首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Recent efforts to improve the representation of plant species included on the IUCN Red List of Threatened Species through the IUCN Sampled Red List Index (SRLI) for Plants have led to the assessment of almost 1000 additional species of pteridophytes and lycophytes under IUCN Red List criteria. Species were selected at random from all lineages of pteridophytes and lycophytes and are taxonomically as well as ecologically representative of pteridophyte and lycophyte diversity. 16% of pteridophyte and lycophyte species are globally threatened with extinction and 22% are of elevated conservation concern (threatened or Near Threatened); of species of pteridophytes and lycophytes previously included on the Red List, 54% were considered threatened. Over half of pteridophyte and lycophyte species assessed for the SRLI use estimates of range size; therefore the method used to measure range may affect the Red List category assigned. We evaluated this using two alternative metrics for estimating range, species distribution modelling (SDM) and ecologically suitable habitat (ESH), for 227 species endemic to the Neotropical biogeographic realm. Differences between range estimates were small when ranges were small but increased with increasing range size. For 58 (25.6%) species alternative modelling techniques result in the species meeting the threshold for a different IUCN Red List category from using extent of occurrence. Modelling threatened species distributions also highlights priority areas for conservation in tropical and subtropical montane forests that are the most species-rich habitat for small-range pteridophyte and lycophyte species, but which are now increasingly subject to rapid conversion to agriculture.  相似文献   

2.
Parrotfishes and surgeonfishes perform important functional roles in the dynamics of coral reef systems. This is a consequence of their varied feeding behaviors ranging from targeted consumption of living plant material (primarily surgeonfishes) to feeding on detrital aggregates that are either scraped from the reef surface or excavated from the deeper reef substratum (primarily parrotfishes). Increased fishing pressure and widespread habitat destruction have led to population declines for several species of these two groups. Species-specific data on global distribution, population status, life history characteristics, and major threats were compiled for each of the 179 known species of parrotfishes and surgeonfishes to determine the likelihood of extinction of each species under the Categories and Criteria of the IUCN Red List of Threatened Species. Due in part to the extensive distributions of most species and the life history traits exhibited in these two families, only three (1.7%) of the species are listed at an elevated risk of global extinction. The majority of the parrotfishes and surgeonfishes (86%) are listed as Least Concern, 10% are listed as Data Deficient and 1% are listed as Near Threatened. The risk of localized extinction, however, is higher in some areas, particularly in the Coral Triangle region. The relatively low proportion of species globally listed in threatened Categories is highly encouraging, and some conservation successes are attributed to concentrated conservation efforts. However, with the growing realization of man's profound impact on the planet, conservation actions such as improved marine reserve networks, more stringent fishing regulations, and continued monitoring of the population status at the species and community levels are imperative for the prevention of species loss in these groups of important and iconic coral reef fishes.  相似文献   

3.
The Red List of Threatened Species, published by the International Union for Conservation of Nature (IUCN), is a crucial tool for conservation decision-making. However, despite substantial effort, numerous species remain unassessed or have insufficient data available to be assigned a Red List extinction risk category. Moreover, the Red Listing process is subject to various sources of uncertainty and bias. The development of robust automated assessment methods could serve as an efficient and highly useful tool to accelerate the assessment process and offer provisional assessments. Here, we aimed to (1) present a machine learning–based automated extinction risk assessment method that can be used on less known species; (2) offer provisional assessments for all reptiles—the only major tetrapod group without a comprehensive Red List assessment; and (3) evaluate potential effects of human decision biases on the outcome of assessments. We use the method presented here to assess 4,369 reptile species that are currently unassessed or classified as Data Deficient by the IUCN. The models used in our predictions were 90% accurate in classifying species as threatened/nonthreatened, and 84% accurate in predicting specific extinction risk categories. Unassessed and Data Deficient reptiles were considerably more likely to be threatened than assessed species, adding to mounting evidence that these species warrant more conservation attention. The overall proportion of threatened species greatly increased when we included our provisional assessments. Assessor identities strongly affected prediction outcomes, suggesting that assessor effects need to be carefully considered in extinction risk assessments. Regions and taxa we identified as likely to be more threatened should be given increased attention in new assessments and conservation planning. Lastly, the method we present here can be easily implemented to help bridge the assessment gap for other less known taxa.

The Red List of Threatened Species, published by the IUCN, is a crucial tool for conservation decision making, but is subject to various sources of uncertainty and bias. Modelling the threat status of all global reptiles identifies increased threat to many groups of reptiles across many regions of the world, beyond those currently recognized; moreover, it highlights the effects of the IUCN assessment procedure on eventual threat categories.  相似文献   

4.
On coral reefs in Palmyra—a central Pacific atoll with limited fishing pressure—total fish biomass was 428 and 299% greater than on reefs in nearby Christmas and Fanning Islands. Large apex predators, groupers, sharks, snappers, and jacks larger than 50 cm in length, accounted for 56% of total fish biomass in Palmyra on average, but only 7 and 3% on Christmas and Fanning. These biomass proportions are remarkably similar to those previously reported for the remote and uninhabited Northwest Hawaiian Islands (NWHI) and densely populated Main Hawaiian Islands (MHI), although Palmyra’s reefs are dominated in biomass by sharks (44% of the total), whereas the NWHI by jacks (39%). Herbivorous fish biomass was also greater on Palmyra than on Christmas and Fanning (343 and 207%, respectively). These results and previous findings indicate that remote, uninhabited islands support high levels of consumers, and highlight the importance of healthy coral reef ecosystems as reference points for assessment of human impacts and establishment of restoration goals.  相似文献   

5.
早在20世纪80年代, 我国就引入IUCN红色名录原理, 对我国生物物种的濒危状况开展评估工作。但是随着经济发展和气候变化, 一些物种的数量和分布区发生了变化, 加之在以往的评估中存在一些不足, 亟需对我国生物物种的濒危状况开展一次全面的评估。2008年, 环境保护部联合中国科学院启动了《中国生物多样性红色名录》的编制工作, 《中国生物多样性红色名录——高等植物卷》和《中国生物多样性红色名录——脊椎动物卷》分别于2013年9月和2015年5月正式对外发布。本文回顾了《中国生物多样性红色名录》的编制背景、过程和取得的成果。《中国生物多样性红色名录》完成了对我国34,450种高等植物和除海洋鱼类外的4,357种脊椎动物受威胁状况的评估, 是迄今为止对象最广、信息最全、参与专家人数最多的一次评估。在评估中取得了一系列成果: 统计了中国已知高等植物和脊椎动物物种数, 确定了物种丰富度在世界上的排名; 完善了国际上所使用的IUCN红色名录评估等级标准体系; 评估分析了我国已知高等植物和脊椎动物的受威胁程度及分布差异; 评估分析了高等植物和脊椎动物濒危灭绝的原因, 其中人类活动导致的生境丧失和退化是首要因素。这些成果将对我国生物多样性保护和管理工作产生积极的影响。  相似文献   

6.
解焱 《生物多样性》2022,30(10):22445-3254
IUCN受威胁物种红色名录已经成为世界上最全面的关于全球动物、真菌和植物物种灭绝风险状况的信息来源, 是生物多样性健康的关键指标, 是促进生物多样性保护和决策的有力工具。本文全面介绍IUCN受威胁物种红色名录(简称IUCN红色名录)的发展以及应用状况, 积极推动其在中国的物种评估和广泛应用。总结了IUCN红色名录从依赖于评估专家的主观意志决定物种濒危等级的濒危物种红皮书(Red Data Book)到IUCN受威胁物种等级和标准(3.1版)的客观量化和所有门类使用统一标准的过程。该等级体系可囊括全球所有物种, 其中“受威胁”的3个等级——极危(CR)、濒危(EN)或易危(VU)需使用5个标准进行量化评估, 对评估规范有非常严格的要求。该等级和标准体系不仅适用于全球层面, 同样也适用于地区层面物种评估, 只是在具体物种种群如果和周边其他地区(国家)存在种群交流情况时, 评估结果要进行调整。迄今为止, 全球层面使用该等级体系和标准评估了14万多种(其中在中国有分布的物种10,846种), 100多个国家和地方制定了地区/国家层面的红色名录, 中国红色名录评估了5.5万多种。IUCN红色名录已广泛应用于评估生物多样性变化速度; 为保护规划提供决策信息; 支持履行国际公约、修订国家/地区重点保护物种名录和自然保护地管理等; 指导资源有效合理分配和宣传教育等。广泛应用过程中, 讨论主要集中在获取数据的方法改进上; 另外, 一方面有专家认为标准存在缺陷需要完善, 另一方面有呼吁维持标准的长期相对稳定, 以便进行跨时间、跨区域、跨物种门类的比较。本文提出来了中国红色名录的持续机制和应用建议, 包括建立中国红色名录委员会、建立中国红色名录专业网站、发展评估专家队伍、建立中国红色名录评估更新机制, 以及加强国际协作、促进全球和中国红色名录的应用和发展。  相似文献   

7.
Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size‐structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US‐affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra ‘steepened’ steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size‐based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems.  相似文献   

8.
Aim  In light of the current biodiversity crisis, there is a need to identify and protect species at greatest risk of extinction. Ecological theory and global-scale analyses of bird and mammal faunas suggest that small-bodied species are less vulnerable to extinction, yet this hypothesis remains untested for the largest group of vertebrates, fish. Here, we compare body-size distributions of freshwater and marine fishes under different levels of global extinction risk (i.e. listed as vulnerable, endangered or critically endangered according to the IUCN Red List of Threatened Species ) from different major sources of threat (habitat loss/degradation, human harvesting, invasive species and pollution).
Location  Global, freshwater and marine.
Methods  We collated maximum body length data for 22,800 freshwater and marine fishes and compared body-size frequency distributions after controlling for phylogeny.
Results  We found that large-bodied marine fishes are under greater threat of global extinction, whereas both small- and large-bodied freshwater species are more likely to be at risk. Our results support the notion that commercial fishing activities disproportionately threaten large-bodied marine and freshwater species, whereas habitat degradation and loss threaten smaller-bodied marine fishes.
Main conclusions  Our study provides compelling evidence that global fish extinction risk does not universally scale with body size. Given the central role of body size for trophic position and the functioning of food webs, human activities may have strikingly different effects on community organization and food web structure in freshwater and marine systems.  相似文献   

9.

Background

Concern about the decline of wild salmon has attracted the attention of the International Union for the Conservation of Nature (IUCN). The IUCN applies quantitative criteria to assess risk of extinction and publishes its results on the Red List of Threatened Species. However, the focus is on the species level and thus may fail to show the risk to populations. The IUCN has adapted their criteria to apply to populations but there exist few examples of this type of assessment. We assessed the status of sockeye salmon Oncorhynchus nerka as a model for application of the IUCN population-level assessments and to provide the first global assessment of the status of an anadromous Pacific salmon.

Methods/Principal Findings

We found from demographic data that the sockeye salmon species is not presently at risk of extinction. We identified 98 independent populations with varying levels of risk within the species'' range. Of these, 5 (5%) are already extinct. We analyzed the risk for 62 out of 93 extant populations (67%) and found that 17 of these (27%) are at risk of extinction. The greatest number and concentration of extinct and threatened populations is in the southern part of the North American range, primarily due to overfishing, freshwater habitat loss, dams, hatcheries, and changing ocean conditions.

Conclusions/Significance

Although sockeye salmon are not at risk at the species-level, about one-third of the populations that we analyzed are at risk or already extinct. Without an understanding of risk to biodiversity at the level of populations, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation organizations, scientists and the public to recognize this limitation of the Red List. We also urge recognition that about one-third of sockeye salmon global population diversity is at risk of extinction or already extinct.  相似文献   

10.
关于物种濒危等级标准之探讨--对IUCN物种濒危等级的思考   总被引:10,自引:3,他引:7  
为了保存地球上的生物多样性,我们需要根据物种的种群数量与分布、种群数量波动与分布区下降速率来评定濒危物种的濒危等级,并针对物种的濒危等级提出具体的保护措施。1994年11月,IUCN第40次理事会会议正式通过了经过修订的Mace-Lande物种濒危等级标准作为IUCN物种濒危等级标准。IUCN濒危物种红色名录虽然不是国际法和国家法律,但是对于政府间组织、非政府组织的保护决策以及各国的自然法律法规的制定有着深远的影响,在保护生物学理论研究中也发挥了一定作用。我们在研究制定中国水生野生生物濒危等级标准时发现,如果直接应用IUCN物种濒危等级标准评定水生野生生物濒危等级将存在一些问题。如:(1)如何区别对待那些本来就数量稀少、分布区狭窄的物种和那些由于人类活动而导致其种群数量与生境面积急剧下降的物种?(2)不同的动物类群能否应用同一濒危标准尺度?(3)如何区别对待物种边缘分布区和核心分布区的种群数量与密度的差异?(4)如何处理种群的局部灭绝、局部濒危?(5)一些濒危物种在野生环境中濒危,但是这些物种可以人工繁殖,如何处理可以人工繁殖的濒危物种?(6)如果没有种群与栖息地的精确历史资料和统计数据,怎样应用物种的濒危标准评估其濒危等级?在实践中,我们针对这些问题提出了解决方案。考虑与国际流行的IUCN物种濒危等级标准接轨,我们提出来一个由“无危”、“值得关注”、“受胁”、“濒危”和“灭绝”等5个级构成的濒危等级系统,其中“值得关注”、“受胁”、“濒危”又分为“一般”与“高度”两个亚等级。我们提出应区分“生态濒危物种”、“进化濒危物种”;对于不同生物类群,应区分物种的生活史对策,制定不同生活史物种的濒危标准。对于r-对策物种,引入“经济灭绝”这一等级,将这一等级对应于“受胁”等级,以解决缺少物种数量的统计数据和历史数据这一难题;区别对待特有物种,将其濒危等级提升一等;引进集合种群(metapopulation)概念,将集合种群的局域种群(local population)作为“个体”对待。  相似文献   

11.
Zoos and public aquaria exhibit numerous threatened species globally, and in the modern context of these institutions as conservation hubs, it is crucial that displays are ecologically sustainable. Elasmobranchs (sharks and rays) are of particular conservation concern and a higher proportion of threatened species are exhibited than any other assessed vertebrate group. Many of these lack sustainable captive populations, so comprehensive assessments of sustainability may be needed to support the management of future harvests and safeguard wild populations. We propose an approach to identify species that require an assessment of sustainability. Species at risk of extinction in the wild were considered to be those assessed as threatened (CR, EN or VU) on the IUCN Red List of Threatened Species, or data deficient species that may be at an elevated risk of extinction due to life history traits and habitat associations. We defined sustainable captive populations as self-maintaining, or from a source population that can sustain harvest levels without risk of population declines below sustainable levels. The captive breeding and wild harvest records of at risk species displayed by Australian aquaria were examined as a case study. Two species, largetooth sawfish Pristis pristis and grey nurse shark Carcharias taurus, were found to have unsustainable captive populations and were identified as high priorities for comprehensive sustainability assessments. This review highlights the need for changes in permitting practices and zoo and aquarium record management systems to improve conservation outcomes for captive elasmobranchs.  相似文献   

12.
The IUCN Red List of Threatened Animals is an important conservation tool, but the accuracy of predictions about risks of global extinction within 10 years or three generations is difficult to test objectively. In this study, we compare IUCN predictions with the results of attempts to derive realistic scenarios that could lead to the global extinction of six species of long-lived reptiles. For three species, the IUCN predictions matched real events reasonably well but still overestimated risks of global extinction. For the other species, the predictions did not match real events. Reasons why disparities occur are discussed. Received: February 16, 1999 / Accepted: December 27, 1999  相似文献   

13.
Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species'' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.  相似文献   

14.
Apex predators often have strong top-down effects on ecosystem components and are therefore a priority for conservation and management. Due to their large size and conspicuous predatory behaviour, reef sharks are typically assumed to be apex predators, but their functional role is yet to be confirmed. In this study, we used stomach contents and stable isotopes to estimate diet, trophic position and carbon sources for three common species of reef shark (Triaenodon obesus, Carcharhinus melanopterus and C. amblyrhynchos) from the Great Barrier Reef (Australia) and evaluated their assumed functional role as apex predators by qualitative and quantitative comparisons with other sharks and large predatory fishes. We found that reef sharks do not occupy the apex of coral reef food chains, but instead have functional roles similar to those of large predatory fishes such as snappers, emperors and groupers, which are typically regarded as high-level mesopredators. We hypothesise that a degree of functional redundancy exists within this guild of predators, potentially explaining why shark-induced trophic cascades are rare or subtle in coral reef ecosystems. We also found that reef sharks participate in multiple food webs (pelagic and benthic) and are sustained by multiple sources of primary production. We conclude that large conspicuous predators, be they elasmobranchs or any other taxon, should not axiomatically be regarded as apex predators without thorough analysis of their diet. In the case of reef sharks, our dietary analyses suggest they should be reassigned to an alternative trophic group such as high-level mesopredators. This change will facilitate improved understanding of how reef communities function and how removal of predators (e.g., via fishing) might affect ecosystem properties.  相似文献   

15.
Evidence-based assessments of extinction risk are established tools used to inform the conservation of plant species, and form the basis of key targets within the framework of the Global Strategy for Plant Conservation (GSPC). An overall picture of plants threat assessments is challenging due to the use of a variety of methodologies and range in scope from global to subnational. In this study, we quantify the state of progress in assessing the extinction risk of all land plants, determine the key geographic and taxonomic gaps with respect to our understanding of plant extinction risk, and evaluate the impact of different sources and methodologies on the utility of plant assessments. To this end, we have analyzed a cleaned dataset compiled from IUCN Red List of Threatened Species and Regional Red Lists. We reveal that there are assessments available for 89,810 distinct species or 25% of all accepted land plant species. However unlike with other major organismal lineages the bulk of the plant species assessments are derived from Regional Red Lists, and not the Global IUCN Red List. We demonstrate that this bias towards regional assessments results in distinct taxonomic and geographic strengths and weaknesses, and we identify substantial taxonomic and geographic gaps in the assessment coverage. With species that have been assessed in common at both global and regional levels, we explore the implications of combining threat assessments from different sources. We find that half of global and regional assessments do not agree on the exact category of extinction risk for a species. Regional assessments assign a higher risk of extinction; or underestimate extinction risk with almost equal frequency. We conclude with recommended interventions, but support the suggestion that all threat assessments should be pooled to provide more data and broaden the scope of threat assessments for monitoring progress towards GSPC targets.  相似文献   

16.
The value of the IUCN Red List for conservation   总被引:2,自引:0,他引:2  
The IUCN Red List of Threatened Species is the most comprehensive resource detailing the global conservation status of plants and animals. The 2004 edition represents a milestone in the four-decade long history of the Red List, including the first Global Amphibian Assessment and a near doubling in assessed species since 2000. Moreover, the Red List assessment process itself has developed substantially over the past decade, extending the value of the Red List far beyond the assignation of threat status. We highlight here how the Red List, in conjunction with the comprehensive data compiled to support it and in spite of several important limitations, has become an increasingly powerful tool for conservation planning, management, monitoring and decision making.  相似文献   

17.
Anthropogenic activities such as land‐use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific‐wide and regional (1,000s–10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human‐induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both “top‐down” (fishing of predators) and “bottom‐up” (degradation of benthic communities) contexts.  相似文献   

18.
Biodiversity targets, or estimates of the quantities of biodiversity features that should be conserved in a region, are fundamental to systematic conservation planning. We propose that targets for species should be based on the quantitative thresholds developed for the Vulnerable category of the IUCN Red List system, thereby avoiding future listings of species in an IUCN Red List threat category or an increase in the extinction risk, or ultimate extinction, of species already listed as threatened. Examples of this approach are presented for case studies from South Africa, including threatened taxa listed under the IUCN Red List criteria of A to D, a species listed as Near Threatened, a species of conservation concern due to its rarity, and one species in need of recovery. The method gives rise to multiple representation targets, an improvement on the often used single representation targets that are inadequate for long term maintenance of biodiversity or the arbitrary multiple representation and percentage targets that are sometimes adopted. Through the implementation of the resulting conservation plan, these targets will ensure that the conservation status of threatened species do not worsen over time by qualifying for higher categories of threat and may actually improve their conservation status by eliminating the threat of habitat loss and stabilizing population declines. The positive attributes ascribed to the IUCN Red List system, and therefore to the species targets arising from this approach, are important when justifying decisions that limit land uses known to be detrimental to biodiversity.  相似文献   

19.
Disease epidemics have caused extensive damage to tropical coral reefs and to the reef-building corals themselves, yet nothing is known about the abilities of the coral host to resist disease infection. Understanding the potential for natural disease resistance in corals is critically important, especially in the Caribbean where the two ecologically dominant shallow-water corals, Acropora cervicornis and A. palmata, have suffered an unprecedented mass die-off due to White Band Disease (WBD), and are now listed as threatened under the US Threatened Species Act and as critically endangered under the IUCN Red List criteria. Here we examine the potential for natural resistance to WBD in the staghorn coral Acropora cervicornis by combining microsatellite genotype information with in situ transmission assays and field monitoring of WBD on tagged genotypes. We show that six percent of staghorn coral genotypes (3 out of 49) are resistant to WBD. This natural resistance to WBD in staghorn corals represents the first evidence of host disease resistance in scleractinian corals and demonstrates that staghorn corals have an innate ability to resist WBD infection. These resistant staghorn coral genotypes may explain why pockets of Acropora have been able to survive the WBD epidemic. Understanding disease resistance in these corals may be the critical link to restoring populations of these once dominant corals throughout their range.  相似文献   

20.
ABSTRACT Guadeloupe Woodpeckers (Melanerpes herminieri) are the only endemic bird species on the Caribbean island of Guadeloupe. These woodpeckers were classified as Near Threatened on the IUCN Red List following a population survey in 1994. To reassess the Guadeloupe Woodpecker population, we conducted a new survey in 2007, with 21 transects distributed across eight habitats known to be used by the woodpeckers. Habitats with the highest estimated population densities were seasonal evergreen secondary growth forest, followed by swamp forest and rainforest. Surveys revealed an estimated population of 8469 pairs in 2007 compared to 7368 pairs in 1994, a difference that was not significant. However, our 2007 survey revealed that Guadeloupe Woodpeckers had recolonized the last large patch of available forest on Basse‐Terre, one of the two main islands in the Guadeloupe archipelago. Although our results suggest that the Guadeloupe Woodpecker population has remained relatively stable since 1994, deforestation remains a serious threat and we recommend that the IUCN Red List status of Near Threatened be retained. Management measures that would benefit Guadeloupe Woodpeckers include halting deforestation and providing financial support to people on private land to plant trees and leave dead trees standing. Regular monitoring will be important for determining the possible effects of such measures on the Guadeloupe Woodpecker population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号