首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report here the partial characterization of a new human zinc finger (ZNF75) gene of the Kruppel type mapping to the long arm of the X chromosome. A cosmid clone was isolated from a library specific to the Xq24-qter region by hybridization to a degenerate oligonucleotide representing the link between two contigous fingers of the C2H2 type. The sequence of the pertinent cosmid fragments demonstrated five consecutive zinc finger motifs, all pertaining to the Kruppel family. A reading frame starting at least 75 amino acids before the first zinc finger and ending 11 amino acids after the last one was identified; comparison with other ZF genes suggests that this genomic fragment represents the carboxy-terminal exon of the gene. Homology of approximately 55% in the zinc finger region was detected with many zinc finger genes including mouse Zfp-35 and human ZFN7 cDNA clones. Mapping using a panel of sematic cell hybrids and chromosomal in situ hybridization localized the gene to Xq26, in a region not previously known to contain zinc finger genes.  相似文献   

2.
We have localized the gene coding for the human neurofilament light chain (NEFL) to chromosome band 8p2.1 by Southern blotting of DNA from hybrid cell panels and in situ hybridization to metaphase chromosomes.  相似文献   

3.
Proteins that share conserved "zinc finger" motifs represent a class of DNA-binding proteins that have been shown to play a fundamental role in regulating gene expression and to be involved in a number of human hereditary and malignant disease states. We have isolated, characterized, and mapped zinc finger-encoding genes specific to human chromosome 11q to investigate their possible association in the molecular pathogenesis of several disease loci mapped to this chromosome. An arrayed chromosome 11q cosmid library was screened using a degenerate oligonucleotide corresponding to the H/C link consensus sequence of the Drosophila Kruppel zinc finger gene, resulting in the isolation of six putative zinc finger genes. Three of the genes (ZNF123, ZNF125, and ZNF126) were analyzed and shown to contain tandemly repeated zinc finger motifs of the C2-H2 class. All three novel genes were found to be expressed in normal adult human tissues, although the tissue-specific pattern of expression differs markedly. Isolated zinc finger genes were regionally mapped on chromosome 11 using fluorescence in situ suppression hybridization and demonstrated clustering of the genes at 11q13.3-11q13.4 and 11q23.1-11q23.2. Analysis of in situ hybridization to interphase nuclei demonstrated a maximum distance of 1 Mb separating distinct finger genes. This analysis defines two linked multigene families of zinc finger genes to chromosome bands associated with a high frequency of specific translocations associated with malignancies.  相似文献   

4.
The human calcitonin gene is located on the short arm of chromosome 11   总被引:6,自引:0,他引:6  
By molecular hybridization of human calcitonin cDNA probes to DNA from human-rodent hybrid cells containing identified human chromosomes, we have mapped the human calcitonin gene to the short arm of chromosome 11. This location has been confirmed by in situ hybridization, which further localized the calcitonin gene to region 11p13-15. The significance of this region regarding gene linkage and possible markers for inherited cancers is discussed.  相似文献   

5.
6.
7.
8.
9.
The gene for vimentin, an intermediate-filament protein, is growth regulated. We used Southern blot analysis and in situ chromosome hybridization to determine the location of the human vimentin gene. Our results show that there is only one copy of the vimentin gene and that it is located on the short arm of chromosome 10 (10pter-10q23) close to the interleukin-2 receptor gene, which is also growth regulated. In situ hybridization studies suggest that the most likely location of the vimentin gene is 10p13. Sequence similarities and homologies of human vimentin to other genes are presented.  相似文献   

10.
11.
Atrial natriuretic factors (ANF) are polypeptides having natriuretic, diuretic, and smooth muscle-relaxing activities that are synthesized from a single larger precursor: pronatriodilatin. Chromosomal assignment of the gene coding for human pronatriodilatin was accomplished by in situ hybridization of a [3H]-labeled pronatriodilatin probe to human chromosome preparations and by Southern blot analysis of somatic cell hybrid DNAs with normal and rearranged chromosomes 1. The human pronatriodilatin gene was mapped to the distal short arm of chromosome 1, in band 1p36. Southern blot analysis of mouse X Chinese hamster somatic cell hybrids was used to assign the mouse pronatriodilatin gene to chromosome 4. This assignment adds another locus to the conserved syntenic group of homologous genes located on the distal half of the short arm of human chromosome 1 and on mouse chromosome 4.  相似文献   

12.
A novel human KRAB (Krüppel associated box) type zinc finger protein encoding gene, ZNF463, was obtained by mRNA differential display and RACE. It consists of 1904 nucleotides and encodes a protein of 463 amino acids with an amino-terminal KRAB domain and 12 carboxy-terminal C2H2 zinc finger units. The gene is mapped to chromosome 19q13.3 approximately 4 by FISH. As from Northern blot analysis ZNF463 is only expressed in testis, RT-PCR indicates that ZNF463 is expressed more highly in normal fertile adults than in fetus and azoospermic patients suggesting that it may play a role in human spermatogenesis.  相似文献   

13.
ZNF333 is a novel human KRAB-zinc finger protein gene on chromosome 19p13.1 encompassing 14 exons. ZNF333 is highly expressed in heart and encodes a 665 amino acid protein that contains a rare combination of double KRAB-domains, each consisting of a classical KRAB-A and a highly divergent KRAB-B box at the N-terminus. ZNF333 further contains 10 C2H2 zinc finger motifs at the C-terminus.  相似文献   

14.
15.
16.
17.
18.
The CD59 (MEM-43) antigen, which probably is a human homologue of mouse Ly-6 antigens, is a broadly expressedM r 18000–25000 human leucocyte surface glycoprotein recognized by monoclonal antibody MEM-43. Ten mouse-human T-lymphocyte hybrids, carrying all mouse chromosomes and a limited number of human chromosomes, were analyzed for expression of CD59 by indirect immunofluorescence and immunoblotting with MEM-43 antibody. Karyotypic analysis of the tested clones showed that the presence of human chromosome 11 correlated with the expression of CD59 in all clones tested. Three other human chromosome 11-encoded antigens, 4F2 (Trop-4), Leu 7 (HNK-1, CD57), and lymphocyte homing receptor, were expressed concordantly with CD59. A more exact localization of the gene for CD59 was obtained by the study of Chinese hamster-human cell hybrids containing short or long arm deletions of human chromosome 11. CD59 segregated with hybrids containing part of the short arm of human chromosome 11, but not with the hybrids containing the long arm. Based on these studies we assign the gene for CD59 to regionP14–p13 of the short arm of chromosome 11.  相似文献   

19.
On the genetic length of the short arm of the human X chromosome   总被引:3,自引:0,他引:3  
Published estimates of the length of the human X chromosome are unreliable because they are based on scanty linkage data and complex assumptions about the frequency and distribution of chiasmata in female meiosis. In recent months we have established linkage between restriction fragment length polymorphisms (RFLPs) and several genes on the short arm of the X chromosome. These and previous data can be combined to construct a continuous linkage map spanning the short arm from the Xg gene to the centromere. They suggest that the genetic length of the Xg-Xcen segment may be in the order of 75-90 cM.  相似文献   

20.
A cluster of Krüppel type zinc finger genes of the KRAB subclass has recently been localized on human chromosome 19p12-p13.1. We now report that ZNF117 (HPF9), a closely related zinc finger gene of this KRAB subfamily, has been assigned to a distinct locus in the human genome: chromosome band 7q11.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号