased partially during prolonged serum deprivation of cultured HASM cells and was upregulated by TNF-alpha stimulation. Fas cross-linking with CH-11 antibody induced apoptosis in cultured HASM cells, and this effect was reduced by long-term serum deprivation and synergistically potentiated by concomitant TNF-alpha exposure. TNF-alpha did not induce substantial apoptosis in the absence of Fas cross-linking. These data represent the first demonstration that Fas is expressed on HASM and suggest a mechanism by which Fas-mediated apoptosis could act to oppose excess smooth muscle accumulation during airway remodeling in asthma.  相似文献   

6.
Aberrant vascular smooth muscle cell (VSMC) hyperplasia is the hallmark of atherosclerosis and restenosis seen after vascular surgery. Heparin inhibits VSMC proliferation in animal models and in cell culture. To test our hypothesis that heparin mediates its antiproliferative effect by altering phosphorylation of key mitogenic signaling proteins in VSMC, we examined tyrosine phosphorylation of cellular proteins in quiescent VSMC stimulated with serum in the presence or absence of heparin. Western blot analysis with anti-phosphotyrosine antibodies shows that heparin specifically alters the tyrosine phosphorylation of only two proteins (42 kDa and 200 kDa). The 200 kDa protein (p200) is dephosphorylated within 2.5 min after heparin treatment with an IC50 that closely parallels the IC50 for growth inhibition. Studies using the tyrosine phosphatase inhibitor, sodium orthovanadate, indicate that heparin blocks p200 phosphorylation by inhibiting a kinase. Phosphorylation of p200 is not altered in heparin-resistant cells, supporting a role for p200 in mediating the antiproliferative effect of heparin. Purification and sequence analysis indicate that p200 exhibits very high homology to the heavy chain of nonmuscle myosin IIA. The 42 kDa protein, identified as mitogen activated protein kinase (MAPK), undergoes dephosphorylation within 15 min after heparin treatment, and this effect is also not seen in heparin-resistant cells. The identification of only two heparin-regulated tyrosine phosphoproteins suggests that they may be key mediators of the antiproliferative effect of heparin.  相似文献   

7.
8.
9.
The binding, internalization, and metabolism of [3H]-heparin by human umbilical vein endothelial cells (HUVEC) and human umbilical arterial smooth muscle cells (HUASMC) have been characterized using size-exclusion HPLC. Incubation of HUVEC with [3H]-heparin demonstrated selective binding of high-molecular-weight (MW) components (MW = 21 kd), which was followed by rapid, temperature-dependent internalization. Over the next 3 hours, this internalized [3H]-heparin was degraded to low-MW fragments (MW = 0.9 kd). Primary cultures of HUASMC selectively bound extremely high-MW components (MW = 40 kd) and also smaller components whose MW (0.9 kd) corresponded to that of the heparin metabolite(s) formed by HUVEC. Subcultured HUASMC bound only the 40-kd components. Internalization of heparin by smooth muscle cells (SMC) was significantly slower than that determined for HUVEC, and even after 4 hours there was no evidence of the heparin being metabolized. However, when incubating primary rabbit aortic SMC with purified low-MW heparin fragment(s) produced in culture by HUVEC, a significantly lower proliferative response of these cells (IC50 = 18.4 micrograms/ml) was obtained. Virtually no effect was observed with subcultured SMC in the range of the tested concentrations (0-20 micrograms/ml). These fragments were 10- to 15-fold more effective in inhibiting primary SMC growth than was standard heparin. Furthermore, heparin fractions in the same range of molecular weights, purified either after nitrous acid or heparinase depolymerization of standard heparin, showed no activity on primary SMC growth, thus indicating a high degree of selectivity of the heparin metabolite(s) produced by HUVEC in culture.  相似文献   

10.
11.
12.
13.
Lysophosphatidylcholine (LPC) is the major bioactive lipid component of oxidized LDL, thought to be responsible for many of the inflammatory effects of oxidized LDL described in both inflammatory and endothelial cells. Inflammation-induced transformation of vascular smooth muscle cells from a contractile phenotype to a proliferative/secretory phenotype is a hallmark of the vascular remodeling that is characteristic of atherogenesis; however, the role of LPC in this process has not been fully described. The present study tested the hypothesis that LPC is an inflammatory stimulus in coronary artery smooth muscle cells (CASMCs). In cultured human CASMCs, LPC stimulated time- and concentration-dependent release of arachidonic acid that was sensitive to phospholipase A2 and C inhibition. LPC stimulated the release of arachidonic acid metabolites leukotriene-B4 and 6-keto-prostaglandin F, within the same time course. LPC was also found to stimulate basic fibroblast growth factor release as well as stimulating the release of the cytokines GM-CSF, IL-6, and IL-8. Optimal stimulation of these signals was obtained via palmitic acid-substituted LPC species. Stimulation of arachidonic acid, inflammatory cytokines and growth factor release, implies that LPC might play a multifactorial role in the progression of atherosclerosis, by affecting inflammatory processes.  相似文献   

14.
Smooth muscle cells (SMCs) under shear stress may alter their gene expression patterns to adapt to a new hemodynamic environment. Their plasticity may play an important role in vascular development, healing, and remodeling as well as vascular lesion formation under abnormal environmental conditions. A mouse vascular SMC line (P53LMACO1) cultured under shear stress significantly increased the mRNA levels of endothelial cell markers including Platelet-endothelial cell adhesion molecule-1 (PECAM-1), von Willebrand factor (vWF), and VE-cadherin, while significantly decreasing the mRNA levels of SMC markers including alpha-smooth muscle actin (alpha-SMA), calponin-1, smooth muscle myosin heavy chain (SMMHC), and transgelin as compared to static control cells. Protein levels of PECAM-1 and vWF were significantly increased, while protein levels of alpha-SMA were substantially decreased in the shear stress-cultured cells. In addition, shear stress-cultured cells showed an enhanced capability to form capillary-like structures on Matrigel. Thus, shear stress may promote endothelial cell transdifferentiation from SMCs.  相似文献   

15.
16.
We investigated the molecular mechanisms underlying the ability of heparin to inhibit vascular smooth muscle cell (VSMC) growth. Previous experiments have shown that heparin inhibits induction of c-fos and c-myc protooncogene mRNA in rat VSMC stimulated by phorbol 12-myristate 13-acetate (PMA) but not when stimulated by epidermal growth factor (EGF) (Pukac, L. A., Castellot, J. J., Wright, T. C., Caleb, B. L., and Karnovsky, M. J. (1990) Cell Regul. 1, 435-443). The present experiments show that these mitogens activate distinct second messenger pathways in VSMC, because PMA but not EGF induction of c-fos and c-myc mRNA was suppressed in protein kinase C (PKC) down-regulated VSMC; this suggests that EGF does not act through a PKC-dependent pathway for induction of these genes. Heparin inhibited serum stimulation of c-fos mRNA in control VSMC, but heparin did not inhibit the smaller but significant serum stimulation of c-fos mRNA in PKC down-regulated VSMC, indicating that heparin may selectively inhibit PKC-dependent, but not PKC-independent, stimulation of gene expression. To further determine if heparin inhibits non-PKC pathways, VSMC were treated with dibutyryl cAMP, 3-isobutyl-1-methyl-xanthine, and Ca2+ ionophore A23187; stimulation of c-fos mRNA by this treatment was not inhibited by heparin. DNA synthesis and cell proliferation were inhibited in rat VSMC exposed briefly to heparin during the G0/G1 phase of the cell cycle. These experiments indicate heparin can act early in the cell cycle and suggest PKC-dependent but not PKC-independent signaling pathways for gene expression are selectively sensitive to heparin inhibition.  相似文献   

17.
The effects of ATP, ,-methylene-ATP, ,-methylene-ATP and adenosine on longitudinal and circular smooth muscle of the human large and small intestine were investigated using the sucrose gap technique. Applications of ATP to the smooth intestinal muscle produced an effect resembling that of stimulating the nonadrenergic nerve fibers in most cases. Desensitization of the purinoreceptors by ,-methylene-ATP selectively reduced the amplitude of nonadrenergic inhibitory synaptic potentials. The findings presented confirm the purinergic hypothesis of nonadrenergic inhibition in the smooth muscle of human intestine.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 373–381, May–June, 1986.  相似文献   

18.
Using a Ca2+-selective electrode and the chlorotetracycline fluorescence technique, the effects of heparin on Ca2+ transport in the sarcoplasmic reticulum (SR) of skeletal muscles in the absence of oxalate were investigated. It was shown that heparin (0.5-10 micrograms/ml) causes a rapid release of 40-50 nmol Ca2+/mg protein from the terminal cistern SR vesicles bound to 130-150 nmol/mg protein of Ca2+ in the presence of ATP. However, heparin has practically no effect on the longitudinal cistern fraction of SR. The effects of heparin can be prevented by ruthenium red. No influence of heparin is observed in the case of the Ca2+-induced release of Ca2+ from the terminal cisterns. When the Ca2+ release is induced by heparin, no Ca2+-induced release of Ca2+ takes place.  相似文献   

19.
人气管平滑肌细胞培养   总被引:4,自引:0,他引:4  
支气管平滑肌细胞的收缩、舒张、增殖和凋亡与临床许多疾病的病理生理过程有关,如支气管哮喘、慢性阻塞性肺疾病等.目前国内研究这些疾病的细胞材料多采用豚鼠和大鼠等动物的支气管平滑肌细胞,这与人气管平滑肌细胞(airway smooth muscle cells,ASMCs)的生理病理特征有很大的差距.我们在多年的实验过程中建立了一套人ASMCs的培养方法,介绍如下.  相似文献   

20.
Aggregated low-density lipoprotein (agLDL), one of the main LDL modifications in the arterial intima, contributes to massive intracellular cholesteryl ester (CE) accumulation in human vascular smooth muscle cells (VSMC), which are major producers of elastin in the vascular wall. Our aim was to analyze the levels, physical structure, and molecular mobility of tropoelastin produced by agLDL-loaded human VSMC (agLDL-VSMC) versus that produced by control VSMC. Western blot analysis demonstrated that agLDL reduced VSMC-tropoelastin protein levels by increasing its degradation rate. Moreover, our results demonstrated increased levels of precursor and mature forms of cathepsin S in agLDL-VSMC. Fourier transform infrared analysis revealed modifications in the secondary structures of tropoelastin produced by lipid-loaded VSMCs. Thermal and dielectric analyses showed that agLDL-VSMC tropoelastin has decreased glass transition temperatures and distinct chain dynamics that, in addition to a loss of thermal stability, lead to strong changes in its mechanical properties. In conclusion, agLDL lipid loading of human vascular cells leads to an increase in cathepsin S production concomitantly with a decrease in cellular tropoelastin protein levels and dramatic changes in secreted tropoelastin physical structure. Therefore, VSMC-lipid loading likely determines alterations in the mechanical properties of the vascular wall and plays a crucial role in elastin loss during atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号